Add soc_cxxrtl simulation.

This commit is contained in:
Colin 2025-03-26 16:28:09 +08:00
parent 787da131a1
commit 616da81d63
17 changed files with 1780 additions and 0 deletions

5
test/sim/soc_cxxrtl/.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
tb
dut.cpp
build.*
tb_multicore

View File

@ -0,0 +1,37 @@
# To build single-core dual-port tb: make
# To build dual-core single-port tb: make DOTF=tb_multicore.f
include ../project_paths.mk
TOP := tb
DOTF := tb.f
CONFIG := default
TBEXEC := $(patsubst %.f,%,$(DOTF))
FILE_LIST := $(shell HDL=$(HDL) $(SCRIPTS)/listfiles $(DOTF))
BUILD_DIR := build-$(patsubst %.f,%,$(DOTF))
# Note: clang++-18 has a >20x compile time regression, even at low
# optimisation levels. I have tried clang++-16 and clang++-17, both fine.
CLANGXX := clang++-16
.PHONY: clean all lint
all: $(TBEXEC)
SYNTH_CMD += read_verilog -I ../../../hdl -DCONFIG_HEADER="config_$(CONFIG).vh" $(FILE_LIST);
SYNTH_CMD += hierarchy -top $(TOP);
SYNTH_CMD += write_cxxrtl $(BUILD_DIR)/dut.cpp
$(BUILD_DIR)/dut.cpp: $(FILE_LIST) $(wildcard *.vh)
mkdir -p $(BUILD_DIR)
yosys -p '$(SYNTH_CMD)' 2>&1 > $(BUILD_DIR)/cxxrtl.log
clean::
rm -rf $(BUILD_DIR) $(TBEXEC)
$(TBEXEC): $(BUILD_DIR)/dut.cpp tb.cpp
$(CLANGXX) -O3 -std=c++14 $(addprefix -D,$(CDEFINES) $(CDEFINES_$(DOTF))) -I $(shell yosys-config --datdir)/include/backends/cxxrtl/runtime -I $(BUILD_DIR) tb.cpp -o $(TBEXEC)
lint:
verilator --lint-only --top-module $(TOP) -I$(HDL) $(FILE_LIST)

View File

@ -0,0 +1,18 @@
adapter driver remote_bitbang
remote_bitbang_host localhost
remote_bitbang_port 9824
transport select jtag
set _CHIPNAME hazard3
jtag newtap $_CHIPNAME cpu -irlen 5
set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME riscv -chain-position $_TARGETNAME
$_TARGETNAME configure -rtos hwthread
gdb_report_data_abort enable
init
halt
riscv test_compliance

View File

@ -0,0 +1,46 @@
// Default Hazard3 config for testbench: all ISA features
localparam RESET_VECTOR = 32'h40;
localparam MTVEC_INIT = 32'h0;
localparam EXTENSION_A = 1;
localparam EXTENSION_C = 1;
localparam EXTENSION_M = 1;
localparam EXTENSION_ZBA = 1;
localparam EXTENSION_ZBB = 1;
localparam EXTENSION_ZBC = 1;
localparam EXTENSION_ZBS = 1;
localparam EXTENSION_ZBKB = 1;
localparam EXTENSION_ZCB = 1;
localparam EXTENSION_ZCMP = 1;
localparam EXTENSION_ZIFENCEI = 1;
localparam EXTENSION_XH3BEXTM = 1;
localparam EXTENSION_XH3IRQ = 1;
localparam EXTENSION_XH3PMPM = 1;
localparam EXTENSION_XH3POWER = 1;
localparam CSR_M_MANDATORY = 1;
localparam CSR_M_TRAP = 1;
localparam CSR_COUNTER = 1;
localparam U_MODE = 1;
localparam PMP_REGIONS = 4;
localparam PMP_GRAIN = 0;
localparam PMP_HARDWIRED = {PMP_REGIONS{1'b0}};
localparam PMP_HARDWIRED_ADDR = {PMP_REGIONS{32'h0}};
localparam PMP_HARDWIRED_CFG = {PMP_REGIONS{8'h00}};
localparam DEBUG_SUPPORT = 1;
localparam BREAKPOINT_TRIGGERS = 4;
localparam NUM_IRQS = 32;
localparam IRQ_PRIORITY_BITS = 4;
localparam IRQ_INPUT_BYPASS = {NUM_IRQS{1'b0}};
localparam MVENDORID_VAL = 32'hdeadbeef;
localparam MIMPID_VAL = 32'h12345678;
localparam MHARTID_VAL = 32'h0;
localparam MCONFIGPTR_VAL = 32'h9abcdef0;
localparam REDUCED_BYPASS = 0;
localparam MULDIV_UNROLL = 2;
localparam MUL_FAST = 1;
localparam MUL_FASTER = 1;
localparam MULH_FAST = 1;
localparam FAST_BRANCHCMP = 1;
localparam RESET_REGFILE = 1;
localparam BRANCH_PREDICTOR = 1;
localparam MTVEC_WMASK = 32'hfffffffd;

View File

@ -0,0 +1,46 @@
// Minimal Hazard3 config for testbench
localparam RESET_VECTOR = 32'h40;
localparam MTVEC_INIT = 32'h0;
localparam EXTENSION_A = 0;
localparam EXTENSION_C = 0;
localparam EXTENSION_M = 0;
localparam EXTENSION_ZBA = 0;
localparam EXTENSION_ZBB = 0;
localparam EXTENSION_ZBC = 0;
localparam EXTENSION_ZBS = 0;
localparam EXTENSION_ZBKB = 0;
localparam EXTENSION_ZCB = 0;
localparam EXTENSION_ZCMP = 0;
localparam EXTENSION_ZIFENCEI = 0;
localparam EXTENSION_XH3BEXTM = 0;
localparam EXTENSION_XH3IRQ = 0;
localparam EXTENSION_XH3PMPM = 0;
localparam EXTENSION_XH3POWER = 0;
localparam CSR_M_MANDATORY = 1;
localparam CSR_M_TRAP = 1;
localparam CSR_COUNTER = 0;
localparam U_MODE = 0;
localparam PMP_REGIONS = 0;
localparam PMP_GRAIN = 0;
localparam PMP_HARDWIRED = {PMP_REGIONS{1'b0}};
localparam PMP_HARDWIRED_ADDR = {PMP_REGIONS{32'h0}};
localparam PMP_HARDWIRED_CFG = {PMP_REGIONS{8'h00}};
localparam DEBUG_SUPPORT = 0;
localparam BREAKPOINT_TRIGGERS = 4;
localparam NUM_IRQS = 32;
localparam IRQ_PRIORITY_BITS = 0;
localparam IRQ_INPUT_BYPASS = {NUM_IRQS{1'b0}};
localparam MVENDORID_VAL = 32'hdeadbeef;
localparam MIMPID_VAL = 32'h12345678;
localparam MHARTID_VAL = 32'h0;
localparam MCONFIGPTR_VAL = 32'h9abcdef0;
localparam REDUCED_BYPASS = 1;
localparam MULDIV_UNROLL = 1;
localparam MUL_FAST = 0;
localparam MUL_FASTER = 0;
localparam MULH_FAST = 0;
localparam FAST_BRANCHCMP = 0;
localparam RESET_REGFILE = 1;
localparam BRANCH_PREDICTOR = 0;
localparam MTVEC_WMASK = 32'hfffffffd;

View File

@ -0,0 +1,18 @@
# riscv32-unknown-elf-gdb
# Remaining commands are typed into the gdb prompt. This one tells gdb to shut up:
set confirm off
# Connect to openocd on its default port:
target extended-remote localhost:3333
# Load hello world, and check that it loaded correctly
file ../hellow/tmp/hellow.elf
load
compare-sections
# The processor will quit the simulation when after returning from main(), by
# writing to a magic MMIO register. openocd will be quite unhappy that the
# other end of its socket disappeared, so to avoid the resulting error
# messages, add a breakpoint before _exit.
break _exit
run
# Should break at _exit. Check the terminal with the simulator, you should see
# the hello world message. The exit code is in register a0, it should be 123:
info reg a0

View File

@ -0,0 +1,5 @@
set arch riscv:rv32
set confirm off
set disassemble-next-line on
targ rem localhost:3333
monitor reset halt

View File

@ -0,0 +1,14 @@
adapter driver remote_bitbang
remote_bitbang_host localhost
remote_bitbang_port 9824
transport select jtag
set _CHIPNAME hazard3
jtag newtap $_CHIPNAME cpu -irlen 5
target create $_CHIPNAME.cpu0 riscv -chain-position $_CHIPNAME.cpu -rtos hwthread
target create $_CHIPNAME.cpu1 riscv -chain-position $_CHIPNAME.cpu -coreid 1
target smp $_CHIPNAME.cpu0 $_CHIPNAME.cpu1
gdb_report_data_abort enable
init
halt

View File

@ -0,0 +1,92 @@
[*]
[*] GTKWave Analyzer v3.3.104 (w)1999-2020 BSI
[*] Sat Jul 2 12:28:35 2022
[*]
[dumpfile] "/home/luke/proj/hazard3/test/sim/tb_cxxrtl/waves.vcd"
[dumpfile_mtime] "Sun Jun 26 18:58:42 2022"
[dumpfile_size] 34958839
[savefile] "/home/luke/proj/hazard3/test/sim/tb_cxxrtl/multicore.gtkw"
[timestart] 0
[size] 2509 1368
[pos] -1 -1
*-16.000000 136300 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
[sst_width] 233
[signals_width] 238
[sst_expanded] 1
[sst_vpaned_height] 410
@200
-JTAG
@28
tck
tdi
tdo
tms
@200
-
@22
dm.dmi_paddr[8:0]
@28
dm.dmi_penable
dm.dmi_pwrite
@22
dm.dmi_pwdata[31:0]
dm.dmi_prdata[31:0]
@200
-
@28
dm.hartsel
dm.hasel
dm.hart_array_mask[1:0]
dm.hart_array_mask_next[1:0]
@200
-
>-491
-Core 0 debug
@28
>0
cpu0.dbg_req_halt
cpu0.dbg_req_resume
cpu0.dbg_halted
@200
-
@28
cpu0.dbg_instr_data_vld
cpu0.dbg_instr_data_rdy
@22
cpu0.dbg_instr_data[31:0]
@28
cpu0.dbg_instr_caught_ebreak
cpu0.dbg_instr_caught_exception
@200
-
@22
cpu0.dbg_data0_rdata[31:0]
cpu0.dbg_data0_wdata[31:0]
@28
cpu0.dbg_data0_wen
@200
-
-Core 1 debug
@28
cpu1.dbg_req_halt
cpu1.dbg_req_resume
cpu1.dbg_halted
@200
-
@28
cpu1.dbg_instr_data_vld
cpu1.dbg_instr_data_rdy
@22
cpu1.dbg_instr_data[31:0]
@28
cpu1.dbg_instr_caught_ebreak
cpu1.dbg_instr_caught_exception
@200
-
@22
cpu1.dbg_data0_rdata[31:0]
cpu1.dbg_data0_wdata[31:0]
@28
cpu1.dbg_data0_wen
[pattern_trace] 1
[pattern_trace] 0

View File

@ -0,0 +1,13 @@
adapter driver remote_bitbang
remote_bitbang host localhost
remote_bitbang port 9824
transport select jtag
set _CHIPNAME hazard3
jtag newtap $_CHIPNAME cpu -irlen 5
set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME riscv -chain-position $_TARGETNAME
gdb_report_data_abort enable
init
halt

692
test/sim/soc_cxxrtl/tb.cpp Normal file
View File

@ -0,0 +1,692 @@
#include <iostream>
#include <fstream>
#include <cstdint>
#include <string>
#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
// Device-under-test model generated by CXXRTL:
#include "dut.cpp"
#include <cxxrtl/cxxrtl_vcd.h>
// There must be a better way
#ifdef __x86_64__
#define I64_FMT "%ld"
#else
#define I64_FMT "%lld"
#endif
// -----------------------------------------------------------------------------
static const int MEM_SIZE = 16 * 1024 * 1024;
static const int N_RESERVATIONS = 2;
static const uint32_t RESERVATION_ADDR_MASK = 0xfffffff8u;
static const unsigned int IO_BASE = 0x80000000;
enum {
IO_PRINT_CHAR = 0x000,
IO_PRINT_U32 = 0x004,
IO_EXIT = 0x008,
IO_SET_SOFTIRQ = 0x010,
IO_CLR_SOFTIRQ = 0x014,
IO_GLOBMON_EN = 0x018,
IO_SET_IRQ = 0x020,
IO_CLR_IRQ = 0x030,
IO_MTIME = 0x100,
IO_MTIMEH = 0x104,
IO_MTIMECMP0 = 0x108,
IO_MTIMECMP0H = 0x10c,
IO_MTIMECMP1 = 0x110,
IO_MTIMECMP1H = 0x114
};
struct mem_io_state {
uint64_t mtime;
uint64_t mtimecmp[2];
bool exit_req;
uint32_t exit_code;
uint8_t *mem;
bool monitor_enabled;
bool reservation_valid[2];
uint32_t reservation_addr[2];
mem_io_state() {
mtime = 0;
mtimecmp[0] = 0;
mtimecmp[1] = 0;
exit_req = false;
exit_code = 0;
monitor_enabled = false;
for (int i = 0; i < N_RESERVATIONS; ++i) {
reservation_valid[i] = false;
reservation_addr[i] = 0;
}
mem = new uint8_t[MEM_SIZE];
for (size_t i = 0; i < MEM_SIZE; ++i)
mem[i] = 0;
}
// Where we're going we don't need a destructor B-)
void step(cxxrtl_design::p_tb &tb) {
// Default update logic for mtime, mtimecmp
++mtime;
tb.p_timer__irq.set<uint8_t>((mtime >= mtimecmp[0]) | (mtime >= mtimecmp[1]) << 1);
}
};
typedef enum {
SIZE_BYTE = 0,
SIZE_HWORD = 1,
SIZE_WORD = 2
} bus_size_t;
struct bus_request {
uint32_t addr;
bus_size_t size;
bool write;
bool excl;
uint32_t wdata;
int reservation_id;
bus_request(): addr(0), size(SIZE_BYTE), write(0), excl(0), wdata(0), reservation_id(0) {}
};
struct bus_response {
uint32_t rdata;
int stall_cycles;
bool err;
bool exokay;
bus_response(): rdata(0), stall_cycles(0), err(false), exokay(true) {}
};
bus_response mem_access(cxxrtl_design::p_tb &tb, mem_io_state &memio, bus_request req) {
bus_response resp;
// Global monitor. When monitor is not enabled, HEXOKAY is tied high
if (memio.monitor_enabled) {
if (req.excl) {
// Always set reservation on read. Always clear reservation on
// write. On successful write, clear others' matching reservations.
if (req.write) {
resp.exokay = memio.reservation_valid[req.reservation_id] &&
memio.reservation_addr[req.reservation_id] == (req.addr & RESERVATION_ADDR_MASK);
memio.reservation_valid[req.reservation_id] = false;
if (resp.exokay) {
for (int i = 0; i < N_RESERVATIONS; ++i) {
if (i == req.reservation_id)
continue;
if (memio.reservation_addr[i] == (req.addr & RESERVATION_ADDR_MASK))
memio.reservation_valid[i] = false;
}
}
}
else {
resp.exokay = true;
memio.reservation_valid[req.reservation_id] = true;
memio.reservation_addr[req.reservation_id] = req.addr & RESERVATION_ADDR_MASK;
}
}
else {
resp.exokay = false;
// Non-exclusive write still clears others' reservations
if (req.write) {
for (int i = 0; i < N_RESERVATIONS; ++i) {
if (i == req.reservation_id)
continue;
if (memio.reservation_addr[i] == (req.addr & RESERVATION_ADDR_MASK))
memio.reservation_valid[i] = false;
}
}
}
}
if (req.write) {
if (memio.monitor_enabled && req.excl && !resp.exokay) {
// Failed exclusive write; do nothing
}
else if (req.addr <= MEM_SIZE - 4u) {
unsigned int n_bytes = 1u << (int)req.size;
// Note we are relying on hazard3's byte lane replication
for (unsigned int i = 0; i < n_bytes; ++i) {
memio.mem[req.addr + i] = req.wdata >> (8 * i) & 0xffu;
}
}
else if (req.addr == IO_BASE + IO_PRINT_CHAR) {
putchar(req.wdata);
}
else if (req.addr == IO_BASE + IO_PRINT_U32) {
printf("%08x\n", req.wdata);
}
else if (req.addr == IO_BASE + IO_EXIT) {
if (!memio.exit_req) {
memio.exit_req = true;
memio.exit_code = req.wdata;
}
}
else if (req.addr == IO_BASE + IO_SET_SOFTIRQ) {
tb.p_soft__irq.set<uint8_t>(tb.p_soft__irq.get<uint8_t>() | req.wdata);
}
else if (req.addr == IO_BASE + IO_CLR_SOFTIRQ) {
tb.p_soft__irq.set<uint8_t>(tb.p_soft__irq.get<uint8_t>() & ~req.wdata);
}
else if (req.addr == IO_BASE + IO_GLOBMON_EN) {
memio.monitor_enabled = req.wdata;
}
else if (req.addr == IO_BASE + IO_SET_IRQ) {
tb.p_irq.set<uint32_t>(tb.p_irq.get<uint32_t>() | req.wdata);
}
else if (req.addr == IO_BASE + IO_CLR_IRQ) {
tb.p_irq.set<uint32_t>(tb.p_irq.get<uint32_t>() & ~req.wdata);
}
else if (req.addr == IO_BASE + IO_MTIME) {
memio.mtime = (memio.mtime & 0xffffffff00000000u) | req.wdata;
}
else if (req.addr == IO_BASE + IO_MTIMEH) {
memio.mtime = (memio.mtime & 0x00000000ffffffffu) | ((uint64_t)req.wdata << 32);
}
else if (req.addr == IO_BASE + IO_MTIMECMP0) {
memio.mtimecmp[0] = (memio.mtimecmp[0] & 0xffffffff00000000u) | req.wdata;
}
else if (req.addr == IO_BASE + IO_MTIMECMP0H) {
memio.mtimecmp[0] = (memio.mtimecmp[0] & 0x00000000ffffffffu) | ((uint64_t)req.wdata << 32);
}
else if (req.addr == IO_BASE + IO_MTIMECMP1) {
memio.mtimecmp[1] = (memio.mtimecmp[1] & 0xffffffff00000000u) | req.wdata;
}
else if (req.addr == IO_BASE + IO_MTIMECMP1H) {
memio.mtimecmp[1] = (memio.mtimecmp[1] & 0x00000000ffffffffu) | ((uint64_t)req.wdata << 32);
}
else {
resp.err = true;
}
}
else {
if (req.addr <= MEM_SIZE - (1u << (int)req.size)) {
req.addr &= ~0x3u;
resp.rdata =
(uint32_t)memio.mem[req.addr] |
memio.mem[req.addr + 1] << 8 |
memio.mem[req.addr + 2] << 16 |
memio.mem[req.addr + 3] << 24;
}
else if (req.addr == IO_BASE + IO_SET_SOFTIRQ || req.addr == IO_BASE + IO_CLR_SOFTIRQ) {
resp.rdata = tb.p_soft__irq.get<uint8_t>();
}
else if (req.addr == IO_BASE + IO_SET_IRQ || req.addr == IO_BASE + IO_CLR_IRQ) {
resp.rdata = tb.p_irq.get<uint32_t>();
}
else if (req.addr == IO_BASE + IO_MTIME) {
resp.rdata = memio.mtime;
}
else if (req.addr == IO_BASE + IO_MTIMEH) {
resp.rdata = memio.mtime >> 32;
}
else if (req.addr == IO_BASE + IO_MTIMECMP0) {
resp.rdata = memio.mtimecmp[0];
}
else if (req.addr == IO_BASE + IO_MTIMECMP0H) {
resp.rdata = memio.mtimecmp[0] >> 32;
}
else if (req.addr == IO_BASE + IO_MTIMECMP1) {
resp.rdata = memio.mtimecmp[1];
}
else if (req.addr == IO_BASE + IO_MTIMECMP1H) {
resp.rdata = memio.mtimecmp[1] >> 32;
}
else {
resp.err = true;
}
}
if (resp.err) {
resp.exokay = false;
}
return resp;
}
// -----------------------------------------------------------------------------
const char *help_str =
"Usage: tb [--bin x.bin] [--port n] [--vcd x.vcd] [--dump start end] \\\n"
" [--cycles n] [--cpuret] [--jtagdump x] [--jtagreplay x]\n"
"\n"
" --bin x.bin : Flat binary file loaded to address 0x0 in RAM\n"
" --vcd x.vcd : Path to dump waveforms to\n"
" --dump start end : Print out memory contents from start to end (exclusive)\n"
" after execution finishes. Can be passed multiple times.\n"
" --cycles n : Maximum number of cycles to run before exiting.\n"
" Default is 0 (no maximum).\n"
" --port n : Port number to listen for openocd remote bitbang. Sim\n"
" runs in lockstep with JTAG bitbang, not free-running.\n"
" --cpuret : Testbench's return code is the return code written to\n"
" IO_EXIT by the CPU, or -1 if timed out.\n"
" --jtagdump : Dump OpenOCD JTAG bitbang commands to a file so they\n"
" can be replayed. (Lower perf impact than VCD dumping)\n"
" --jtagreplay : Play back some dumped OpenOCD JTAG bitbang commands\n"
;
void exit_help(std::string errtext = "") {
std::cerr << errtext << help_str;
exit(-1);
}
int wait_for_connection(int server_fd, uint16_t port, struct sockaddr *sock_addr, socklen_t *sock_addr_len) {
int sock_fd;
printf("Waiting for connection on port %u\n", port);
if (listen(server_fd, 3) < 0) {
fprintf(stderr, "listen failed\n");
exit(-1);
}
sock_fd = accept(server_fd, sock_addr, sock_addr_len);
if (sock_fd < 0) {
fprintf(stderr, "accept failed\n");
exit(-1);
}
printf("Connected\n");
return sock_fd;
}
static const int TCP_BUF_SIZE = 256;
int main(int argc, char **argv) {
bool load_bin = false;
std::string bin_path;
bool dump_waves = false;
std::string waves_path;
std::vector<std::pair<uint32_t, uint32_t>> dump_ranges;
int64_t max_cycles = 0;
bool propagate_return_code = false;
uint16_t port = 0;
bool dump_jtag = false;
std::string jtag_dump_path;
bool replay_jtag = false;
std::string jtag_replay_path;
for (int i = 1; i < argc; ++i) {
std::string s(argv[i]);
if (s.rfind("--", 0) != 0) {
std::cerr << "Unexpected positional argument " << s << "\n";
exit_help("");
}
else if (s == "--bin") {
if (argc - i < 2)
exit_help("Option --bin requires an argument\n");
load_bin = true;
bin_path = argv[i + 1];
i += 1;
}
else if (s == "--vcd") {
if (argc - i < 2)
exit_help("Option --vcd requires an argument\n");
dump_waves = true;
waves_path = argv[i + 1];
i += 1;
}
else if (s == "--jtagdump") {
if (argc - i < 2)
exit_help("Option --jtagdump requires an argument\n");
dump_jtag = true;
jtag_dump_path = argv[i + 1];
i += 1;
}
else if (s == "--jtagreplay") {
if (argc - i < 2)
exit_help("Option --jtagreplay requires an argument\n");
replay_jtag = true;
jtag_replay_path = argv[i + 1];
i += 1;
}
else if (s == "--dump") {
if (argc - i < 3)
exit_help("Option --dump requires 2 arguments\n");
dump_ranges.push_back(std::pair<uint32_t, uint32_t>(
std::stoul(argv[i + 1], 0, 0),
std::stoul(argv[i + 2], 0, 0)
));;
i += 2;
}
else if (s == "--cycles") {
if (argc - i < 2)
exit_help("Option --cycles requires an argument\n");
max_cycles = std::stol(argv[i + 1], 0, 0);
i += 1;
}
else if (s == "--port") {
if (argc - i < 2)
exit_help("Option --port requires an argument\n");
port = std::stol(argv[i + 1], 0, 0);
i += 1;
}
else if (s == "--cpuret") {
propagate_return_code = true;
}
else {
std::cerr << "Unrecognised argument " << s << "\n";
exit_help("");
}
}
if (!(load_bin || port != 0 || replay_jtag))
exit_help("At least one of --bin, --port or --jtagreplay must be specified.\n");
if (dump_jtag && port == 0)
exit_help("--jtagdump specified, but there is no JTAG socket to dump from.\n");
if (replay_jtag && port != 0)
exit_help("Can't specify both --port and --jtagreplay\n");
int server_fd, sock_fd;
struct sockaddr_in sock_addr;
int sock_opt = 1;
socklen_t sock_addr_len = sizeof(sock_addr);
char txbuf[TCP_BUF_SIZE], rxbuf[TCP_BUF_SIZE];
int rx_ptr = 0, rx_remaining = 0, tx_ptr = 0;
if (port != 0) {
server_fd = socket(AF_INET, SOCK_STREAM, 0);
if (server_fd == 0) {
fprintf(stderr, "socket creation failed\n");
exit(-1);
}
int setsockopt_rc = setsockopt(
server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT,
&sock_opt, sizeof(sock_opt)
);
if (setsockopt_rc) {
fprintf(stderr, "setsockopt failed\n");
exit(-1);
}
sock_addr.sin_family = AF_INET;
sock_addr.sin_addr.s_addr = INADDR_ANY;
sock_addr.sin_port = htons(port);
if (bind(server_fd, (struct sockaddr *)&sock_addr, sizeof(sock_addr)) < 0) {
fprintf(stderr, "bind failed\n");
exit(-1);
}
sock_fd = wait_for_connection(server_fd, port, (struct sockaddr *)&sock_addr, &sock_addr_len);
}
mem_io_state memio;
if (load_bin) {
std::ifstream fd(bin_path, std::ios::binary | std::ios::ate);
if (!fd){
std::cerr << "Failed to open \"" << bin_path << "\"\n";
return -1;
}
std::streamsize bin_size = fd.tellg();
if (bin_size > MEM_SIZE) {
std::cerr << "Binary file (" << bin_size << " bytes) is larger than memory (" << MEM_SIZE << " bytes)\n";
return -1;
}
fd.seekg(0, std::ios::beg);
fd.read((char*)memio.mem, bin_size);
}
std::ofstream jtag_dump_fd;
if (dump_jtag) {
jtag_dump_fd.open(jtag_dump_path);
if (!jtag_dump_fd.is_open()) {
std::cerr << "Failed to open \"" << jtag_dump_path << "\"\n";
return -1;
}
}
std::ifstream jtag_replay_fd;
if (replay_jtag) {
jtag_replay_fd.open(jtag_replay_path);
if (!jtag_replay_fd.is_open()) {
std::cerr << "Failed to open \"" << jtag_replay_path << "\"\n";
return -1;
}
}
cxxrtl_design::p_tb top;
std::ofstream waves_fd;
cxxrtl::vcd_writer vcd;
if (dump_waves) {
waves_fd.open(waves_path);
cxxrtl::debug_items all_debug_items;
top.debug_info(&all_debug_items, /*scopes=*/nullptr, "");
vcd.timescale(1, "us");
vcd.add(all_debug_items);
}
// Loop-carried address-phase requests
bus_request req_i;
bus_request req_d;
bool req_i_vld = false;
bool req_d_vld = false;
req_i.reservation_id = 0;
req_d.reservation_id = 1;
// Set bus interfaces to generate good IDLE responses at first
top.p_i__hready.set<bool>(true);
top.p_d__hready.set<bool>(true);
// Reset + initial clock pulse
top.step();
top.p_clk.set<bool>(true);
top.p_tck.set<bool>(true);
top.step();
top.p_clk.set<bool>(false);
top.p_tck.set<bool>(false);
top.p_trst__n.set<bool>(true);
top.p_rst__n.set<bool>(true);
top.step();
top.step(); // workaround for github.com/YosysHQ/yosys/issues/2780
bool timed_out = false;
for (int64_t cycle = 0; cycle < max_cycles || max_cycles == 0; ++cycle) {
top.p_clk.set<bool>(false);
top.step();
if (dump_waves)
vcd.sample(cycle * 2);
top.p_clk.set<bool>(true);
top.step();
top.step(); // workaround for github.com/YosysHQ/yosys/issues/2780
// If --port is specified, we run the simulator in lockstep with the
// remote bitbang commands, to get more consistent simulation traces.
// This slows down simulation quite a bit compared with normal
// free-running.
//
// Most bitbang commands complete in one cycle (e.g. TCK/TMS/TDI
// writes) but reads take 0 cycles, step=false.
bool got_exit_cmd = false;
bool step = false;
if (port != 0 or replay_jtag) {
while (!step) {
if (rx_remaining > 0) {
char c = rxbuf[rx_ptr++];
--rx_remaining;
if (c == 'r' || c == 's') {
top.p_trst__n.set<bool>(true);
step = true;
}
else if (c == 't' || c == 'u') {
top.p_trst__n.set<bool>(false);
}
else if (c >= '0' && c <= '7') {
int mask = c - '0';
top.p_tck.set<bool>(mask & 0x4);
top.p_tms.set<bool>(mask & 0x2);
top.p_tdi.set<bool>(mask & 0x1);
step = true;
}
else if (c == 'R') {
txbuf[tx_ptr++] = top.p_tdo.get<bool>() ? '1' : '0';
if (tx_ptr >= TCP_BUF_SIZE || rx_remaining == 0) {
send(sock_fd, txbuf, tx_ptr, 0);
tx_ptr = 0;
}
}
else if (c == 'Q') {
printf("OpenOCD sent quit command\n");
got_exit_cmd = true;
step = true;
}
}
else {
// Potentially the last command was not a read command, but
// OpenOCD is still waiting for a last response from its
// last command packet before it sends us any more, so now is
// the time to flush TX.
if (tx_ptr > 0) {
send(sock_fd, txbuf, tx_ptr, 0);
tx_ptr = 0;
}
rx_ptr = 0;
if (replay_jtag) {
rx_remaining = jtag_replay_fd.readsome(rxbuf, TCP_BUF_SIZE);
}
else {
rx_remaining = read(sock_fd, &rxbuf, TCP_BUF_SIZE);
}
if (dump_jtag && rx_remaining > 0) {
jtag_dump_fd.write(rxbuf, rx_remaining);
}
if (rx_remaining == 0) {
if (port == 0) {
// Presumably EOF, so quit.
got_exit_cmd = true;
}
else {
// The socket is closed. Wait for another connection.
sock_fd = wait_for_connection(server_fd, port, (struct sockaddr *)&sock_addr, &sock_addr_len);
}
}
}
}
}
memio.step(top);
// The two bus ports are handled identically. This enables swapping out of
// various `tb.v` hardware integration files containing:
//
// - A single, dual-ported processor (instruction fetch, load/store ports)
// - A single, single-ported processor (instruction fetch + load/store muxed internally)
// - A pair of single-ported processors, for dual-core debug tests
if (top.p_d__hready.get<bool>()) {
// Clear bus error by default
top.p_d__hresp.set<bool>(false);
// Handle current data phase
req_d.wdata = top.p_d__hwdata.get<uint32_t>();
bus_response resp;
if (req_d_vld)
resp = mem_access(top, memio, req_d);
else
resp.exokay = !memio.monitor_enabled;
if (resp.err) {
// Phase 1 of error response
top.p_d__hready.set<bool>(false);
top.p_d__hresp.set<bool>(true);
}
top.p_d__hrdata.set<uint32_t>(resp.rdata);
top.p_d__hexokay.set<bool>(resp.exokay);
// Progress current address phase to data phase
req_d_vld = top.p_d__htrans.get<uint8_t>() >> 1;
req_d.write = top.p_d__hwrite.get<bool>();
req_d.size = (bus_size_t)top.p_d__hsize.get<uint8_t>();
req_d.addr = top.p_d__haddr.get<uint32_t>();
req_d.excl = top.p_d__hexcl.get<bool>();
}
else {
// hready=0. Currently this only happens when we're in the first
// phase of an error response, so go to phase 2.
top.p_d__hready.set<bool>(true);
}
if (top.p_i__hready.get<bool>()) {
top.p_i__hresp.set<bool>(false);
req_i.wdata = top.p_i__hwdata.get<uint32_t>();
bus_response resp;
if (req_i_vld)
resp = mem_access(top, memio, req_i);
else
resp.exokay = !memio.monitor_enabled;
if (resp.err) {
// Phase 1 of error response
top.p_i__hready.set<bool>(false);
top.p_i__hresp.set<bool>(true);
}
top.p_i__hrdata.set<uint32_t>(resp.rdata);
top.p_i__hexokay.set<bool>(resp.exokay);
// Progress current address phase to data phase
req_i_vld = top.p_i__htrans.get<uint8_t>() >> 1;
req_i.write = top.p_i__hwrite.get<bool>();
req_i.size = (bus_size_t)top.p_i__hsize.get<uint8_t>();
req_i.addr = top.p_i__haddr.get<uint32_t>();
req_i.excl = top.p_i__hexcl.get<bool>();
}
else {
// hready=0. Currently this only happens when we're in the first
// phase of an error response, so go to phase 2.
top.p_i__hready.set<bool>(true);
}
if (dump_waves) {
// The extra step() is just here to get the bus responses to line up nicely
// in the VCD (hopefully is a quick update)
top.step();
vcd.sample(cycle * 2 + 1);
waves_fd << vcd.buffer;
vcd.buffer.clear();
}
if (memio.exit_req) {
printf("CPU requested halt. Exit code %d\n", memio.exit_code);
printf("Ran for " I64_FMT " cycles\n", cycle + 1);
break;
}
if (cycle + 1 == max_cycles) {
printf("Max cycles reached\n");
timed_out = true;
}
if (got_exit_cmd)
break;
}
close(sock_fd);
if (dump_jtag) {
jtag_dump_fd.close();
}
if (replay_jtag) {
jtag_replay_fd.close();
}
for (auto r : dump_ranges) {
printf("Dumping memory from %08x to %08x:\n", r.first, r.second);
for (int i = 0; i < r.second - r.first; ++i)
printf("%02x%c", memio.mem[r.first + i], i % 16 == 15 ? '\n' : ' ');
printf("\n");
}
if (propagate_return_code && timed_out) {
return -1;
}
else if (propagate_return_code && memio.exit_req) {
return memio.exit_code;
}
else {
return 0;
}
}

2
test/sim/soc_cxxrtl/tb.f Normal file
View File

@ -0,0 +1,2 @@
file tb.v
list tb_common.f

320
test/sim/soc_cxxrtl/tb.v Normal file
View File

@ -0,0 +1,320 @@
// An integration of JTAG-DTM + DM + CPU for openocd to poke at over a remote
// bitbang socket
`default_nettype none
module tb #(
parameter W_DATA = 32, // do not modify
parameter W_ADDR = 32 // do not modify
) (
// Global signals
input wire clk,
input wire rst_n,
// JTAG port
input wire tck,
input wire trst_n,
input wire tms,
input wire tdi,
output wire tdo,
// Instruction fetch port
output wire [W_ADDR-1:0] i_haddr,
output wire i_hwrite,
output wire [1:0] i_htrans,
output wire i_hexcl,
output wire [2:0] i_hsize,
output wire [2:0] i_hburst,
output wire [3:0] i_hprot,
output wire i_hmastlock,
output wire [7:0] i_hmaster,
input wire i_hready,
input wire i_hresp,
input wire i_hexokay,
output wire [W_DATA-1:0] i_hwdata,
input wire [W_DATA-1:0] i_hrdata,
// Load/store port
output wire [W_ADDR-1:0] d_haddr,
output wire d_hwrite,
output wire [1:0] d_htrans,
output wire d_hexcl,
output wire [2:0] d_hsize,
output wire [2:0] d_hburst,
output wire [3:0] d_hprot,
output wire d_hmastlock,
output wire [7:0] d_hmaster,
input wire d_hready,
input wire d_hresp,
input wire d_hexokay,
output wire [W_DATA-1:0] d_hwdata,
input wire [W_DATA-1:0] d_hrdata,
// Level-sensitive interrupt sources
input wire [NUM_IRQS-1:0] irq, // -> mip.meip
input wire [1:0] soft_irq, // -> mip.msip
input wire [1:0] timer_irq // -> mip.mtip
);
// JTAG-DTM IDCODE, selected after TAP reset, would normally be a
// JEP106-compliant ID
localparam IDCODE = 32'hdeadbeef;
wire dmi_psel;
wire dmi_penable;
wire dmi_pwrite;
wire [8:0] dmi_paddr;
wire [31:0] dmi_pwdata;
reg [31:0] dmi_prdata;
wire dmi_pready;
wire dmi_pslverr;
wire dmihardreset_req;
wire assert_dmi_reset = !rst_n || dmihardreset_req;
wire rst_n_dmi;
hazard3_reset_sync dmi_reset_sync_u (
.clk (clk),
.rst_n_in (!assert_dmi_reset),
.rst_n_out (rst_n_dmi)
);
// Note the idle hint of 8 cycles was empirically found to be the correct
// value for a 1:2 TCK:clk_dmi ratio. OpenOCD doesn't particularly care
// because it will just increase idle cycles until it stops seeing BUSY.
hazard3_jtag_dtm #(
.IDCODE (IDCODE),
.DTMCS_IDLE_HINT (8)
) inst_hazard3_jtag_dtm (
.tck (tck),
.trst_n (trst_n),
.tms (tms),
.tdi (tdi),
.tdo (tdo),
.dmihardreset_req (dmihardreset_req),
.clk_dmi (clk),
.rst_n_dmi (rst_n_dmi),
.dmi_psel (dmi_psel),
.dmi_penable (dmi_penable),
.dmi_pwrite (dmi_pwrite),
.dmi_paddr (dmi_paddr),
.dmi_pwdata (dmi_pwdata),
.dmi_prdata (dmi_prdata),
.dmi_pready (dmi_pready),
.dmi_pslverr (dmi_pslverr)
);
localparam N_HARTS = 1;
localparam XLEN = 32;
wire sys_reset_req;
wire sys_reset_done;
wire [N_HARTS-1:0] hart_reset_req;
wire [N_HARTS-1:0] hart_reset_done;
wire [N_HARTS-1:0] hart_req_halt;
wire [N_HARTS-1:0] hart_req_halt_on_reset;
wire [N_HARTS-1:0] hart_req_resume;
wire [N_HARTS-1:0] hart_halted;
wire [N_HARTS-1:0] hart_running;
wire [N_HARTS*XLEN-1:0] hart_data0_rdata;
wire [N_HARTS*XLEN-1:0] hart_data0_wdata;
wire [N_HARTS-1:0] hart_data0_wen;
wire [N_HARTS*XLEN-1:0] hart_instr_data;
wire [N_HARTS-1:0] hart_instr_data_vld;
wire [N_HARTS-1:0] hart_instr_data_rdy;
wire [N_HARTS-1:0] hart_instr_caught_exception;
wire [N_HARTS-1:0] hart_instr_caught_ebreak;
wire [31:0] sbus_addr;
wire sbus_write;
wire [1:0] sbus_size;
wire sbus_vld;
wire sbus_rdy;
wire sbus_err;
wire [31:0] sbus_wdata;
wire [31:0] sbus_rdata;
hazard3_dm #(
.N_HARTS (N_HARTS),
.HAVE_SBA (1),
.NEXT_DM_ADDR (0)
) dm (
.clk (clk),
.rst_n (rst_n),
.dmi_psel (dmi_psel),
.dmi_penable (dmi_penable),
.dmi_pwrite (dmi_pwrite),
.dmi_paddr (dmi_paddr),
.dmi_pwdata (dmi_pwdata),
.dmi_prdata (dmi_prdata),
.dmi_pready (dmi_pready),
.dmi_pslverr (dmi_pslverr),
.sys_reset_req (sys_reset_req),
.sys_reset_done (sys_reset_done),
.hart_reset_req (hart_reset_req),
.hart_reset_done (hart_reset_done),
.hart_req_halt (hart_req_halt),
.hart_req_halt_on_reset (hart_req_halt_on_reset),
.hart_req_resume (hart_req_resume),
.hart_halted (hart_halted),
.hart_running (hart_running),
.hart_data0_rdata (hart_data0_rdata),
.hart_data0_wdata (hart_data0_wdata),
.hart_data0_wen (hart_data0_wen),
.hart_instr_data (hart_instr_data),
.hart_instr_data_vld (hart_instr_data_vld),
.hart_instr_data_rdy (hart_instr_data_rdy),
.hart_instr_caught_exception (hart_instr_caught_exception),
.hart_instr_caught_ebreak (hart_instr_caught_ebreak),
.sbus_addr (sbus_addr),
.sbus_write (sbus_write),
.sbus_size (sbus_size),
.sbus_vld (sbus_vld),
.sbus_rdy (sbus_rdy),
.sbus_err (sbus_err),
.sbus_wdata (sbus_wdata),
.sbus_rdata (sbus_rdata)
);
// Generate resynchronised reset for CPU based on upstream reset and
// on reset requests from DM.
wire assert_cpu_reset = !rst_n || sys_reset_req || hart_reset_req[0];
wire rst_n_cpu;
hazard3_reset_sync cpu_reset_sync (
.clk (clk),
.rst_n_in (!assert_cpu_reset),
.rst_n_out (rst_n_cpu)
);
// Still some work to be done on the reset handshake -- this ought to be
// resynchronised to DM's reset domain here, and the DM should wait for a
// rising edge after it has asserted the reset pulse, to make sure the tail
// of the previous "done" is not passed on.
assign sys_reset_done = rst_n_cpu;
assign hart_reset_done = rst_n_cpu;
wire pwrup_req;
reg pwrup_ack;
wire clk_en;
wire unblock_out;
wire unblock_in = unblock_out;
always @ (posedge clk or negedge rst_n) begin
if (!rst_n) begin
pwrup_ack <= 1'b1;
end else begin
pwrup_ack <= pwrup_req;
end
end
// Clock gate is disabled, as CXXRTL currently can't simulated gated clocks
// due to a limitation of the scheduler design
// // Latching clock gate. Does not insert an NBA delay on the gated clock, so
// // safe to exchange data between NBAs on the gated and non-gated clock. Does
// // not glitch as long as clk_en is driven from an NBA on the posedge of clk
// // (e.g. a normal RTL register). The clock stops *high*.
// reg clk_gated;
// always @ (*) begin
// if (clk_en)
// clk_gated = clk;
// end
`ifndef CONFIG_HEADER
`define CONFIG_HEADER "config_default.vh"
`endif
`include `CONFIG_HEADER
hazard3_cpu_2port #(
`include "hazard3_config_inst.vh"
) cpu (
.clk (clk),
.clk_always_on (clk),
.rst_n (rst_n_cpu),
.pwrup_req (pwrup_req),
.pwrup_ack (pwrup_ack),
.clk_en (clk_en),
.unblock_out (unblock_out),
.unblock_in (unblock_in),
.i_haddr (i_haddr),
.i_hwrite (i_hwrite),
.i_htrans (i_htrans),
.i_hsize (i_hsize),
.i_hburst (i_hburst),
.i_hprot (i_hprot),
.i_hmastlock (i_hmastlock),
.i_hmaster (i_hmaster),
.i_hready (i_hready),
.i_hresp (i_hresp),
.i_hwdata (i_hwdata),
.i_hrdata (i_hrdata),
.d_haddr (d_haddr),
.d_hexcl (d_hexcl),
.d_hwrite (d_hwrite),
.d_htrans (d_htrans),
.d_hsize (d_hsize),
.d_hburst (d_hburst),
.d_hprot (d_hprot),
.d_hmastlock (d_hmastlock),
.d_hmaster (d_hmaster),
.d_hready (d_hready),
.d_hresp (d_hresp),
.d_hexokay (d_hexokay),
.d_hwdata (d_hwdata),
.d_hrdata (d_hrdata),
.dbg_req_halt (hart_req_halt),
.dbg_req_halt_on_reset (hart_req_halt_on_reset),
.dbg_req_resume (hart_req_resume),
.dbg_halted (hart_halted),
.dbg_running (hart_running),
.dbg_data0_rdata (hart_data0_rdata),
.dbg_data0_wdata (hart_data0_wdata),
.dbg_data0_wen (hart_data0_wen),
.dbg_instr_data (hart_instr_data),
.dbg_instr_data_vld (hart_instr_data_vld),
.dbg_instr_data_rdy (hart_instr_data_rdy),
.dbg_instr_caught_exception (hart_instr_caught_exception),
.dbg_instr_caught_ebreak (hart_instr_caught_ebreak),
.dbg_sbus_addr (sbus_addr),
.dbg_sbus_write (sbus_write),
.dbg_sbus_size (sbus_size),
.dbg_sbus_vld (sbus_vld),
.dbg_sbus_rdy (sbus_rdy),
.dbg_sbus_err (sbus_err),
.dbg_sbus_wdata (sbus_wdata),
.dbg_sbus_rdata (sbus_rdata),
.irq (irq),
.soft_irq (soft_irq[0]),
.timer_irq (timer_irq[0])
);
assign i_hexcl = 1'b0;
endmodule

View File

@ -0,0 +1,5 @@
file $HDL/debug/cdc/hazard3_reset_sync.v
list $HDL/hazard3.f
list $HDL/debug/dm/hazard3_dm.f
list $HDL/debug/dtm/hazard3_jtag_dtm.f

View File

@ -0,0 +1,2 @@
file tb_multicore.v
list tb_common.f

View File

@ -0,0 +1,348 @@
// An integration of JTAG-DTM + DM + 2 single-ported CPUs for openocd to poke
// at over a remote bitbang socket
`default_nettype none
module tb #(
parameter W_ADDR = 32, // do not modify
parameter W_DATA = 32 // do not modify
) (
// Global signals
input wire clk,
input wire rst_n,
// JTAG port
input wire tck,
input wire trst_n,
input wire tms,
input wire tdi,
output wire tdo,
// Core 0 bus (named I for consistency with 1-core 2-port tb)
output wire [W_ADDR-1:0] i_haddr,
output wire i_hwrite,
output wire [1:0] i_htrans,
output wire i_hexcl,
output wire [2:0] i_hsize,
output wire [2:0] i_hburst,
output wire [3:0] i_hprot,
output wire i_hmastlock,
output wire [7:0] i_hmaster,
input wire i_hready,
input wire i_hresp,
input wire i_hexokay,
output wire [W_DATA-1:0] i_hwdata,
input wire [W_DATA-1:0] i_hrdata,
// Core 1 bus (named D for consistency with 1-core 2-port tb)
output wire [W_ADDR-1:0] d_haddr,
output wire d_hwrite,
output wire [1:0] d_htrans,
output wire d_hexcl,
output wire [2:0] d_hsize,
output wire [2:0] d_hburst,
output wire [3:0] d_hprot,
output wire d_hmastlock,
output wire [7:0] d_hmaster,
input wire d_hready,
input wire d_hresp,
input wire d_hexokay,
output wire [W_DATA-1:0] d_hwdata,
input wire [W_DATA-1:0] d_hrdata,
// Level-sensitive interrupt sources
input wire [NUM_IRQS-1:0] irq, // -> mip.meip
input wire [1:0] soft_irq, // -> mip.msip
input wire [1:0] timer_irq // -> mip.mtip
);
// JTAG-DTM IDCODE, selected after TAP reset, would normally be a
// JEP106-compliant ID
localparam IDCODE = 32'hdeadbeef;
wire dmi_psel;
wire dmi_penable;
wire dmi_pwrite;
wire [8:0] dmi_paddr;
wire [31:0] dmi_pwdata;
reg [31:0] dmi_prdata;
wire dmi_pready;
wire dmi_pslverr;
wire dmihardreset_req;
wire assert_dmi_reset = !rst_n || dmihardreset_req;
wire rst_n_dmi;
hazard3_reset_sync dmi_reset_sync_u (
.clk (clk),
.rst_n_in (!assert_dmi_reset),
.rst_n_out (rst_n_dmi)
);
hazard3_jtag_dtm #(
.IDCODE (IDCODE),
.DTMCS_IDLE_HINT (8)
) inst_hazard3_jtag_dtm (
.tck (tck),
.trst_n (trst_n),
.tms (tms),
.tdi (tdi),
.tdo (tdo),
.dmihardreset_req (dmihardreset_req),
.clk_dmi (clk),
.rst_n_dmi (rst_n_dmi),
.dmi_psel (dmi_psel),
.dmi_penable (dmi_penable),
.dmi_pwrite (dmi_pwrite),
.dmi_paddr (dmi_paddr),
.dmi_pwdata (dmi_pwdata),
.dmi_prdata (dmi_prdata),
.dmi_pready (dmi_pready),
.dmi_pslverr (dmi_pslverr)
);
localparam N_HARTS = 2;
localparam XLEN = 32;
wire sys_reset_req;
wire sys_reset_done;
wire [N_HARTS-1:0] hart_reset_req;
wire [N_HARTS-1:0] hart_reset_done;
wire [N_HARTS-1:0] hart_req_halt;
wire [N_HARTS-1:0] hart_req_halt_on_reset;
wire [N_HARTS-1:0] hart_req_resume;
wire [N_HARTS-1:0] hart_halted;
wire [N_HARTS-1:0] hart_running;
wire [N_HARTS*XLEN-1:0] hart_data0_rdata;
wire [N_HARTS*XLEN-1:0] hart_data0_wdata;
wire [N_HARTS-1:0] hart_data0_wen;
wire [N_HARTS*XLEN-1:0] hart_instr_data;
wire [N_HARTS-1:0] hart_instr_data_vld;
wire [N_HARTS-1:0] hart_instr_data_rdy;
wire [N_HARTS-1:0] hart_instr_caught_exception;
wire [N_HARTS-1:0] hart_instr_caught_ebreak;
wire [31:0] sbus_addr;
wire sbus_write;
wire [1:0] sbus_size;
wire sbus_vld;
wire sbus_rdy;
wire sbus_err;
wire [31:0] sbus_wdata;
wire [31:0] sbus_rdata;
hazard3_dm #(
.N_HARTS (N_HARTS),
.HAVE_SBA (1),
.NEXT_DM_ADDR (0)
) dm (
.clk (clk),
.rst_n (rst_n),
.dmi_psel (dmi_psel),
.dmi_penable (dmi_penable),
.dmi_pwrite (dmi_pwrite),
.dmi_paddr (dmi_paddr),
.dmi_pwdata (dmi_pwdata),
.dmi_prdata (dmi_prdata),
.dmi_pready (dmi_pready),
.dmi_pslverr (dmi_pslverr),
.sys_reset_req (sys_reset_req),
.sys_reset_done (sys_reset_done),
.hart_reset_req (hart_reset_req),
.hart_reset_done (hart_reset_done),
.hart_req_halt (hart_req_halt),
.hart_req_halt_on_reset (hart_req_halt_on_reset),
.hart_req_resume (hart_req_resume),
.hart_halted (hart_halted),
.hart_running (hart_running),
.hart_data0_rdata (hart_data0_rdata),
.hart_data0_wdata (hart_data0_wdata),
.hart_data0_wen (hart_data0_wen),
.hart_instr_data (hart_instr_data),
.hart_instr_data_vld (hart_instr_data_vld),
.hart_instr_data_rdy (hart_instr_data_rdy),
.hart_instr_caught_exception (hart_instr_caught_exception),
.hart_instr_caught_ebreak (hart_instr_caught_ebreak),
.sbus_addr (sbus_addr),
.sbus_write (sbus_write),
.sbus_size (sbus_size),
.sbus_vld (sbus_vld),
.sbus_rdy (sbus_rdy),
.sbus_err (sbus_err),
.sbus_wdata (sbus_wdata),
.sbus_rdata (sbus_rdata)
);
// Generate resynchronised reset for CPU based on upstream reset and
// on reset requests from DM.
wire assert_cpu_reset0 = !rst_n || sys_reset_req || hart_reset_req[0];
wire assert_cpu_reset1 = !rst_n || sys_reset_req || hart_reset_req[1];
wire rst_n_cpu0;
wire rst_n_cpu1;
hazard3_reset_sync cpu0_reset_sync (
.clk (clk),
.rst_n_in (!assert_cpu_reset0),
.rst_n_out (rst_n_cpu0)
);
hazard3_reset_sync cpu1_reset_sync (
.clk (clk),
.rst_n_in (!assert_cpu_reset1),
.rst_n_out (rst_n_cpu1)
);
// Still some work to be done on the reset handshake -- this ought to be
// resynchronised to DM's reset domain here, and the DM should wait for a
// rising edge after it has asserted the reset pulse, to make sure the tail
// of the previous "done" is not passed on.
assign sys_reset_done = rst_n_cpu0 && rst_n_cpu1;
assign hart_reset_done = {rst_n_cpu1, rst_n_cpu0};
`ifndef CONFIG_HEADER
`define CONFIG_HEADER "config_default.vh"
`endif
`include `CONFIG_HEADER
wire pwrup_req_cpu0;
wire pwrup_req_cpu1;
wire unblock_out_cpu0;
wire unblock_out_cpu1;
hazard3_cpu_1port #(
.MHARTID_VAL (32'h0000_0000),
`define HAZARD3_CONFIG_INST_NO_MHARTID
`include "hazard3_config_inst.vh"
) cpu0 (
.clk (clk),
.clk_always_on (clk),
.rst_n (rst_n_cpu0),
.pwrup_req (pwrup_req_cpu0),
.pwrup_ack (pwrup_req_cpu0),
.clk_en (),
.unblock_out (unblock_out_cpu0),
.unblock_in (unblock_out_cpu1),
.haddr (i_haddr),
.hexcl (i_hexcl),
.hwrite (i_hwrite),
.htrans (i_htrans),
.hsize (i_hsize),
.hburst (i_hburst),
.hprot (i_hprot),
.hmastlock (i_hmastlock),
.hmaster (i_hmaster),
.hready (i_hready),
.hresp (i_hresp),
.hexokay (i_hexokay),
.hwdata (i_hwdata),
.hrdata (i_hrdata),
.dbg_req_halt (hart_req_halt [0]),
.dbg_req_halt_on_reset (hart_req_halt_on_reset [0]),
.dbg_req_resume (hart_req_resume [0]),
.dbg_halted (hart_halted [0]),
.dbg_running (hart_running [0]),
.dbg_data0_rdata (hart_data0_rdata [0 * XLEN +: XLEN]),
.dbg_data0_wdata (hart_data0_wdata [0 * XLEN +: XLEN]),
.dbg_data0_wen (hart_data0_wen [0]),
.dbg_instr_data (hart_instr_data [0 * XLEN +: XLEN]),
.dbg_instr_data_vld (hart_instr_data_vld [0]),
.dbg_instr_data_rdy (hart_instr_data_rdy [0]),
.dbg_instr_caught_exception (hart_instr_caught_exception[0]),
.dbg_instr_caught_ebreak (hart_instr_caught_ebreak [0]),
// SBA is routed through core 1, so tie off on core 0
.dbg_sbus_addr (32'h0),
.dbg_sbus_write (1'b0),
.dbg_sbus_size (2'h0),
.dbg_sbus_vld (1'b0),
.dbg_sbus_rdy (),
.dbg_sbus_err (),
.dbg_sbus_wdata (32'h0),
.dbg_sbus_rdata (),
.irq (irq),
.soft_irq (soft_irq[0]),
.timer_irq (timer_irq[0])
);
hazard3_cpu_1port #(
.MHARTID_VAL (32'h0000_0001),
`define HAZARD3_CONFIG_INST_NO_MHARTID
`include "hazard3_config_inst.vh"
) cpu1 (
.clk (clk),
.clk_always_on (clk),
.rst_n (rst_n_cpu1),
.pwrup_req (pwrup_req_cpu1),
.pwrup_ack (pwrup_req_cpu1),
.clk_en (),
.unblock_out (unblock_out_cpu1),
.unblock_in (unblock_out_cpu0),
.haddr (d_haddr),
.hexcl (d_hexcl),
.hwrite (d_hwrite),
.htrans (d_htrans),
.hsize (d_hsize),
.hburst (d_hburst),
.hprot (d_hprot),
.hmastlock (d_hmastlock),
.hmaster (d_hmaster),
.hready (d_hready),
.hresp (d_hresp),
.hexokay (d_hexokay),
.hwdata (d_hwdata),
.hrdata (d_hrdata),
.dbg_req_halt (hart_req_halt [1]),
.dbg_req_halt_on_reset (hart_req_halt_on_reset [1]),
.dbg_req_resume (hart_req_resume [1]),
.dbg_halted (hart_halted [1]),
.dbg_running (hart_running [1]),
.dbg_data0_rdata (hart_data0_rdata [1 * XLEN +: XLEN]),
.dbg_data0_wdata (hart_data0_wdata [1 * XLEN +: XLEN]),
.dbg_data0_wen (hart_data0_wen [1]),
.dbg_instr_data (hart_instr_data [1 * XLEN +: XLEN]),
.dbg_instr_data_vld (hart_instr_data_vld [1]),
.dbg_instr_data_rdy (hart_instr_data_rdy [1]),
.dbg_instr_caught_exception (hart_instr_caught_exception[1]),
.dbg_instr_caught_ebreak (hart_instr_caught_ebreak [1]),
.dbg_sbus_addr (sbus_addr),
.dbg_sbus_write (sbus_write),
.dbg_sbus_size (sbus_size),
.dbg_sbus_vld (sbus_vld),
.dbg_sbus_rdy (sbus_rdy),
.dbg_sbus_err (sbus_err),
.dbg_sbus_wdata (sbus_wdata),
.dbg_sbus_rdata (sbus_rdata),
.irq (irq),
.soft_irq (soft_irq[1]),
.timer_irq (timer_irq[1])
);
endmodule

View File

@ -0,0 +1,117 @@
[*]
[*] GTKWave Analyzer v3.3.103 (w)1999-2019 BSI
[*] Sat Sep 4 00:39:00 2021
[*]
[dumpfile] "/home/luke/proj/hazard3/test/sim/openocd/waves.vcd"
[dumpfile_mtime] "Sat Sep 4 00:36:35 2021"
[dumpfile_size] 31718403
[savefile] "/home/luke/proj/hazard3/test/sim/openocd/waves.gtkw"
[timestart] 877885
[size] 1920 1043
[pos] 174 41
*-3.000000 877889 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
[treeopen] cpu.
[treeopen] cpu.core.
[treeopen] inst_hazard3_jtag_dtm.
[sst_width] 233
[signals_width] 238
[sst_expanded] 1
[sst_vpaned_height] 298
@28
clk
trst_n
rst_n_dmi
@200
-
-DTM
@28
tck
tms
tdi
tdo
@200
-
@22
inst_hazard3_jtag_dtm.tap_state[3:0]
inst_hazard3_jtag_dtm.ir[4:0]
@200
-
-DMI
@22
dm.dmi_paddr[7:0]
@28
dm.dmi_penable
dm.dmi_pwrite
@22
dm.dmi_pwdata[31:0]
dm.dmi_prdata[31:0]
@200
-
-DM Internals
@28
dm.dmactive
@200
-
-Processor Debug Controls
@28
cpu.dbg_req_halt
cpu.dbg_req_halt_on_reset
cpu.dbg_req_resume
cpu.dbg_halted
cpu.dbg_running
cpu.dbg_instr_caught_ebreak
cpu.dbg_instr_caught_exception
@22
cpu.dbg_instr_data[31:0]
@28
cpu.dbg_instr_data_rdy
cpu.dbg_instr_data_vld
@200
-
-Trap stuff
@22
cpu.core.inst_hazard3_csr.trap_addr[31:0]
@28
cpu.core.inst_hazard3_csr.trap_enter_rdy
cpu.core.inst_hazard3_csr.trap_enter_vld
cpu.core.inst_hazard3_csr.trap_is_irq
@22
cpu.core.inst_hazard3_csr.except[3:0]
@28
cpu.core.m_stall
cpu.core.bus_dph_err_d
@200
-
-CSRs
@22
cpu.core.inst_hazard3_csr.addr[11:0]
@28
cpu.core.inst_hazard3_csr.wen
cpu.core.inst_hazard3_csr.ren_soon
@200
-
-I Bus
@22
cpu.i_haddr[31:0]
@28
cpu.i_htrans[1:0]
cpu.i_hready
cpu.i_hresp
@23
cpu.i_hrdata[31:0]
@200
-
-D Bus
@22
d_haddr[31:0]
@28
d_htrans[1:0]
d_hwrite
d_hsize[2:0]
d_hready
d_hresp
@22
d_hwdata[31:0]
d_hrdata[31:0]
[pattern_trace] 1
[pattern_trace] 0