Go to file
jchen706 a54b2cdf82 fix dwt2d workflow cuda version 2022-05-24 21:29:16 -04:00
.github/workflows fix dwt2d workflow cuda version 2022-05-24 21:29:16 -04:00
compilation fix linting issues 2022-05-24 20:43:47 -04:00
examples fix linting issues 2022-05-24 20:43:47 -04:00
runtime fix linting issues 2022-05-24 20:43:47 -04:00
.gitignore fix linting issues 2022-05-24 20:43:47 -04:00
.pre-commit-config.yaml add CI 2022-01-13 13:30:45 -05:00
CMakeLists.txt add codebase for TACO submission 2022-05-04 08:59:38 -04:00
CONTRIBUTING.md update how to contribute 2022-05-06 16:08:28 -04:00
LICENSE add backbone, including basic features for compilation 2022-01-11 11:01:42 -05:00
README.md fix linting issues 2022-05-24 20:43:47 -04:00

README.md

CuPBoP: Cuda for Parallelized and Broad-range Processors

Introduction

CuPBoP is a framework which support executing unmodified CUDA source code on non-NVIDIA devices. Currently, CuPBoP support serveral CPU backends, including x86, AArch64, and RISC-V.

Install

Prerequisites

  • Linux: Verified on Ubuntu 18.04
  • LLVM10.0
  • NVIDIA CUDA-toolkit
  • x86 CPU
  • pthread
  • GCC 7.5.0

Installation

  1. Clone from github

    git clone https://github.com/cupbop/CuPBoP
    cd CuPBoP
    export CuPBoP_PATH=`pwd`
    export LD_LIBRARY_PATH=$CuPBoP_PATH/build/runtime:$CuPBoP_PATH/build/runtime/threadPool:$LD_LIBRARY_PATH
    

    If you are using boson, you can pre-installed llvm 10.0.0
    LLVM_PATH=/opt/llvm-10.0.0
    export PATH=$LLVM_PATH/bin:$PATH

  2. As CuPBoP relies on CUDA structures, we need to download the CUDA header file

    wget https://www.dropbox.com/s/r18io0zu3idke5p/cuda-header.tar.gz?dl=1
    tar -xzf 'cuda-header.tar.gz?dl=1'
    cp -r include/* runtime/threadPool/include/
    
  3. Other CUDA files are also required for compiling CUDA source code to LLVM IR

    wget https://www.dropbox.com/s/4pckqsjnl920gpn/cuda-10.1.tar.gz?dl=1
    tar -xzf 'cuda-10.1.tar.gz?dl=1'
    
  4. Build CuPBoP

    mkdir build && cd build
    cmake .. -DLLVM_CONFIG_PATH=`which llvm-config` # need path to llvm-config
    make
    

Run HIST application in Hetero-mark benchmark

# Clone Hetero-mark benchmark
git clone https://github.com/drcut/SC_evaluate
cd SC_evaluate/Hetero-cox/src/hist
# Compile CUDA source code to LLVM IR
# this may raise error due to absence of CUDA library, just ignore them
clang++ -std=c++11 cuda/hist_cuda_benchmark.cu \\
    -I../.. --cuda-path=$CuPBoP_PATH/cuda-10.1 \\
    --cuda-gpu-arch=sm_50 -L$CuPBoP_PATH/cuda-10.1/lib64 \\
    -lcudart_static -ldl -lrt -pthread -save-temps -v  || true
# Translate host/kernel LLVM IR to formats that suitable for CPU
$CuPBoP_PATH/build/compilation/kernelTranslator \\
   hist_cuda_benchmark-cuda-nvptx64-nvidia-cuda-sm_50.bc kernel.bc
$CuPBoP_PATH/build/compilation/hostTranslator \\
   hist_cuda_benchmark-host-x86_64-unknown-linux-gnu.bc host.bc
# generate object files
llc --relocation-model=pic --filetype=obj  kernel.bc
llc --relocation-model=pic --filetype=obj  host.bc
# generate CPU executable file
g++ -o hist -fPIC -no-pie \\
-I$CuPBoP_PATH/runtime/threadPool/include \\
-L$CuPBoP_PATH/build/runtime  \\
-L$CuPBoP_PATH/build/runtime/threadPool \\
cuda/main.cc host.o kernel.o *.cc  ../common/benchmark/*.cc \\
../common/command_line_option/*.cc  ../common/time_measurement/*.cc \\
-I../.. -lpthread -lc -lx86Runtime -lthreadPool
# execute and verify
./hist -q -v

How to contribute?

Any kinds of contributions are welcome. Please refer to Contribution.md for more detail.