CuPBoP/README.md

67 lines
1.7 KiB
Markdown
Raw Normal View History

2022-01-14 02:30:45 +08:00
# CuPBoP: Cuda for Parallelized and Broad-range Processors
## Introduction
2022-01-14 02:30:45 +08:00
CuPBoP (Cuda for parallelized and broad-range processors) is a framework
aims to execute CUDA source code on non-NVIDIA devices,
including CPU, GPU and other architectures.
## Install
### Prerequisites
* Linux: Verified on Ubuntu 18.04
* LLVM10.0
* NVIDIA CUDA-toolkit
* x86 CPU
* pthread
* GCC 7.5.0
### Installation
1. Clone from github
```bash
2022-01-14 02:30:45 +08:00
git clone https://github.com/cupbop/CuPBoP
cd CuPBoP
```
2. Build the transformer for NVVM IR to LLVM IR for X86
```bash
mkdir build && cd build
cmake .. -DLLVM_CONFIG_PATH=`which llvm-config` # need path to llvm-config
make
```
## Run Vecadd samples
```bash
# Generate bitcode from human-readable LLVM IR
llvm-as ../compilation/examples/vecadd/kernel-cuda-nvptx64-nvidia-cuda-sm_61.ll
# use LLVM passes to transform NVVM IR (SPMD) to LLVM IR (MPMD+SIMD).
# NOTE: we hard-code the grid size (1, 1, 1)
# and block size (1024, 1, 1) into the generated LLVM IR
./compilation/nvvm2x86 \
../compilation/examples/vecadd/kernel-cuda-nvptx64-nvidia-cuda-sm_61.bc \
kernel.bc 1 1 1 32 1 1
# generate object file from LLVM IR
llc --filetype=obj kernel.bc
# link generated kernel function
# with host function and generate excutable file
g++ ../compilation/examples/vecadd/host.cpp \
kernel.o -lpthread -o vecadd_example
# execute the executable file
./vecadd_example
```
2022-01-14 02:30:45 +08:00
## Contribution
We sincerely appreciate all kinds of contributions.
Please refer to [CONTRIBUTING](docs/CONTRIBUTING.md) for the contributing guideline.
## Author
2022-01-14 02:30:45 +08:00
* [Ruobing Han](https://drcut.github.io/)
* [Hyesoon Kim](https://www.cc.gatech.edu/~hyesoon/)