/// /// @file rdwt53.cu /// @brief CUDA implementation of reverse 5/3 2D DWT. /// @author Martin Jirman (207962@mail.muni.cz) /// @date 2011-02-04 14:19 /// /// /// Copyright (c) 2011 Martin Jirman /// All rights reserved. /// /// Redistribution and use in source and binary forms, with or without /// modification, are permitted provided that the following conditions are met: /// /// * Redistributions of source code must retain the above copyright /// notice, this list of conditions and the following disclaimer. /// * Redistributions in binary form must reproduce the above copyright /// notice, this list of conditions and the following disclaimer in the /// documentation and/or other materials provided with the distribution. /// /// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" /// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE /// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE /// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE /// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR /// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF /// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS /// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN /// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) /// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE /// POSSIBILITY OF SUCH DAMAGE. /// #include "common.h" #include "transform_buffer.h" #include "io.h" namespace dwt_cuda { /// Wraps shared momory buffer and algorithms needed for computing 5/3 RDWT /// using sliding window and lifting schema. /// @tparam WIN_SIZE_X width of sliding window /// @tparam WIN_SIZE_Y height of sliding window template class RDWT53 { private: /// Shared memory buffer used for 5/3 DWT transforms. typedef TransformBuffer RDWT53Buffer; /// Shared buffer used for reverse 5/3 DWT. RDWT53Buffer buffer; /// Difference between indices of two vertically neighboring items in buffer. enum { STRIDE = RDWT53Buffer::VERTICAL_STRIDE }; /// Info needed for loading of one input column from input image. /// @tparam CHECKED true if loader should check boundaries template struct RDWT53Column { /// loader of pixels from column in input image VerticalDWTBandLoader loader; /// Offset of corresponding column in shared buffer. int offset; /// Sets all fields to some values to avoid 'uninitialized' warnings. __device__ void clear() { offset = 0; loader.clear(); } }; /// 5/3 DWT reverse update operation. struct Reverse53Update { __device__ void operator() (const int p, int & c, const int n) const { c -= (p + n + 2) / 4; // F.3, page 118, ITU-T Rec. T.800 final draft } }; /// 5/3 DWT reverse predict operation. struct Reverse53Predict { __device__ void operator() (const int p, int & c, const int n) const { c += (p + n) / 2; // F.4, page 118, ITU-T Rec. T.800 final draft } }; /// Horizontal 5/3 RDWT on specified lines of transform buffer. /// @param lines number of lines to be transformed /// @param firstLine index of the first line to be transformed __device__ void horizontalTransform(const int lines, const int firstLine) { __syncthreads(); buffer.forEachHorizontalEven(firstLine, lines, Reverse53Update()); __syncthreads(); buffer.forEachHorizontalOdd(firstLine, lines, Reverse53Predict()); __syncthreads(); } /// Using given loader, it loads another WIN_SIZE_Y coefficients /// into specified column. /// @tparam CHECKED true if loader should check image boundaries /// @param input input coefficients to load from /// @param col info about loaded column template inline __device__ void loadWindowIntoColumn(const int * const input, RDWT53Column & col) { for(int i = 3; i < (3 + WIN_SIZE_Y); i += 2) { buffer[col.offset + i * STRIDE] = col.loader.loadLowFrom(input); buffer[col.offset + (i + 1) * STRIDE] = col.loader.loadHighFrom(input); } } /// Initializes one column of shared transform buffer with 7 input pixels. /// Those 7 pixels will not be transformed. Also initializes given loader. /// @tparam CHECKED true if loader should check image boundaries /// @param columnX x coordinate of column in shared transform buffer /// @param input input image /// @param sizeX width of the input image /// @param sizeY height of the input image /// @param loader (uninitialized) info about loaded column template __device__ void initColumn(const int columnX, const int * const input, const int sizeX, const int sizeY, RDWT53Column & column, const int firstY) { // coordinates of the first coefficient to be loaded const int firstX = blockIdx.x * WIN_SIZE_X + columnX; // offset of the column with index 'colIndex' in the transform buffer column.offset = buffer.getColumnOffset(columnX); if(blockIdx.y == 0) { // topmost block - apply mirroring rules when loading first 3 rows column.loader.init(sizeX, sizeY, firstX, firstY); // load pixels in mirrored way buffer[column.offset + 1 * STRIDE] = column.loader.loadLowFrom(input); buffer[column.offset + 0 * STRIDE] = buffer[column.offset + 2 * STRIDE] = column.loader.loadHighFrom(input); } else { // non-topmost row - regular loading: column.loader.init(sizeX, sizeY, firstX, firstY - 1); buffer[column.offset + 0 * STRIDE] = column.loader.loadHighFrom(input); buffer[column.offset + 1 * STRIDE] = column.loader.loadLowFrom(input); buffer[column.offset + 2 * STRIDE] = column.loader.loadHighFrom(input); } // Now, the next coefficient, which will be loaded by loader, is #2. } /// Actual GPU 5/3 RDWT implementation. /// @tparam CHECKED_LOADS true if boundaries must be checked when reading /// @tparam CHECKED_WRITES true if boundaries must be checked when writing /// @param in input image (5/3 transformed coefficients) /// @param out output buffer (for reverse transformed image) /// @param sizeX width of the output image /// @param sizeY height of the output image /// @param winSteps number of sliding window steps template __device__ void transform(const int * const in, int * const out, const int sizeX, const int sizeY, const int winSteps) { // info about one main and one boundary column RDWT53Column column, boundaryColumn; // index of first row to be transformed const int firstY = blockIdx.y * WIN_SIZE_Y * winSteps; // some threads initialize boundary columns boundaryColumn.clear(); if(threadIdx.x < 3) { // First 3 threads also handle boundary columns. Thread #0 gets right // column #0, thread #1 get right column #1 and thread #2 left column. const int colId = threadIdx.x + ((threadIdx.x != 2) ? WIN_SIZE_X : -3); // Thread initializes offset of the boundary column (in shared // buffer), first 3 pixels of the column and a loader for this column. initColumn(colId, in, sizeX, sizeY, boundaryColumn, firstY); } // All threads initialize central columns. initColumn(parityIdx(), in, sizeX, sizeY, column, firstY); // horizontally transform first 3 rows horizontalTransform(3, 0); // writer of output pixels - initialize it const int outX = blockIdx.x * WIN_SIZE_X + threadIdx.x; VerticalDWTPixelWriter writer; writer.init(sizeX, sizeY, outX, firstY); // offset of column (in transform buffer) saved by this thread const int outputColumnOffset = buffer.getColumnOffset(threadIdx.x); // (Each iteration assumes that first 3 rows of transform buffer are // already loaded with horizontally transformed pixels.) for(int w = 0; w < winSteps; w++) { // Load another WIN_SIZE_Y lines of this thread's column // into the transform buffer. loadWindowIntoColumn(in, column); // possibly load boundary columns if(threadIdx.x < 3) { loadWindowIntoColumn(in, boundaryColumn); } // horizontally transform all newly loaded lines horizontalTransform(WIN_SIZE_Y, 3); // Using 3 registers, remember current values of last 3 rows // of transform buffer. These rows are transformed horizontally // only and will be used in next iteration. int last3Lines[3]; last3Lines[0] = buffer[outputColumnOffset + (WIN_SIZE_Y + 0) * STRIDE]; last3Lines[1] = buffer[outputColumnOffset + (WIN_SIZE_Y + 1) * STRIDE]; last3Lines[2] = buffer[outputColumnOffset + (WIN_SIZE_Y + 2) * STRIDE]; // vertically transform all central columns buffer.forEachVerticalOdd(outputColumnOffset, Reverse53Update()); buffer.forEachVerticalEven(outputColumnOffset, Reverse53Predict()); // Save all results of current window. Results are in transform buffer // at rows from #1 to #(1 + WIN_SIZE_Y). Other rows are invalid now. // (They only served as a boundary for vertical RDWT.) for(int i = 1; i < (1 + WIN_SIZE_Y); i++) { writer.writeInto(out, buffer[outputColumnOffset + i * STRIDE]); } // Use last 3 remembered lines as first 3 lines for next iteration. // As expected, these lines are already horizontally transformed. buffer[outputColumnOffset + 0 * STRIDE] = last3Lines[0]; buffer[outputColumnOffset + 1 * STRIDE] = last3Lines[1]; buffer[outputColumnOffset + 2 * STRIDE] = last3Lines[2]; // Wait for all writing threads before proceeding to loading new // coeficients in next iteration. (Not to overwrite those which // are not written yet.) __syncthreads(); } } public: /// Main GPU 5/3 RDWT entry point. /// @param in input image (5/3 transformed coefficients) /// @param out output buffer (for reverse transformed image) /// @param sizeX width of the output image /// @param sizeY height of the output image /// @param winSteps number of sliding window steps __device__ static void run(const int * const input, int * const output, const int sx, const int sy, const int steps) { // prepare instance with buffer in shared memory __shared__ RDWT53 rdwt53; // Compute limits of this threadblock's block of pixels and use them to // determine, whether this threadblock will have to deal with boundary. // (1 in next expressions is for radius of impulse response of 5/3 RDWT.) const int maxX = (blockIdx.x + 1) * WIN_SIZE_X + 1; const int maxY = (blockIdx.y + 1) * WIN_SIZE_Y * steps + 1; const bool atRightBoudary = maxX >= sx; const bool atBottomBoudary = maxY >= sy; // Select specialized version of code according to distance of this // threadblock's pixels from image boundary. if(atBottomBoudary) { // near bottom boundary => check both writing and reading rdwt53.transform(input, output, sx, sy, steps); } else if(atRightBoudary) { // near right boundary only => check writing only rdwt53.transform(input, output, sx, sy, steps); } else { // no nearby boundary => check nothing rdwt53.transform(input, output, sx, sy, steps); } } }; // end of class RDWT53 /// Main GPU 5/3 RDWT entry point. /// @param in input image (5/3 transformed coefficients) /// @param out output buffer (for reverse transformed image) /// @param sizeX width of the output image /// @param sizeY height of the output image /// @param winSteps number of sliding window steps template __launch_bounds__(WIN_SX, CTMIN(SHM_SIZE/sizeof(RDWT53), 8)) __global__ void rdwt53Kernel(const int * const in, int * const out, const int sx, const int sy, const int steps) { RDWT53::run(in, out, sx, sy, steps); } /// Only computes optimal number of sliding window steps, /// number of threadblocks and then lanches the 5/3 RDWT kernel. /// @tparam WIN_SX width of sliding window /// @tparam WIN_SY height of sliding window /// @param in input image /// @param out output buffer /// @param sx width of the input image /// @param sy height of the input image template void launchRDWT53Kernel (int * in, int * out, const int sx, const int sy) { // compute optimal number of steps of each sliding window const int steps = divRndUp(sy, 15 * WIN_SY); // prepare grid size dim3 gSize(divRndUp(sx, WIN_SX), divRndUp(sy, WIN_SY * steps)); // finally transform this level PERF_BEGIN rdwt53Kernel<<>>(in, out, sx, sy, steps); PERF_END(" RDWT53", sx, sy) CudaDWTTester::checkLastKernelCall("RDWT 5/3 kernel"); } /// Reverse 5/3 2D DWT. See common rules (above) for more details. /// @param in Input DWT coefficients. Format described in common rules. /// Will not be preserved (will be overwritten). /// @param out output buffer on GPU - will contain original image /// in normalized range [-128, 127]. /// @param sizeX width of input image (in pixels) /// @param sizeY height of input image (in pixels) /// @param levels number of recursive DWT levels void rdwt53(int * in, int * out, int sizeX, int sizeY, int levels) { if(levels > 1) { // let this function recursively reverse transform deeper levels first const int llSizeX = divRndUp(sizeX, 2); const int llSizeY = divRndUp(sizeY, 2); rdwt53(in, out, llSizeX, llSizeY, levels - 1); // copy reverse transformed LL band from output back into the input memCopy(in, out, llSizeX, llSizeY); } // select right width of kernel for the size of the image if(sizeX >= 960) { launchRDWT53Kernel<192, 8>(in, out, sizeX, sizeY); } else if (sizeX >= 480) { launchRDWT53Kernel<128, 8>(in, out, sizeX, sizeY); } else { launchRDWT53Kernel<64, 8>(in, out, sizeX, sizeY); } } } // end of namespace dwt_cuda