Extend rvcpp ISA sim to cover RVC. Passes RV32IC compliance.

This commit is contained in:
Luke Wren 2023-03-21 19:38:46 +00:00
parent 670099e461
commit 8e7e8f4008
2 changed files with 765 additions and 209 deletions

View File

@ -7,10 +7,14 @@
#include <tuple>
#include <vector>
#include "rv_opcodes.h"
#include "rv_types.h"
#include "mem.h"
// Minimal RISC-V interpreter, supporting RV32IM only
// Minimal RISC-V interpreter, supporting:
// - RV32I
// - M
// - C (also called Zca)
// Use unsigned arithmetic everywhere, with explicit sign extension as required.
static inline ux_t sext(ux_t bits, int sign_bit) {
@ -20,6 +24,12 @@ static inline ux_t sext(ux_t bits, int sign_bit) {
return (bits & (1u << sign_bit + 1) - 1) - ((bits & 1u << sign_bit) << 1);
}
// Inclusive msb:lsb style, like Verilog (and like the ISA manual)
#define BITS_UPTO(msb) (~((-1u << (msb)) << 1))
#define BITRANGE(msb, lsb) (BITS_UPTO((msb) - (lsb)) << (lsb))
#define GETBITS(x, msb, lsb) (((x) & BITRANGE(msb, lsb)) >> (lsb))
#define GETBIT(x, bit) (((x) >> (bit)) & 1u)
static inline ux_t imm_i(uint32_t instr) {
return (instr >> 20) - (instr >> 19 & 0x1000);
}
@ -48,6 +58,45 @@ static inline ux_t imm_j(uint32_t instr) {
- (instr >> 11 & 0x100000);
}
static inline ux_t imm_ci(uint32_t instr) {
return GETBITS(instr, 6, 2) - (GETBIT(instr, 12) << 5);
}
static inline ux_t imm_cj(uint32_t instr) {
return -(GETBIT(instr, 12) << 11)
+ (GETBIT(instr, 11) << 4)
+ (GETBITS(instr, 10, 9) << 8)
+ (GETBIT(instr, 8) << 10)
+ (GETBIT(instr, 7) << 6)
+ (GETBIT(instr, 6) << 7)
+ (GETBITS(instr, 5, 3) << 1)
+ (GETBIT(instr, 2) << 5);
}
static inline ux_t imm_cb(uint32_t instr) {
return -(GETBIT(instr, 12) << 8)
+ (GETBITS(instr, 11, 10) << 3)
+ (GETBITS(instr, 6, 5) << 6)
+ (GETBITS(instr, 4, 3) << 1)
+ (GETBIT(instr, 2) << 5);
}
static inline uint c_rs1_s(uint32_t instr) {
return GETBITS(instr, 9, 7) + 8;
}
static inline uint c_rs2_s(uint32_t instr) {
return GETBITS(instr, 4, 2) + 8;
}
static inline uint c_rs1_l(uint32_t instr) {
return GETBITS(instr, 11, 7);
}
static inline uint c_rs2_l(uint32_t instr) {
return GETBITS(instr, 6, 2);
}
struct RVCSR {
enum {
WRITE = 0,
@ -96,7 +145,7 @@ struct RVCore {
ux_t pc;
RVCSR csr;
RVCore(ux_t reset_vector=0xc0) {
RVCore(ux_t reset_vector=0x40) {
std::fill(std::begin(regs), std::end(regs), 0);
pc = reset_vector;
}
@ -115,8 +164,8 @@ struct RVCore {
OPC_SYSTEM = 0b11'100
};
void step(MemBase32 &mem) {
uint32_t instr = mem.r32(pc);
void step(MemBase32 &mem, bool trace=false) {
uint32_t instr = mem.r16(pc) | (mem.r16(pc + 2) << 16);
std::optional<ux_t> rd_wdata;
std::optional<ux_t> pc_wdata;
uint regnum_rs1 = instr >> 15 & 0x1f;
@ -130,234 +179,374 @@ struct RVCore {
uint funct3 = instr >> 12 & 0x7;
uint funct7 = instr >> 25 & 0x7f;
switch (opc) {
if ((instr & 0x3) == 0x3) {
// 32-bit instruction
switch (opc) {
case OPC_OP: {
if (funct7 == 0b00'00000) {
if (funct3 == 0b000)
rd_wdata = rs1 + rs2;
else if (funct3 == 0b001)
rd_wdata = rs1 << (rs2 & 0x1f);
else if (funct3 == 0b010)
rd_wdata = (sx_t)rs1 < (sx_t)rs2;
else if (funct3 == 0b011)
rd_wdata = rs1 < rs2;
else if (funct3 == 0b100)
rd_wdata = rs1 ^ rs2;
else if (funct3 == 0b101)
rd_wdata = rs1 >> (rs2 & 0x1f);
else if (funct3 == 0b110)
rd_wdata = rs1 | rs2;
else if (funct3 == 0b111)
rd_wdata = rs1 & rs2;
else
instr_invalid = true;
}
else if (funct7 == 0b01'00000) {
if (funct3 == 0b000)
rd_wdata = rs1 - rs2;
else if (funct3 == 0b101)
rd_wdata = (sx_t)rs1 >> (rs2 & 0x1f);
else
instr_invalid = true;
}
else if (funct7 == 0b00'00001) {
if (funct3 < 0b100) {
sdx_t mul_op_a = rs1;
sdx_t mul_op_b = rs2;
if (funct3 != 0b011)
mul_op_a -= (mul_op_a & (1 << XLEN - 1)) << 1;
if (funct3 < 0b010)
mul_op_b -= (mul_op_b & (1 << XLEN - 1)) << 1;
sdx_t mul_result = mul_op_a * mul_op_b;
case OPC_OP: {
if (funct7 == 0b00'00000) {
if (funct3 == 0b000)
rd_wdata = mul_result;
rd_wdata = rs1 + rs2;
else if (funct3 == 0b001)
rd_wdata = rs1 << (rs2 & 0x1f);
else if (funct3 == 0b010)
rd_wdata = (sx_t)rs1 < (sx_t)rs2;
else if (funct3 == 0b011)
rd_wdata = rs1 < rs2;
else if (funct3 == 0b100)
rd_wdata = rs1 ^ rs2;
else if (funct3 == 0b101)
rd_wdata = rs1 >> (rs2 & 0x1f);
else if (funct3 == 0b110)
rd_wdata = rs1 | rs2;
else if (funct3 == 0b111)
rd_wdata = rs1 & rs2;
else
rd_wdata = mul_result >> XLEN;
instr_invalid = true;
}
else {
asm volatile("" : : : "memory");
if (funct3 == 0b100) {
if (rs2 == 0)
rd_wdata = -1;
else if (rs2 == ~0u)
rd_wdata = -rs1;
else if (funct7 == 0b01'00000) {
if (funct3 == 0b000)
rd_wdata = rs1 - rs2;
else if (funct3 == 0b101)
rd_wdata = (sx_t)rs1 >> (rs2 & 0x1f);
else
instr_invalid = true;
}
else if (funct7 == 0b00'00001) {
if (funct3 < 0b100) {
sdx_t mul_op_a = rs1;
sdx_t mul_op_b = rs2;
if (funct3 != 0b011)
mul_op_a -= (mul_op_a & (1 << XLEN - 1)) << 1;
if (funct3 < 0b010)
mul_op_b -= (mul_op_b & (1 << XLEN - 1)) << 1;
sdx_t mul_result = mul_op_a * mul_op_b;
if (funct3 == 0b000)
rd_wdata = mul_result;
else
rd_wdata = (sx_t)rs1 / (sx_t)rs2;
rd_wdata = mul_result >> XLEN;
}
else if (funct3 == 0b101) {
rd_wdata = rs2 ? rs1 / rs2 : ~0ul;
else {
if (funct3 == 0b100) {
if (rs2 == 0)
rd_wdata = -1;
else if (rs2 == ~0u)
rd_wdata = -rs1;
else
rd_wdata = (sx_t)rs1 / (sx_t)rs2;
}
else if (funct3 == 0b101) {
rd_wdata = rs2 ? rs1 / rs2 : ~0ul;
}
else if (funct3 == 0b110) {
if (rs2 == 0)
rd_wdata = rs1;
else if (rs2 == ~0u) // potential overflow of division
rd_wdata = 0;
else
rd_wdata = (sx_t)rs1 % (sx_t)rs2;
}
else if (funct3 == 0b111) {
rd_wdata = rs2 ? rs1 % rs2 : rs1;
}
}
else if (funct3 == 0b110) {
if (rs2 == 0)
rd_wdata = rs1;
else if (rs2 == ~0u) // potential overflow of division
rd_wdata = 0;
else
rd_wdata = (sx_t)rs1 % (sx_t)rs2;
}
else if (funct3 == 0b111) {
rd_wdata = rs2 ? rs1 % rs2 : rs1;
}
}
}
else {
instr_invalid = true;
}
break;
}
case OPC_OP_IMM: {
ux_t imm = imm_i(instr);
if (funct3 == 0b000)
rd_wdata = rs1 + imm;
else if (funct3 == 0b010)
rd_wdata = !!((sx_t)rs1 < (sx_t)imm);
else if (funct3 == 0b011)
rd_wdata = !!(rs1 < imm);
else if (funct3 == 0b100)
rd_wdata = rs1 ^ imm;
else if (funct3 == 0b110)
rd_wdata = rs1 | imm;
else if (funct3 == 0b111)
rd_wdata = rs1 & imm;
else if (funct3 == 0b001 || funct3 == 0b101) {
// shamt is regnum_rs2
if (funct7 == 0b00'00000 && funct3 == 0b001) {
rd_wdata = rs1 << regnum_rs2;
}
else if (funct7 == 0b00'00000 && funct3 == 0b101) {
rd_wdata = rs1 >> regnum_rs2;
}
else if (funct7 == 0b01'00000 && funct3 == 0b101) {
rd_wdata = (sx_t)rs1 >> regnum_rs2;
}
else {
instr_invalid = true;
}
break;
}
else {
case OPC_OP_IMM: {
ux_t imm = imm_i(instr);
if (funct3 == 0b000)
rd_wdata = rs1 + imm;
else if (funct3 == 0b010)
rd_wdata = !!((sx_t)rs1 < (sx_t)imm);
else if (funct3 == 0b011)
rd_wdata = !!(rs1 < imm);
else if (funct3 == 0b100)
rd_wdata = rs1 ^ imm;
else if (funct3 == 0b110)
rd_wdata = rs1 | imm;
else if (funct3 == 0b111)
rd_wdata = rs1 & imm;
else if (funct3 == 0b001 || funct3 == 0b101) {
// shamt is regnum_rs2
if (funct7 == 0b00'00000 && funct3 == 0b001) {
rd_wdata = rs1 << regnum_rs2;
}
else if (funct7 == 0b00'00000 && funct3 == 0b101) {
rd_wdata = rs1 >> regnum_rs2;
}
else if (funct7 == 0b01'00000 && funct3 == 0b101) {
rd_wdata = (sx_t)rs1 >> regnum_rs2;
}
else {
instr_invalid = true;
}
}
else {
instr_invalid = true;
}
break;
}
case OPC_BRANCH: {
ux_t target = pc + imm_b(instr);
bool taken = false;
if ((funct3 & 0b110) == 0b000)
taken = rs1 == rs2;
else if ((funct3 & 0b110) == 0b100)
taken = (sx_t)rs1 < (sx_t) rs2;
else if ((funct3 & 0b110) == 0b110)
taken = rs1 < rs2;
else
instr_invalid = true;
if (!instr_invalid && funct3 & 0b001)
taken = !taken;
if (taken)
pc_wdata = target;
break;
}
case OPC_LOAD: {
ux_t load_addr = rs1 + imm_i(instr);
if (funct3 == 0b000)
rd_wdata = sext(mem.r8(load_addr), 7);
else if (funct3 == 0b001)
rd_wdata = sext(mem.r16(load_addr), 15);
else if (funct3 == 0b010)
rd_wdata = mem.r32(load_addr);
else if (funct3 == 0b100)
rd_wdata = mem.r8(load_addr);
else if (funct3 == 0b101)
rd_wdata = mem.r16(load_addr);
else
instr_invalid = true;
break;
}
case OPC_STORE: {
ux_t store_addr = rs1 + imm_s(instr);
if (funct3 == 0b000)
mem.w8(store_addr, rs2 & 0xffu);
else if (funct3 == 0b001)
mem.w16(store_addr, rs2 & 0xffffu);
else if (funct3 == 0b010)
mem.w32(store_addr, rs2);
else
instr_invalid = true;
break;
}
case OPC_JAL:
rd_wdata = pc + 4;
pc_wdata = pc + imm_j(instr);
break;
case OPC_JALR:
rd_wdata = pc + 4;
pc_wdata = (rs1 + imm_i(instr)) & -2u;
break;
case OPC_LUI:
rd_wdata = imm_u(instr);
break;
case OPC_AUIPC:
rd_wdata = pc + imm_u(instr);
break;
case OPC_SYSTEM: {
uint16_t csr_addr = instr >> 20;
if (funct3 >= 0b001 && funct3 <= 0b011) {
// csrrw, csrrs, csrrc
uint write_op = funct3 - 0b001;
if (write_op != RVCSR::WRITE || regnum_rd != 0)
rd_wdata = csr.read(csr_addr);
if (write_op == RVCSR::WRITE || regnum_rs1 != 0)
csr.write(csr_addr, rs1, write_op);
}
else if (funct3 >= 0b101 && funct3 <= 0b111) {
// csrrwi, csrrsi, csrrci
uint write_op = funct3 - 0b101;
if (write_op != RVCSR::WRITE || regnum_rd != 0)
rd_wdata = csr.read(csr_addr);
if (write_op == RVCSR::WRITE || regnum_rs1 != 0)
csr.write(csr_addr, regnum_rs1, write_op);
}
else {
instr_invalid = true;
}
break;
}
default:
instr_invalid = true;
break;
}
} else {
regnum_rd = 0;
// 16-bit instructions
// RVC Quadrant 00:
if (RVOPC_MATCH(instr, C_ADDI4SPN)) {
regnum_rd = c_rs2_s(instr);
rd_wdata = regs[2]
+ (GETBITS(instr, 12, 11) << 4)
+ (GETBITS(instr, 10, 7) << 6)
+ (GETBIT(instr, 6) << 2)
+ (GETBIT(instr, 5) << 3);
} else if (RVOPC_MATCH(instr, C_LW)) {
regnum_rd = c_rs2_s(instr);
uint32_t addr = regs[c_rs1_s(instr)]
+ (GETBIT(instr, 6) << 2)
+ (GETBITS(instr, 12, 10) << 3)
+ (GETBIT(instr, 5) << 6);
rd_wdata = mem.r32(addr);
} else if (RVOPC_MATCH(instr, C_SW)) {
uint32_t addr = regs[c_rs1_s(instr)]
+ (GETBIT(instr, 6) << 2)
+ (GETBITS(instr, 12, 10) << 3)
+ (GETBIT(instr, 5) << 6);
mem.w32(addr, regs[c_rs2_s(instr)]);
// RVC Quadrant 01:
} else if (RVOPC_MATCH(instr, C_ADDI)) {
regnum_rd = c_rs1_l(instr);
rd_wdata = regs[c_rs1_l(instr)] + imm_ci(instr);
} else if (RVOPC_MATCH(instr, C_JAL)) {
pc_wdata = pc + imm_cj(instr);
regnum_rd = 1;
rd_wdata = pc + 2;
} else if (RVOPC_MATCH(instr, C_LI)) {
regnum_rd = c_rs1_l(instr);
rd_wdata = imm_ci(instr);
} else if (RVOPC_MATCH(instr, C_LUI)) {
regnum_rd = c_rs1_l(instr);
// ADDI16SPN if rd is sp
if (regnum_rd == 2) {
rd_wdata = regs[2]
- (GETBIT(instr, 12) << 9)
+ (GETBIT(instr, 6) << 4)
+ (GETBIT(instr, 5) << 6)
+ (GETBITS(instr, 4, 3) << 7)
+ (GETBIT(instr, 2) << 5);
} else {
rd_wdata = -(GETBIT(instr, 12) << 17)
+ (GETBITS(instr, 6, 2) << 12);
}
} else if (RVOPC_MATCH(instr, C_SRLI)) {
regnum_rd = c_rs1_s(instr);
rd_wdata = regs[regnum_rd] >> GETBITS(instr, 6, 2);
} else if (RVOPC_MATCH(instr, C_SRAI)) {
regnum_rd = c_rs1_s(instr);
rd_wdata = (sx_t)regs[regnum_rd] >> GETBITS(instr, 6, 2);
} else if (RVOPC_MATCH(instr, C_ANDI)) {
regnum_rd = c_rs1_s(instr);
rd_wdata = regs[regnum_rd] & imm_ci(instr);
} else if (RVOPC_MATCH(instr, C_SUB)) {
regnum_rd = c_rs1_s(instr);
rd_wdata = regs[c_rs1_s(instr)] - regs[c_rs2_s(instr)];
} else if (RVOPC_MATCH(instr, C_XOR)) {
regnum_rd = c_rs1_s(instr);
rd_wdata = regs[c_rs1_s(instr)] ^ regs[c_rs2_s(instr)];
} else if (RVOPC_MATCH(instr, C_OR)) {
regnum_rd = c_rs1_s(instr);
rd_wdata = regs[c_rs1_s(instr)] | regs[c_rs2_s(instr)];
} else if (RVOPC_MATCH(instr, C_AND)) {
regnum_rd = c_rs1_s(instr);
rd_wdata = regs[c_rs1_s(instr)] & regs[c_rs2_s(instr)];
} else if (RVOPC_MATCH(instr, C_J)) {
pc_wdata = pc + imm_cj(instr);
} else if (RVOPC_MATCH(instr, C_BEQZ)) {
if (regs[c_rs1_s(instr)] == 0) {
pc_wdata = pc + imm_cb(instr);
}
} else if (RVOPC_MATCH(instr, C_BNEZ)) {
if (regs[c_rs1_s(instr)] != 0) {
pc_wdata = pc + imm_cb(instr);
}
// RVC Quadrant 10:
} else if (RVOPC_MATCH(instr, C_SLLI)) {
regnum_rd = c_rs1_s(instr);
rd_wdata = regs[regnum_rd] << GETBITS(instr, 6, 2);
} else if (RVOPC_MATCH(instr, C_MV)) {
if (c_rs2_l(instr) == 0) {
// c.jr
pc_wdata = regs[c_rs1_l(instr)] & -2u;;
} else {
regnum_rd = c_rs1_l(instr);
rd_wdata = regs[c_rs2_l(instr)];
}
} else if (RVOPC_MATCH(instr, C_ADD)) {
if (c_rs2_l(instr) == 0) {
// c.jalr
pc_wdata = regs[c_rs1_l(instr)] & -2u;
regnum_rd = 1;
rd_wdata = pc + 2;
} else {
regnum_rd = c_rs1_l(instr);
rd_wdata = regs[c_rs1_l(instr)] + regs[c_rs2_l(instr)];
}
} else if (RVOPC_MATCH(instr, C_LWSP)) {
regnum_rd = c_rs1_l(instr);
ux_t addr = regs[2]
+ (GETBIT(instr, 12) << 5)
+ (GETBITS(instr, 6, 4) << 2)
+ (GETBITS(instr, 3, 2) << 6);
rd_wdata = mem.r32(addr);
} else if (RVOPC_MATCH(instr, C_SWSP)) {
ux_t addr = regs[2]
+ (GETBITS(instr, 12, 9) << 2)
+ (GETBITS(instr, 8, 7) << 6);
mem.w32(addr, regs[c_rs2_l(instr)]);
} else {
instr_invalid = true;
}
break;
}
case OPC_BRANCH: {
ux_t target = pc + imm_b(instr);
bool taken = false;
if ((funct3 & 0b110) == 0b000)
taken = rs1 == rs2;
else if ((funct3 & 0b110) == 0b100)
taken = (sx_t)rs1 < (sx_t) rs2;
else if ((funct3 & 0b110) == 0b110)
taken = rs1 < rs2;
else
instr_invalid = true;
if (!instr_invalid && funct3 & 0b001)
taken = !taken;
if (taken)
pc_wdata = target;
break;
}
case OPC_LOAD: {
ux_t load_addr = rs1 + imm_i(instr);
if (funct3 == 0b000)
rd_wdata = sext(mem.r8(load_addr), 7);
else if (funct3 == 0b001)
rd_wdata = sext(mem.r16(load_addr), 15);
else if (funct3 == 0b010)
rd_wdata = mem.r32(load_addr);
else if (funct3 == 0b100)
rd_wdata = mem.r8(load_addr);
else if (funct3 == 0b101)
rd_wdata = mem.r16(load_addr);
else
instr_invalid = true;
break;
}
case OPC_STORE: {
ux_t store_addr = rs1 + imm_s(instr);
if (funct3 == 0b000)
mem.w8(store_addr, rs2 & 0xffu);
else if (funct3 == 0b001)
mem.w16(store_addr, rs2 & 0xffffu);
else if (funct3 == 0b010)
mem.w32(store_addr, rs2);
else
instr_invalid = true;
break;
}
case OPC_JAL:
rd_wdata = pc + 4;
pc_wdata = pc + imm_j(instr);
break;
case OPC_JALR:
rd_wdata = pc + 4;
pc_wdata = (rs1 + imm_i(instr)) & -2u;
break;
case OPC_LUI:
rd_wdata = imm_u(instr);
break;
case OPC_AUIPC:
rd_wdata = pc + imm_u(instr);
break;
case OPC_SYSTEM: {
uint16_t csr_addr = instr >> 20;
if (funct3 >= 0b001 && funct3 <= 0b011) {
// csrrw, csrrs, csrrc
uint write_op = funct3 - 0b001;
if (write_op != RVCSR::WRITE || regnum_rd != 0)
rd_wdata = csr.read(csr_addr);
if (write_op == RVCSR::WRITE || regnum_rs1 != 0)
csr.write(csr_addr, rs1, write_op);
}
else if (funct3 >= 0b101 && funct3 <= 0b111) {
// csrrwi, csrrsi, csrrci
uint write_op = funct3 - 0b101;
if (write_op != RVCSR::WRITE || regnum_rd != 0)
rd_wdata = csr.read(csr_addr);
if (write_op == RVCSR::WRITE || regnum_rs1 != 0)
csr.write(csr_addr, regnum_rs1, write_op);
}
else {
instr_invalid = true;
}
break;
}
default:
instr_invalid = true;
break;
}
if (instr_invalid)
printf("Invalid instr %08x at %08x\n", instr, pc);
if (trace) {
printf("%08x: ", pc);
if ((instr & 0x3) == 0x3) {
printf("%08x : ", instr);
} else {
printf(" %04x : ", instr & 0xffffu);
}
if (regnum_rd != 0) {
printf("%-3s <- %08x ", friendly_reg_names[regnum_rd], *rd_wdata);
} else {
printf(" ");
}
if (pc_wdata) {
printf(": pc <- %08x\n", *pc_wdata);
} else {
printf(":\n");
}
}
if (pc_wdata)
pc = *pc_wdata;
else
pc = pc + 4;
pc = pc + ((instr & 0x3) == 0x3 ? 4 : 2);
if (rd_wdata && regnum_rd != 0)
regs[regnum_rd] = *rd_wdata;
csr.step();
}
};
const char *help_str =
"Usage: tb binfile [--dump start end] [--cycles n]\n"
" binfile : Binary to load into start of memory\n"
"Usage: tb [--bin x.bin] [--dump start end] [--vcd x.vcd] [--cycles n]\n"
" --bin x.bin : Flat binary file loaded to address 0x0 in RAM\n"
" --vcd x.vcd : Dummy option for compatibility with CXXRTL tb\n"
" --dump start end : Print out memory contents between start and end (exclusive)\n"
" after execution finishes. Can be passed multiple times.\n"
" --cycles n : Maximum number of cycles to run before exiting.\n"
" --memsize n : Memory size in units of 1024 bytes, default is 16 MB\n"
" --trace : Print out execution tracing info\n"
;
void exit_help(std::string errtext = "") {
@ -372,10 +561,26 @@ int main(int argc, char **argv) {
std::vector<std::tuple<uint32_t, uint32_t>> dump_ranges;
int64_t max_cycles = 100000;
uint32_t ramsize = 16 * (1 << 20);
bool load_bin = false;
std::string bin_path;
bool trace_execution = false;
for (int i = 2; i < argc; ++i) {
for (int i = 1; i < argc; ++i) {
std::string s(argv[i]);
if (s == "--dump") {
if (s == "--bin") {
if (argc - i < 2)
exit_help("Option --bin requires an argument\n");
load_bin = true;
bin_path = argv[i + 1];
i += 1;
}
else if (s == "--vcd") {
if (argc - i < 2)
exit_help("Option --vcd requires an argument\n");
// (We ignore this argument, it's supported for
i += 1;
}
else if (s == "--dump") {
if (argc - i < 3)
exit_help("Option --dump requires 2 arguments\n");
dump_ranges.push_back(std::make_tuple(
@ -396,6 +601,9 @@ int main(int argc, char **argv) {
ramsize = 1024 * std::stol(argv[i + 1], 0, 0);
i += 1;
}
else if (s == "--trace") {
trace_execution = true;
}
else {
std::cerr << "Unrecognised argument " << s << "\n";
exit_help("");
@ -408,21 +616,23 @@ int main(int argc, char **argv) {
mem.add(0, ramsize, &ram);
mem.add(0x80000000u, 12, &io);
std::ifstream fd(argv[1], std::ios::binary | std::ios::ate);
std::streamsize bin_size = fd.tellg();
if (bin_size > ramsize) {
std::cerr << "Binary file (" << bin_size << " bytes) is larger than memory (" << ramsize << " bytes)\n";
return -1;
if (load_bin) {
std::ifstream fd(bin_path, std::ios::binary | std::ios::ate);
std::streamsize bin_size = fd.tellg();
if (bin_size > ramsize) {
std::cerr << "Binary file (" << bin_size << " bytes) is larger than memory (" << ramsize << " bytes)\n";
return -1;
}
fd.seekg(0, std::ios::beg);
fd.read((char*)ram.mem, bin_size);
}
fd.seekg(0, std::ios::beg);
fd.read((char*)ram.mem, bin_size);
RVCore core;
int64_t cyc;
try {
for (cyc = 0; cyc < max_cycles; ++cyc)
core.step(mem);
core.step(mem, trace_execution);
}
catch (TBExitException e) {
printf("CPU requested halt. Exit code %d\n", e.exitcode);

346
test/sim/rvcpp/rv_opcodes.h Normal file
View File

@ -0,0 +1,346 @@
#ifndef _RV_OPCODES_H
#define _RV_OPCODES_H
// Base ISA (some of these are Z now)
#define RVOPC_BEQ_BITS 0b00000000000000000000000001100011
#define RVOPC_BEQ_MASK 0b00000000000000000111000001111111
#define RVOPC_BNE_BITS 0b00000000000000000001000001100011
#define RVOPC_BNE_MASK 0b00000000000000000111000001111111
#define RVOPC_BLT_BITS 0b00000000000000000100000001100011
#define RVOPC_BLT_MASK 0b00000000000000000111000001111111
#define RVOPC_BGE_BITS 0b00000000000000000101000001100011
#define RVOPC_BGE_MASK 0b00000000000000000111000001111111
#define RVOPC_BLTU_BITS 0b00000000000000000110000001100011
#define RVOPC_BLTU_MASK 0b00000000000000000111000001111111
#define RVOPC_BGEU_BITS 0b00000000000000000111000001100011
#define RVOPC_BGEU_MASK 0b00000000000000000111000001111111
#define RVOPC_JALR_BITS 0b00000000000000000000000001100111
#define RVOPC_JALR_MASK 0b00000000000000000111000001111111
#define RVOPC_JAL_BITS 0b00000000000000000000000001101111
#define RVOPC_JAL_MASK 0b00000000000000000000000001111111
#define RVOPC_LUI_BITS 0b00000000000000000000000000110111
#define RVOPC_LUI_MASK 0b00000000000000000000000001111111
#define RVOPC_AUIPC_BITS 0b00000000000000000000000000010111
#define RVOPC_AUIPC_MASK 0b00000000000000000000000001111111
#define RVOPC_ADDI_BITS 0b00000000000000000000000000010011
#define RVOPC_ADDI_MASK 0b00000000000000000111000001111111
#define RVOPC_SLLI_BITS 0b00000000000000000001000000010011
#define RVOPC_SLLI_MASK 0b11111110000000000111000001111111
#define RVOPC_SLTI_BITS 0b00000000000000000010000000010011
#define RVOPC_SLTI_MASK 0b00000000000000000111000001111111
#define RVOPC_SLTIU_BITS 0b00000000000000000011000000010011
#define RVOPC_SLTIU_MASK 0b00000000000000000111000001111111
#define RVOPC_XORI_BITS 0b00000000000000000100000000010011
#define RVOPC_XORI_MASK 0b00000000000000000111000001111111
#define RVOPC_SRLI_BITS 0b00000000000000000101000000010011
#define RVOPC_SRLI_MASK 0b11111110000000000111000001111111
#define RVOPC_SRAI_BITS 0b01000000000000000101000000010011
#define RVOPC_SRAI_MASK 0b11111110000000000111000001111111
#define RVOPC_ORI_BITS 0b00000000000000000110000000010011
#define RVOPC_ORI_MASK 0b00000000000000000111000001111111
#define RVOPC_ANDI_BITS 0b00000000000000000111000000010011
#define RVOPC_ANDI_MASK 0b00000000000000000111000001111111
#define RVOPC_ADD_BITS 0b00000000000000000000000000110011
#define RVOPC_ADD_MASK 0b11111110000000000111000001111111
#define RVOPC_SUB_BITS 0b01000000000000000000000000110011
#define RVOPC_SUB_MASK 0b11111110000000000111000001111111
#define RVOPC_SLL_BITS 0b00000000000000000001000000110011
#define RVOPC_SLL_MASK 0b11111110000000000111000001111111
#define RVOPC_SLT_BITS 0b00000000000000000010000000110011
#define RVOPC_SLT_MASK 0b11111110000000000111000001111111
#define RVOPC_SLTU_BITS 0b00000000000000000011000000110011
#define RVOPC_SLTU_MASK 0b11111110000000000111000001111111
#define RVOPC_XOR_BITS 0b00000000000000000100000000110011
#define RVOPC_XOR_MASK 0b11111110000000000111000001111111
#define RVOPC_SRL_BITS 0b00000000000000000101000000110011
#define RVOPC_SRL_MASK 0b11111110000000000111000001111111
#define RVOPC_SRA_BITS 0b01000000000000000101000000110011
#define RVOPC_SRA_MASK 0b11111110000000000111000001111111
#define RVOPC_OR_BITS 0b00000000000000000110000000110011
#define RVOPC_OR_MASK 0b11111110000000000111000001111111
#define RVOPC_AND_BITS 0b00000000000000000111000000110011
#define RVOPC_AND_MASK 0b11111110000000000111000001111111
#define RVOPC_LB_BITS 0b00000000000000000000000000000011
#define RVOPC_LB_MASK 0b00000000000000000111000001111111
#define RVOPC_LH_BITS 0b00000000000000000001000000000011
#define RVOPC_LH_MASK 0b00000000000000000111000001111111
#define RVOPC_LW_BITS 0b00000000000000000010000000000011
#define RVOPC_LW_MASK 0b00000000000000000111000001111111
#define RVOPC_LBU_BITS 0b00000000000000000100000000000011
#define RVOPC_LBU_MASK 0b00000000000000000111000001111111
#define RVOPC_LHU_BITS 0b00000000000000000101000000000011
#define RVOPC_LHU_MASK 0b00000000000000000111000001111111
#define RVOPC_SB_BITS 0b00000000000000000000000000100011
#define RVOPC_SB_MASK 0b00000000000000000111000001111111
#define RVOPC_SH_BITS 0b00000000000000000001000000100011
#define RVOPC_SH_MASK 0b00000000000000000111000001111111
#define RVOPC_SW_BITS 0b00000000000000000010000000100011
#define RVOPC_SW_MASK 0b00000000000000000111000001111111
#define RVOPC_FENCE_BITS 0b00000000000000000000000000001111
#define RVOPC_FENCE_MASK 0b00000000000011111111111111111111
#define RVOPC_FENCE_I_BITS 0b00000000000000000001000000001111
#define RVOPC_FENCE_I_MASK 0b11111111111111111111111111111111
#define RVOPC_ECALL_BITS 0b00000000000000000000000001110011
#define RVOPC_ECALL_MASK 0b11111111111111111111111111111111
#define RVOPC_EBREAK_BITS 0b00000000000100000000000001110011
#define RVOPC_EBREAK_MASK 0b11111111111111111111111111111111
#define RVOPC_CSRRW_BITS 0b00000000000000000001000001110011
#define RVOPC_CSRRW_MASK 0b00000000000000000111000001111111
#define RVOPC_CSRRS_BITS 0b00000000000000000010000001110011
#define RVOPC_CSRRS_MASK 0b00000000000000000111000001111111
#define RVOPC_CSRRC_BITS 0b00000000000000000011000001110011
#define RVOPC_CSRRC_MASK 0b00000000000000000111000001111111
#define RVOPC_CSRRWI_BITS 0b00000000000000000101000001110011
#define RVOPC_CSRRWI_MASK 0b00000000000000000111000001111111
#define RVOPC_CSRRSI_BITS 0b00000000000000000110000001110011
#define RVOPC_CSRRSI_MASK 0b00000000000000000111000001111111
#define RVOPC_CSRRCI_BITS 0b00000000000000000111000001110011
#define RVOPC_CSRRCI_MASK 0b00000000000000000111000001111111
#define RVOPC_MRET_BITS 0b00110000001000000000000001110011
#define RVOPC_MRET_MASK 0b11111111111111111111111111111111
#define RVOPC_SYSTEM_BITS 0b00000000000000000000000001110011
#define RVOPC_SYSTEM_MASK 0b00000000000000000000000001111111
#define RVOPC_WFI_BITS 0b00010000010100000000000001110011
#define RVOPC_WFI_MASK 0b11111111111111111111111111111111
// M extension
#define RVOPC_MUL_BITS 0b00000010000000000000000000110011
#define RVOPC_MUL_MASK 0b11111110000000000111000001111111
#define RVOPC_MULH_BITS 0b00000010000000000001000000110011
#define RVOPC_MULH_MASK 0b11111110000000000111000001111111
#define RVOPC_MULHSU_BITS 0b00000010000000000010000000110011
#define RVOPC_MULHSU_MASK 0b11111110000000000111000001111111
#define RVOPC_MULHU_BITS 0b00000010000000000011000000110011
#define RVOPC_MULHU_MASK 0b11111110000000000111000001111111
#define RVOPC_DIV_BITS 0b00000010000000000100000000110011
#define RVOPC_DIV_MASK 0b11111110000000000111000001111111
#define RVOPC_DIVU_BITS 0b00000010000000000101000000110011
#define RVOPC_DIVU_MASK 0b11111110000000000111000001111111
#define RVOPC_REM_BITS 0b00000010000000000110000000110011
#define RVOPC_REM_MASK 0b11111110000000000111000001111111
#define RVOPC_REMU_BITS 0b00000010000000000111000000110011
#define RVOPC_REMU_MASK 0b11111110000000000111000001111111
// A extension
#define RVOPC_LR_W_BITS 0b00010000000000000010000000101111
#define RVOPC_LR_W_MASK 0b11111001111100000111000001111111
#define RVOPC_SC_W_BITS 0b00011000000000000010000000101111
#define RVOPC_SC_W_MASK 0b11111000000000000111000001111111
#define RVOPC_AMOSWAP_W_BITS 0b00001000000000000010000000101111
#define RVOPC_AMOSWAP_W_MASK 0b11111000000000000111000001111111
#define RVOPC_AMOADD_W_BITS 0b00000000000000000010000000101111
#define RVOPC_AMOADD_W_MASK 0b11111000000000000111000001111111
#define RVOPC_AMOXOR_W_BITS 0b00100000000000000010000000101111
#define RVOPC_AMOXOR_W_MASK 0b11111000000000000111000001111111
#define RVOPC_AMOAND_W_BITS 0b01100000000000000010000000101111
#define RVOPC_AMOAND_W_MASK 0b11111000000000000111000001111111
#define RVOPC_AMOOR_W_BITS 0b01000000000000000010000000101111
#define RVOPC_AMOOR_W_MASK 0b11111000000000000111000001111111
#define RVOPC_AMOMIN_W_BITS 0b10000000000000000010000000101111
#define RVOPC_AMOMIN_W_MASK 0b11111000000000000111000001111111
#define RVOPC_AMOMAX_W_BITS 0b10100000000000000010000000101111
#define RVOPC_AMOMAX_W_MASK 0b11111000000000000111000001111111
#define RVOPC_AMOMINU_W_BITS 0b11000000000000000010000000101111
#define RVOPC_AMOMINU_W_MASK 0b11111000000000000111000001111111
#define RVOPC_AMOMAXU_W_BITS 0b11100000000000000010000000101111
#define RVOPC_AMOMAXU_W_MASK 0b11111000000000000111000001111111
// Zba (address generation)
#define RVOPC_SH1ADD_BITS 0b00100000000000000010000000110011
#define RVOPC_SH1ADD_MASK 0b11111110000000000111000001111111
#define RVOPC_SH2ADD_BITS 0b00100000000000000100000000110011
#define RVOPC_SH2ADD_MASK 0b11111110000000000111000001111111
#define RVOPC_SH3ADD_BITS 0b00100000000000000110000000110011
#define RVOPC_SH3ADD_MASK 0b11111110000000000111000001111111
// Zbb (basic bit manipulation)
#define RVOPC_ANDN_BITS 0b01000000000000000111000000110011
#define RVOPC_ANDN_MASK 0b11111110000000000111000001111111
#define RVOPC_CLZ_BITS 0b01100000000000000001000000010011
#define RVOPC_CLZ_MASK 0b11111111111100000111000001111111
#define RVOPC_CPOP_BITS 0b01100000001000000001000000010011
#define RVOPC_CPOP_MASK 0b11111111111100000111000001111111
#define RVOPC_CTZ_BITS 0b01100000000100000001000000010011
#define RVOPC_CTZ_MASK 0b11111111111100000111000001111111
#define RVOPC_MAX_BITS 0b00001010000000000110000000110011
#define RVOPC_MAX_MASK 0b11111110000000000111000001111111
#define RVOPC_MAXU_BITS 0b00001010000000000111000000110011
#define RVOPC_MAXU_MASK 0b11111110000000000111000001111111
#define RVOPC_MIN_BITS 0b00001010000000000100000000110011
#define RVOPC_MIN_MASK 0b11111110000000000111000001111111
#define RVOPC_MINU_BITS 0b00001010000000000101000000110011
#define RVOPC_MINU_MASK 0b11111110000000000111000001111111
#define RVOPC_ORC_B_BITS 0b00101000011100000101000000010011
#define RVOPC_ORC_B_MASK 0b11111111111100000111000001111111
#define RVOPC_ORN_BITS 0b01000000000000000110000000110011
#define RVOPC_ORN_MASK 0b11111110000000000111000001111111
#define RVOPC_REV8_BITS 0b01101001100000000101000000010011
#define RVOPC_REV8_MASK 0b11111111111100000111000001111111
#define RVOPC_ROL_BITS 0b01100000000000000001000000110011
#define RVOPC_ROL_MASK 0b11111110000000000111000001111111
#define RVOPC_ROR_BITS 0b01100000000000000101000000110011
#define RVOPC_ROR_MASK 0b11111110000000000111000001111111
#define RVOPC_RORI_BITS 0b01100000000000000101000000010011
#define RVOPC_RORI_MASK 0b11111110000000000111000001111111
#define RVOPC_SEXT_B_BITS 0b01100000010000000001000000010011
#define RVOPC_SEXT_B_MASK 0b11111111111100000111000001111111
#define RVOPC_SEXT_H_BITS 0b01100000010100000001000000010011
#define RVOPC_SEXT_H_MASK 0b11111111111100000111000001111111
#define RVOPC_XNOR_BITS 0b01000000000000000100000000110011
#define RVOPC_XNOR_MASK 0b11111110000000000111000001111111
#define RVOPC_ZEXT_H_BITS 0b00001000000000000100000000110011
#define RVOPC_ZEXT_H_MASK 0b11111111111100000111000001111111
// Zbc (carry-less multiply)
#define RVOPC_CLMUL_BITS 0b00001010000000000001000000110011
#define RVOPC_CLMUL_MASK 0b11111110000000000111000001111111
#define RVOPC_CLMULH_BITS 0b00001010000000000011000000110011
#define RVOPC_CLMULH_MASK 0b11111110000000000111000001111111
#define RVOPC_CLMULR_BITS 0b00001010000000000010000000110011
#define RVOPC_CLMULR_MASK 0b11111110000000000111000001111111
// Zbs (single-bit manipulation)
#define RVOPC_BCLR_BITS 0b01001000000000000001000000110011
#define RVOPC_BCLR_MASK 0b11111110000000000111000001111111
#define RVOPC_BCLRI_BITS 0b01001000000000000001000000010011
#define RVOPC_BCLRI_MASK 0b11111110000000000111000001111111
#define RVOPC_BEXT_BITS 0b01001000000000000101000000110011
#define RVOPC_BEXT_MASK 0b11111110000000000111000001111111
#define RVOPC_BEXTI_BITS 0b01001000000000000101000000010011
#define RVOPC_BEXTI_MASK 0b11111110000000000111000001111111
#define RVOPC_BINV_BITS 0b01101000000000000001000000110011
#define RVOPC_BINV_MASK 0b11111110000000000111000001111111
#define RVOPC_BINVI_BITS 0b01101000000000000001000000010011
#define RVOPC_BINVI_MASK 0b11111110000000000111000001111111
#define RVOPC_BSET_BITS 0b00101000000000000001000000110011
#define RVOPC_BSET_MASK 0b11111110000000000111000001111111
#define RVOPC_BSETI_BITS 0b00101000000000000001000000010011
#define RVOPC_BSETI_MASK 0b11111110000000000111000001111111
// Zbkb (basic bit manipulation for crypto) (minus those in Zbb)
#define RVOPC_PACK_BITS 0b00001000000000000100000000110011
#define RVOPC_PACK_MASK 0b11111110000000000111000001111111
#define RVOPC_PACKH_BITS 0b00001000000000000111000000110011
#define RVOPC_PACKH_MASK 0b11111110000000000111000001111111
#define RVOPC_BREV8_BITS 0b01101000011100000101000000010011
#define RVOPC_BREV8_MASK 0b11111111111100000111000001111111
#define RVOPC_UNZIP_BITS 0b00001000111100000101000000010011
#define RVOPC_UNZIP_MASK 0b11111111111100000111000001111111
#define RVOPC_ZIP_BITS 0b00001000111100000001000000010011
#define RVOPC_ZIP_MASK 0b11111111111100000111000001111111
// Zbkc is a subset of Zbc.
// Zbkx (crossbar permutation)
#define RVOPC_XPERM_B_BITS 0b00101000000000000100000000110011
#define RVOPC_XPERM_B_MASK 0b11111110000000000111000001111111
#define RVOPC_XPERM_N_BITS 0b00101000000000000010000000110011
#define RVOPC_XPERM_N_MASK 0b11111110000000000111000001111111
// Hazard3 custom instructions
// Xh3b (Hazard3 custom bitmanip): currently just a multi-bit version of bext/bexti from Zbs
#define RVOPC_H3_BEXTM_BITS 0b00000000000000000000000000001011 // custom-0 funct3=0
#define RVOPC_H3_BEXTM_MASK 0b11100010000000000111000001111111
#define RVOPC_H3_BEXTMI_BITS 0b00000000000000000100000000001011 // custom-0 funct3=4
#define RVOPC_H3_BEXTMI_MASK 0b11100010000000000111000001111111
// C Extension
#define RVOPC_C_ADDI4SPN_BITS 0b0000000000000000 // *** illegal if imm 0
#define RVOPC_C_ADDI4SPN_MASK 0b1110000000000011
#define RVOPC_C_LW_BITS 0b0100000000000000
#define RVOPC_C_LW_MASK 0b1110000000000011
#define RVOPC_C_SW_BITS 0b1100000000000000
#define RVOPC_C_SW_MASK 0b1110000000000011
#define RVOPC_C_ADDI_BITS 0b0000000000000001
#define RVOPC_C_ADDI_MASK 0b1110000000000011
#define RVOPC_C_JAL_BITS 0b0010000000000001
#define RVOPC_C_JAL_MASK 0b1110000000000011
#define RVOPC_C_J_BITS 0b1010000000000001
#define RVOPC_C_J_MASK 0b1110000000000011
#define RVOPC_C_LI_BITS 0b0100000000000001
#define RVOPC_C_LI_MASK 0b1110000000000011
// addi16sp when rd=2:
#define RVOPC_C_LUI_BITS 0b0110000000000001 // *** reserved if imm 0 (for both LUI and ADDI16SP)
#define RVOPC_C_LUI_MASK 0b1110000000000011
#define RVOPC_C_SRLI_BITS 0b1000000000000001 // On RV32 imm[5] (instr[12]) must be 0, else reserved NSE.
#define RVOPC_C_SRLI_MASK 0b1111110000000011
#define RVOPC_C_SRAI_BITS 0b1000010000000001 // On RV32 imm[5] (instr[12]) must be 0, else reserved NSE.
#define RVOPC_C_SRAI_MASK 0b1111110000000011
#define RVOPC_C_ANDI_BITS 0b1000100000000001
#define RVOPC_C_ANDI_MASK 0b1110110000000011
#define RVOPC_C_SUB_BITS 0b1000110000000001
#define RVOPC_C_SUB_MASK 0b1111110001100011
#define RVOPC_C_XOR_BITS 0b1000110000100001
#define RVOPC_C_XOR_MASK 0b1111110001100011
#define RVOPC_C_OR_BITS 0b1000110001000001
#define RVOPC_C_OR_MASK 0b1111110001100011
#define RVOPC_C_AND_BITS 0b1000110001100001
#define RVOPC_C_AND_MASK 0b1111110001100011
#define RVOPC_C_BEQZ_BITS 0b1100000000000001
#define RVOPC_C_BEQZ_MASK 0b1110000000000011
#define RVOPC_C_BNEZ_BITS 0b1110000000000001
#define RVOPC_C_BNEZ_MASK 0b1110000000000011
#define RVOPC_C_SLLI_BITS 0b0000000000000010 // On RV32 imm[5] (instr[12]) must be 0, else reserved NSE.
#define RVOPC_C_SLLI_MASK 0b1111000000000011
// jr if !rs2:
#define RVOPC_C_MV_BITS 0b1000000000000010 // *** reserved if JR and !rs1 (instr[11:7])
#define RVOPC_C_MV_MASK 0b1111000000000011
// jalr if !rs2:
#define RVOPC_C_ADD_BITS 0b1001000000000010 // *** EBREAK if !instr[11:2]
#define RVOPC_C_ADD_MASK 0b1111000000000011
#define RVOPC_C_LWSP_BITS 0b0100000000000010
#define RVOPC_C_LWSP_MASK 0b1110000000000011
#define RVOPC_C_SWSP_BITS 0b1100000000000010
#define RVOPC_C_SWSP_MASK 0b1110000000000011
// Zcb simple additional compressed instructions
#define RVOPC_C_LBU_BITS 0b1000000000000000
#define RVOPC_C_LBU_MASK 0b1111110000000011
#define RVOPC_C_LHU_BITS 0b1000010000000000
#define RVOPC_C_LHU_MASK 0b1111110001000011
#define RVOPC_C_LH_BITS 0b1000010001000000
#define RVOPC_C_LH_MASK 0b1111110001000011
#define RVOPC_C_SB_BITS 0b1000100000000000
#define RVOPC_C_SB_MASK 0b1111110000000011
#define RVOPC_C_SH_BITS 0b1000110000000000
#define RVOPC_C_SH_MASK 0b1111110001000011
#define RVOPC_C_ZEXT_B_BITS 0b1001110001100001
#define RVOPC_C_ZEXT_B_MASK 0b1111110001111111
#define RVOPC_C_SEXT_B_BITS 0b1001110001100101
#define RVOPC_C_SEXT_B_MASK 0b1111110001111111
#define RVOPC_C_ZEXT_H_BITS 0b1001110001101001
#define RVOPC_C_ZEXT_H_MASK 0b1111110001111111
#define RVOPC_C_SEXT_H_BITS 0b1001110001101101
#define RVOPC_C_SEXT_H_MASK 0b1111110001111111
#define RVOPC_C_NOT_BITS 0b1001110001110101
#define RVOPC_C_NOT_MASK 0b1111110001111111
#define RVOPC_C_MUL_BITS 0b1001110001000001
#define RVOPC_C_MUL_MASK 0b1111110001100011
// Zcmp push/pop instructions
#define RVOPC_CM_PUSH_BITS 0b1011100000000010
#define RVOPC_CM_PUSH_MASK 0b1111111100000011
#define RVOPC_CM_POP_BITS 0b1011101000000010
#define RVOPC_CM_POP_MASK 0b1111111100000011
#define RVOPC_CM_POPRETZ_BITS 0b1011110000000010
#define RVOPC_CM_POPRETZ_MASK 0b1111111100000011
#define RVOPC_CM_POPRET_BITS 0b1011111000000010
#define RVOPC_CM_POPRET_MASK 0b1111111100000011
#define RVOPC_CM_MVSA01_BITS 0b1010110000100010
#define RVOPC_CM_MVSA01_MASK 0b1111110001100011
#define RVOPC_CM_MVA01S_BITS 0b1010110001100010
#define RVOPC_CM_MVA01S_MASK 0b1111110001100011
#define _RVOPC_MATCH(x, instr_mask, instr_bits) ((x & instr_mask) == instr_bits)
#define RVOPC_MATCH(x, instr) _RVOPC_MATCH(x, RVOPC_ ## instr ## _MASK, RVOPC_ ## instr ## _BITS)
static const char *friendly_reg_names[32] = {
"x0", "ra", "sp", "gp", "tp", "t0", "t1", "t2", "s0", "s1", "a0", "a1", "a2",
"a3", "a4", "a5", "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9",
"s10", "s11", "t3", "t4", "t5", "t6"
};
#endif