CuPBoP/examples/dwt2d/dwt_cuda/fdwt53.cu

401 lines
16 KiB
Plaintext
Raw Normal View History

2022-05-22 03:55:49 +08:00
/// @file fdwt53.cu
/// @brief CUDA implementation of forward 5/3 2D DWT.
/// @author Martin Jirman (207962@mail.muni.cz)
/// @date 2011-02-04 13:23
///
///
/// Copyright (c) 2011 Martin Jirman
/// All rights reserved.
2022-05-25 08:43:47 +08:00
///
2022-05-22 03:55:49 +08:00
/// Redistribution and use in source and binary forms, with or without
/// modification, are permitted provided that the following conditions are met:
2022-05-25 08:43:47 +08:00
///
2022-05-22 03:55:49 +08:00
/// * Redistributions of source code must retain the above copyright
/// notice, this list of conditions and the following disclaimer.
/// * Redistributions in binary form must reproduce the above copyright
/// notice, this list of conditions and the following disclaimer in the
/// documentation and/or other materials provided with the distribution.
2022-05-25 08:43:47 +08:00
///
2022-05-22 03:55:49 +08:00
/// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
/// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
/// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
/// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
/// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
/// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
/// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
/// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
/// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
/// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
/// POSSIBILITY OF SUCH DAMAGE.
///
#include "common.h"
#include "transform_buffer.h"
#include "io.h"
namespace dwt_cuda {
/// Wraps buffer and methods needed for computing one level of 5/3 FDWT
/// using sliding window approach.
/// @tparam WIN_SIZE_X width of sliding window
/// @tparam WIN_SIZE_Y height of sliding window
template <int WIN_SIZE_X, int WIN_SIZE_Y>
class FDWT53 {
private:
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
/// Info needed for processing of one input column.
/// @tparam CHECKED_LOADER true if column's loader should check boundaries
/// false if there are no near boudnaries to check
template <bool CHECKED_LOADER>
struct FDWT53Column {
/// loader for the column
VerticalDWTPixelLoader<int, CHECKED_LOADER> loader;
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
/// offset of the column in shared buffer
2022-05-25 08:43:47 +08:00
int offset;
2022-05-22 03:55:49 +08:00
// backup of first 3 loaded pixels (not transformed)
int pixel0, pixel1, pixel2;
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
/// Sets all fields to anything to prevent 'uninitialized' warnings.
__device__ void clear() {
offset = pixel0 = pixel1 = pixel2 = 0;
loader.clear();
}
};
/// Type of shared memory buffer for 5/3 FDWT transforms.
typedef TransformBuffer<int, WIN_SIZE_X, WIN_SIZE_Y + 3, 2> FDWT53Buffer;
/// Actual shared buffer used for forward 5/3 DWT.
FDWT53Buffer buffer;
/// Difference between indices of two vertical neighbors in buffer.
enum { STRIDE = FDWT53Buffer::VERTICAL_STRIDE };
/// Forward 5/3 DWT predict operation.
struct Forward53Predict {
__device__ void operator() (const int p, int & c, const int n) const {
// c = n;
c -= (p + n) / 2; // F.8, page 126, ITU-T Rec. T.800 final draft the real one
}
};
/// Forward 5/3 DWT update operation.
struct Forward53Update {
__device__ void operator() (const int p, int & c, const int n) const {
c += (p + n + 2) / 4; // F.9, page 126, ITU-T Rec. T.800 final draft
}
};
/// Initializes one column: computes offset of the column in shared memory
/// buffer, initializes loader and finally uses it to load first 3 pixels.
/// @tparam CHECKED true if loader of the column checks boundaries
/// @param column (uninitialized) column info to be initialized
/// @param input input image
/// @param sizeX width of the input image
/// @param sizeY height of the input image
/// @param colIndex x-axis coordinate of the column (relative to the left
/// side of this threadblock's block of input pixels)
/// @param firstY y-axis coordinate of first image row to be transformed
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
template <bool CHECKED>
__device__ void initColumn(FDWT53Column<CHECKED> & column,
const int * const input,
const int sizeX, const int sizeY,
const int colIndex, const int firstY) {
// get offset of the column with index 'cId'
column.offset = buffer.getColumnOffset(colIndex);
// coordinates of the first pixel to be loaded
const int firstX = blockIdx.x * WIN_SIZE_X + colIndex;
if(blockIdx.y == 0) {
// topmost block - apply mirroring rules when loading first 3 rows
column.loader.init(sizeX, sizeY, firstX, firstY);
// load pixels in mirrored way
column.pixel2 = column.loader.loadFrom(input); // loaded pixel #0
column.pixel1 = column.loader.loadFrom(input); // loaded pixel #1
column.pixel0 = column.loader.loadFrom(input); // loaded pixel #2
// reinitialize loader to start with pixel #1 again
column.loader.init(sizeX, sizeY, firstX, firstY + 1);
} else {
// non-topmost row - regular loading:
column.loader.init(sizeX, sizeY, firstX, firstY - 2);
// load 3 rows into the column
column.pixel0 = column.loader.loadFrom(input);
column.pixel1 = column.loader.loadFrom(input);
column.pixel2 = column.loader.loadFrom(input);
// Now, the next pixel, which will be loaded by loader, is pixel #1.
}
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
}
/// Loads and vertically transforms given column. Assumes that first 3
/// pixels are already loaded in column fields pixel0 ... pixel2.
/// @tparam CHECKED true if loader of the column checks boundaries
/// @param column column to be loaded and vertically transformed
/// @param input pointer to input image data
template <bool CHECKED>
__device__ void loadAndVerticallyTransform(FDWT53Column<CHECKED> & column,
const int * const input) {
// take 3 loaded pixels and put them into shared memory transform buffer
buffer[column.offset + 0 * STRIDE] = column.pixel0;
buffer[column.offset + 1 * STRIDE] = column.pixel1;
buffer[column.offset + 2 * STRIDE] = column.pixel2;
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
// load remaining pixels to be able to vertically transform the window
2022-05-25 08:43:47 +08:00
for(int i = 3; i < (3 + WIN_SIZE_Y); i++)
2022-05-22 03:55:49 +08:00
{
buffer[column.offset + i * STRIDE] = column.loader.loadFrom(input);
}
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
// remember last 3 pixels for use in next iteration
column.pixel0 = buffer[column.offset + (WIN_SIZE_Y + 0) * STRIDE];
column.pixel1 = buffer[column.offset + (WIN_SIZE_Y + 1) * STRIDE];
column.pixel2 = buffer[column.offset + (WIN_SIZE_Y + 2) * STRIDE];
// vertically transform the column in transform buffer
buffer.forEachVerticalOdd(column.offset, Forward53Predict());
buffer.forEachVerticalEven(column.offset, Forward53Update());
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
}
/// Actual implementation of 5/3 FDWT.
/// @tparam CHECK_LOADS true if input loader must check boundaries
/// @tparam CHECK_WRITES true if output writer must check boundaries
/// @param in input image
/// @param out output buffer
2022-05-25 08:43:47 +08:00
/// @param sizeX width of the input image
2022-05-22 03:55:49 +08:00
/// @param sizeY height of the input image
/// @param winSteps number of sliding window steps
template <bool CHECK_LOADS, bool CHECK_WRITES>
__device__ void transform(const int * const in, int * const out,
const int sizeX, const int sizeY,
const int winSteps) {
// info about one main and one boundary columns processed by this thread
2022-05-25 08:43:47 +08:00
FDWT53Column<CHECK_LOADS> column;
2022-05-22 03:55:49 +08:00
FDWT53Column<CHECK_LOADS> boundaryColumn; // only few threads use this
2022-05-25 08:43:47 +08:00
// Initialize all column info: initialize loaders, compute offset of
2022-05-22 03:55:49 +08:00
// column in shared buffer and initialize loader of column.
const int firstY = blockIdx.y * WIN_SIZE_Y * winSteps;
initColumn(column, in, sizeX, sizeY, threadIdx.x, firstY); //has been checked Mar 9th
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
// first 3 threads initialize boundary columns, others do not use them
boundaryColumn.clear();
if(threadIdx.x < 3) {
// index of boundary column (relative x-axis coordinate of the column)
const int colId = threadIdx.x + ((threadIdx.x == 0) ? WIN_SIZE_X : -3);
// initialize the column
initColumn(boundaryColumn, in, sizeX, sizeY, colId, firstY);
}
2022-05-25 08:43:47 +08:00
// index of column which will be written into output by this thread
2022-05-22 03:55:49 +08:00
const int outColumnIndex = parityIdx<WIN_SIZE_X>();
// offset of column which will be written by this thread into output
const int outColumnOffset = buffer.getColumnOffset(outColumnIndex);
// initialize output writer for this thread
const int outputFirstX = blockIdx.x * WIN_SIZE_X + outColumnIndex;
VerticalDWTBandWriter<int, CHECK_WRITES> writer;
writer.init(sizeX, sizeY, outputFirstX, firstY);
__syncthreads();
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
// Sliding window iterations:
// Each iteration assumes that first 3 pixels of each column are loaded.
for(int w = 0; w < winSteps; w++) {
// For each column (including boundary columns): load and vertically
// transform another WIN_SIZE_Y lines.
loadAndVerticallyTransform(column, in);
2022-05-25 08:43:47 +08:00
if(threadIdx.x < 3) {
loadAndVerticallyTransform(boundaryColumn, in);
2022-05-22 03:55:49 +08:00
}
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
// wait for all columns to be vertically transformed and transform all
// output rows horizontally
__syncthreads();
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
buffer.forEachHorizontalOdd(2, WIN_SIZE_Y, Forward53Predict());
__syncthreads();
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
buffer.forEachHorizontalEven(2, WIN_SIZE_Y, Forward53Update());
// wait for all output rows to be transformed horizontally and write
// them into output buffer
2022-05-25 08:43:47 +08:00
__syncthreads();
2022-05-22 03:55:49 +08:00
for(int r = 2; r < (2 + WIN_SIZE_Y); r += 2) {
// Write low coefficients from output column into low band ...
writer.writeLowInto(out, buffer[outColumnOffset + r * STRIDE]);
// ... and high coeficients into the high band.
writer.writeHighInto(out, buffer[outColumnOffset + (r+1) * STRIDE]);
}
// before proceeding to next iteration, wait for all output columns
// to be written into the output
__syncthreads();
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
}
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
}
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
public:
/// Determines, whether this block's pixels touch boundary and selects
/// right version of algorithm according to it - for many threadblocks, it
2022-05-25 08:43:47 +08:00
/// selects version which does not deal with boundary mirroring and thus is
2022-05-22 03:55:49 +08:00
/// slightly faster.
/// @param in input image
/// @param out output buffer
2022-05-25 08:43:47 +08:00
/// @param sx width of the input image
2022-05-22 03:55:49 +08:00
/// @param sy height of the input image
/// @param steps number of sliding window steps
__device__ static void run(const int * const in, int * const out,
const int sx, const int sy, const int steps) {
// if(blockIdx.x==0 && blockIdx.y ==11 && threadIdx.x >=0&&threadIdx.x <64){
// object with transform buffer in shared memory
__shared__ FDWT53<WIN_SIZE_X, WIN_SIZE_Y> fdwt53;
// Compute limits of this threadblock's block of pixels and use them to
// determine, whether this threadblock will have to deal with boundary.
// (1 in next expressions is for radius of impulse response of 9/7 FDWT.)
const int maxX = (blockIdx.x + 1) * WIN_SIZE_X + 1;
const int maxY = (blockIdx.y + 1) * WIN_SIZE_Y * steps + 1;
const bool atRightBoudary = maxX >= sx;
const bool atBottomBoudary = maxY >= sy;
// Select specialized version of code according to distance of this
// threadblock's pixels from image boundary.
// if(threadIdx.x == 0) {
// printf("fdwt53 run");
// }
2022-05-25 08:43:47 +08:00
if(atBottomBoudary)
2022-05-22 03:55:49 +08:00
{
// near bottom boundary => check both writing and reading
fdwt53.transform<true, true>(in, out, sx, sy, steps);
2022-05-25 08:43:47 +08:00
} else if(atRightBoudary)
2022-05-22 03:55:49 +08:00
{
// near right boundary only => check writing only
fdwt53.transform<false, true>(in, out, sx, sy, steps);
2022-05-25 08:43:47 +08:00
} else
2022-05-22 03:55:49 +08:00
{
// no nearby boundary => check nothing
fdwt53.transform<false, false>(in, out, sx, sy, steps);
}
}
// }
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
}; // end of class FDWT53
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
/// Main GPU 5/3 FDWT entry point.
/// @tparam WIN_SX width of sliding window to be used
/// @tparam WIN_SY height of sliding window to be used
/// @param input input image
/// @param output output buffer
2022-05-25 08:43:47 +08:00
/// @param sizeX width of the input image
2022-05-22 03:55:49 +08:00
/// @param sizeY height of the input image
/// @param winSteps number of sliding window steps
template <int WIN_SX, int WIN_SY>
__launch_bounds__(WIN_SX, CTMIN(SHM_SIZE/sizeof(FDWT53<WIN_SX, WIN_SY>), 8))
__global__ void fdwt53Kernel(const int * const input, int * const output,
const int sizeX, const int sizeY,
const int winSteps) {
FDWT53<WIN_SX, WIN_SY>::run(input, output, sizeX, sizeY, winSteps);
}
2022-05-25 08:43:47 +08:00
/// Only computes optimal number of sliding window steps,
2022-05-22 03:55:49 +08:00
/// number of threadblocks and then lanches the 5/3 FDWT kernel.
/// @tparam WIN_SX width of sliding window
/// @tparam WIN_SY height of sliding window
/// @param in input image
/// @param out output buffer
2022-05-25 08:43:47 +08:00
/// @param sx width of the input image
2022-05-22 03:55:49 +08:00
/// @param sy height of the input image
template <int WIN_SX, int WIN_SY>
void launchFDWT53Kernel (int * in, int * out, int sx, int sy) {
// compute optimal number of steps of each sliding window
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
const int steps = divRndUp(sy, 15 * WIN_SY);
int gx = divRndUp(sx, WIN_SX);
int gy = divRndUp(sy, WIN_SY * steps);
printf("\n sliding steps = %d , gx = %d , gy = %d \n", steps, gx, gy);
// prepare grid size
dim3 gSize(divRndUp(sx, WIN_SX), divRndUp(sy, WIN_SY * steps));
// printf("\n globalx=%d, globaly=%d, blocksize=%d\n", gSize.x, gSize.y, WIN_SX);
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
// run kernel, possibly measure time and finally check the call
// PERF_BEGIN
fdwt53Kernel<WIN_SX, WIN_SY><<<gSize, WIN_SX>>>(in, out, sx, sy, steps);
// PERF_END(" FDWT53", sx, sy)
// CudaDWTTester::checkLastKernelCall("FDWT 5/3 kernel");
printf("fdwt53Kernel in launchFDWT53Kernel has finished");
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
}
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
/// Forward 5/3 2D DWT. See common rules (above) for more details.
/// @param in Expected to be normalized into range [-128, 127].
/// Will not be preserved (will be overwritten).
/// @param out output buffer on GPU
/// @param sizeX width of input image (in pixels)
/// @param sizeY height of input image (in pixels)
/// @param levels number of recursive DWT levels
void fdwt53(int * in, int * out, int sizeX, int sizeY, int levels) {
// select right width of kernel for the size of the image
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
if(sizeX >= 960) {
launchFDWT53Kernel<192, 8>(in, out, sizeX, sizeY);
} else if (sizeX >= 480) {
launchFDWT53Kernel<128, 8>(in, out, sizeX, sizeY);
} else {
launchFDWT53Kernel<64, 8>(in, out, sizeX, sizeY);
}
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
// if this was not the last level, continue recursively with other levels
if(levels > 1) {
// copy output's LL band back into input buffer
2022-05-25 08:43:47 +08:00
const int llSizeX = divRndUp(sizeX, 2);
2022-05-22 03:55:49 +08:00
const int llSizeY = divRndUp(sizeY, 2);
// printf("\n llSizeX = %d , llSizeY = %d \n", llSizeX, llSizeY);
memCopy(in, out, llSizeX, llSizeY); //the function memCopy in cuda_dwt/common.h line 238
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
// run remaining levels of FDWT
fdwt53(in, out, llSizeX, llSizeY, levels - 1);
}
}
2022-05-25 08:43:47 +08:00
2022-05-22 03:55:49 +08:00
} // end of namespace dwt_cuda