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Chapter 1. Introduction

Hazard3 is a 3-stage RISC-V processor, providing the following architectural support:

 RV32I: 32-bit base instruction set

* M: integer multiply/divide/modulo

» (: compressed instructions

* 7/ba: address generation

* Zbb: basic bit manipulation

* 7bc: carry-less multiplication

* 7bs: single-bit manipulation

* M-mode privileged instructions ECALL, EBREAK, MRET
* The WFI instruction

» Zicsr: CSR access

* The machine-mode (M-mode) privilege state, and standard M-mode CSRs

* Debug support, fully compliant with version 0.13.2 of the RISC-V external debug specification
The following are planned for future implementation:

* A extension: atomic memory access
o LR/SC fully supported

> AMONone PMA on all of memory (AMOs are decoded but unconditionally trigger access
fault without attempting memory access)

 Trigger unit for debug mode

o Likely breakpoints only



Chapter 2. Instruction Cycle Counts

All timings are given assuming perfect bus behaviour (no stalls). Stalling of the I bus can delay
execution indefinitely, as can stalling of the D bus during a load or store.

2.1. RV32I

Instruction Cycles Note

Integer Register-register
add rd, rs1, rs2

sub rd, rs1, rs2

slt rd, rs1, rs2

[ O WY

sltu rd, rs1, rs2
and rd, rs1, rs2
or rd, rs1, rs2

xor rd, rs1, rs2

[ O WY

s1ll rd, rs1, rs2

srl rd, rs1, rs2

—

sra rd, rs1, rs2 1

Integer Register-immediate

addi rd, rs1, imm 1 nop is a pseudo-op for addi x@, x0, 0
slti rd, rs1, imm 1

sltiu rd, rs1, imm 1

andi rd, rs1, imm 1

ori rd, rs1, imm 1

xori rd, rs1, imm 1

s11i rd, rs1, imm 1

srli rd, rs1, imm 1

srai rd, rs1, imm 1

Large Immediate

lui rd, imm 1

auipc rd, imm 1

Control Transfer

jal rd, label ot

jalr rd, rs1, imm ot

beq rs1, rs2, label 1 or 2" 1 if nontaken, 2 if taken.



Instruction Cycles Note

bne rs1, rs2, label 1 or 2" 1 if nontaken, 2 if taken.
blt rs1, rs2, label 1 or 2" 1 if nontaken, 2 if taken.
bge rs1, rs2, label 1 or 2" 1 if nontaken, 2 if taken.
bltu rs1, rs2, label 1 or 2" 1 if nontaken, 2 if taken.
bgeu rs1, rs2, label 1 or 2" 1if nontaken, 2 if taken.

Load and Store

lw rd, imm(rs1) 1or2 1 if next instruction is independent, 2 if dependent."”
lh rd, imm(rs1) lor2 1 if next instruction is independent, 2 if dependent.”
lhu rd, imm(rs1) lor2 1 if next instruction is independent, 2 if dependent."”
1b rd, imm(rs1) lor2 1 if next instruction is independent, 2 if dependent."”
lbu rd, imm(rs1) 1or2 1 if next instruction is independent, 2 if dependent."”
sw rs2, imm(rs1) 1
sh rs2, imm(rs1) 1
sb rs2, imm(rs1) 1

2.2. M Extension

Timings assume the core is configured with MULDIV_UNROLL = 2 and MUL_FAST = 1. Le. the sequential
multiply/divide circuit processes two bits per cycle, and a separate dedicated multiplier is present
for the mul instruction.

Instruction Cycles Note
32 x 32 - 32 Multiply

mul rd, rs1, rs2 1or2 1 if next instruction is independent, 2 if dependent.

32 x 32 - 64 Multiply, Upper Half

mulh rd, rs1, rs2 18 to 20 Depending on sign correction
mulhsu rd, rs1, rs2 18 to 20 Depending on sign correction
mulhu rd, rs1, rs2 18

Divide and Remainder

div rd, rs1, rs2 18 or 19 Depending on sign correction
divu rd, rs1, rs2 18
rem rd, rs1, rs2 18 or 19 Depending on sign correction
remu rd, rsl1, rs2 18



2.3. C Extension

All C extension 16-bit instructions on Hazard3 are aliases of base RV32I instructions. They perform
identically to their 32-bit counterparts.

A consequence of the C extension is that 32-bit instructions can be non-naturally-aligned. This has
no penalty during sequential execution, but branching to a 32-bit instruction that is not 32-bit-
aligned carries a 1 cycle penalty, because the instruction fetch is cracked into two naturally-aligned
bus accesses.

2.4. Privileged Instructions (including Zicsr)

Instruction Cycles Note

CSR Access

csrrw rd, csr, rsl 1

csrrc rd, csr, rsi 1

csrrs rd, csr, rsi 1

csrrwi rd, csr, imm 1

csrrci rd, csr, imm 1

csrrsi rd, csr, imm 1

Trap Request

ecall 3 Time given is for jumping to mtvec
ebreak 3 Time given is for jumping to mtvec

2.5. Bit Manipulation

Instruction Cycles Note

Zba (address generation)

shladd rd, rs1, rs2 1
sh2add rd, rs1, rs2 1
sh3add rd, rs1, rs2 1

Zbb (basic bit manipulation)

andn rd, rs1, rs2 1

clz rd, rs1

—_

cpop rd, rsi
ctz rd, rsi

max rd, rs1, rs2

=

maxu rd, rs1, rs2



Instruction Cycles Note

min rd, rs1, rs2 1
minu rd, rs1, rs2 1
orc.b rd, rsi 1
orn rd, rs1, rs2 1
rev8 rd, rsi 1
rol rd, rs1, rs2 1
ror rd, rs1, rs2 1
rori rd, rs1, imm 1
sext.b rd, rs1 1
sext.h rd, rsi 1
xnor rd, rs1, rs2 1
zext.h rd, rsi 1
zext.b rd, rs1 1 zext.b is a pseudo-op for andi rd, rs1, Oxff
Zbc (carry-less multiply)

clmul rd, rs1, rs2 1
clmulh rd, rsl1, rs2 1
c¢lmulr rd, rs1, rs2 1
Zbs (single-bit manipulation)
bclr rd, rs1, rs2 1
belri rd, rs1, imm 1
bext rd, rs1, rs2 1
bexti rd, rs1, imm 1
binv rd, rs1, rs2 1
binvi rd, rs1, imm 1
bset rd, rs1, rs2 1
bseti rd, rs1, imm 1

[1] A branch to a 32-bit instruction which is not 32-bit-aligned requires one additional cycle, because two naturally-aligned bus
cycles are required to fetch the target instruction.

[2] If an instruction uses load data (from stage 3) in stage 2, a 1-cycle bubble is inserted after the load. Load-data to store-data
dependency does not experience this, because the store data is used in stage 3. However, load-data to store-address (or e.g. load-to-
add) does qualify.



Chapter 3. CSRs

The RISC-V privileged specification affords flexibility as to which CSRs are implemented, and how
they behave. This section documents the concrete behaviour of Hazard3’s standard and
nonstandard M-mode CSRs, as implemented.

All CSR addresses not listed in this section are unimplemented. Accessing an
NOTE unimplemented CSR will cause an illegal instruction exception (mcause = 2). This
includes all U-mode and S-mode CSRs.

All CSRs are 32-bit; MXLEN is fixed at 32 bits on Hazard3.

3.1. Standard M-mode CSRs

The RISC-V Privileged Specification should be your primary reference for
writing software to run on Hazard3. This section specifies those details

IMPORTANT which are left implementation-defined by the RISC-V Privileged
Specification, for sake of completeness, but portable RISC-V software should
not rely on these details.

3.1.1. mvendorid
Address: 0xf11

Vendor identifier. Read-only, configurable constant.

Bits Name Description

31:0 - Should contain either all-zeroes, or a valid JEDEC JEP106 vendor ID
using the encoding in the RISC-V specification (not the same as a
JTAG IDCODE)

3.1.2. marchid

Address: 0xf12

Architecture identifier for Hazard3. Read-only, configurable constant.

Bits Name Description
31:0 - Default is currently all-zeroes as Hazard3 is unregistered.
3.1.3. mimpid

Address: 0xf13

Implementation identifier. Read-only, configurable constant.


https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf

Bits Name Description

31:0 - Should contain the git hash of the Hazard3 revision from which the
processor was synthesised, or all-zeroes.

3.1.4. mhartid

Address: 0xf14

Hart identification register. Read-only, configurable constant.

Bits Name Description

31:0 - Hazard3 cores possess only one hardware thread, so this is a unique
per-core identifier, assigned consecutively from 0.

3.1.5. mstatus
Address: 0x300

The below table lists the fields which are not hardwired to 0:

Bits Name Description
12:11 mpp Previous privilege level. Always 0x3, indicating M-mode.
7 mpie Previous interrupt enable. Readable and writable. Is set to the

current value of mstatus.mie on trap entry. Is set to 1 on trap return.

3 mie Interrupt enable. Readable and writable. Is set to 0 on trap entry. Is
set to the current value of mstatus.mpie on trap return.

3.1.6. mstatush

Address: 0x310

This CSR is present, but it is entirely hardwired to zero. Its presence is required for compliance.

3.1.7. misa

Address: 0x301

Read-only, constant. Value depends on which ISA extensions Hazard3 is configured with. The table
below lists the fields which are not always hardwired to 0:

Bits Name Description

31:30 mx1 Always 0x1. Indicates this is a 32-bit processor.



Bits Name Description

23 X 1 if the core is configured to support trap-handling, otherwise 0.
Hazard3 has nonstandard CSRs to enable/disable external interrupts
on a per-interrupt basis, see meie0 and meip0. The misa.x bit must
be set to indicate their presence. Hazard3 does not implement any
custom instructions.

12 m 1 if the M extension is present, otherwise 0.
2 c 1 if the C extension is present, otherwise 0.
3.1.8. medeleg

Address: 0x302

Unimplemented, as only M-mode is supported. Access will cause an illegal instruction exception.

3.1.9. mideleg

Address: 0x303

Unimplemented, as only M-mode is supported. Access will cause an illegal instruction exception.

3.1.10. mie
Address: 0x304

Interrupt enable register. Not to be confused with mstatus.mie, which is a global enable, having the
final say in whether any interrupt which is both enabled in mie and pending in mip will actually
cause the processor to transfer control to a handler.

The table below lists the fields which are not hardwired to 0:

Bits Name Description

11 meie External interrupt enable. Hazard3 has internal custom CSRs to
further filter external interrupts, see meie0.

7 mtie Timer interrupt enable. A timer interrupt is requested when
mie.mtie, mip.mtip and mstatus.mie are all 1.

3 msie Software interrupt enable. A software interupt is requested when
mie.msie, mip.mtip and mstatus.mie are all 1.

RISC-V reserves bits 16+ of mie/mip for platform use, which Hazard3 could use for
external interrupt control. On RV32I this could only control 16 external interrupts,
so Hazard3 instead adds nonstandard interrupt enable registers starting at meie0,
and keeps the upper half of mie reserved.

NOTE



3.1.11. mip

Address: 0x344

Interrupt pending register. Read-only.
The RISC-V specification lists mip as a read-write register, but the bits which are
NOTE writable correspond to lower privilege modes (S- and U-mode) which are not

implemented on Hazard3, so it is documented here as read-only.

The table below lists the fields which are not hardwired to 0:

Bits Name Description

11 meip External interrupt pending. When 1, indicates there is at least one
interrupt which is asserted (hence pending in meip0) and enabled in
meieO.

7 mtip Timer interrupt pending. Level-sensitive interrupt signal from
outside the core. Connected to a standard, external RISC-V 64-bit
timer.

3 msip Software interrupt pending. In spite of the name, this is not

triggered by an instruction on this core, rather it is wired to an
external memory-mapped register to provide a cross-hart level-
sensitive doorbell interrupt.

Hazard3 assumes interrupts to be level-sensitive at system level. Bits in mip are

NOTE .. N o
cleared by servicing the requestor and causing it to deassert its interrupt request.

3.1.12. mtvec
Address: 0x305

Trap vector base address. Read-write. Exactly which bits of mtvec can be modified (possibly none) is
configurable when instantiating the processor, but by default the entire register is writable. The
reset value of mtvec is also configurable.

Bits Name Description

31:2 base Base address for trap entry. In Vectored mode, this is OR’d with the
trap offset to calculate the trap entry address, so the table must be
aligned to its total size, rounded up to a power of 2. In Direct mode,
base is word-aligned.

0 mode 0 selects Direct mode — all traps (whether exception or interrupt)
jump to base. 1 selects Vectored mode — exceptions go to base,
interrupts go to base | mcause << 2.

In the RISC-V specification, mode is a 2-bit write-any read-legal field in bits 1:0.

NOTE
Hazard3 implements this by hardwiring bit 1 to 0.



Hazard3 has an additional nonstandard vectoring mode, where external interrupts
are each separated into distinct vectors and mcause values. This is enabled through
the implementation-defined control register, midcr, since the RISC-V specification
reserves mtvec.mode == 2, 3 for future standard use.

NOTE

3.1.13. mcounteren
Address: 0x306
Unimplemented, as only M-mode is supported. Access will cause an illegal instruction exception.

Not to be confused with mcountinhibit.

3.1.14. mscratch

Address: 0x340

Read-write 32-bit register. No specific hardware function — available for software to swap with a
register when entering a trap handler.

3.1.15. mepc

Address: 0x341

Exception program counter. When entering a trap, the current value of the program counter is
recorded here. When executing an mret, the processor jumps to mepc. Can also be read and written
by software.

On Hazard3, bits 31:1 of mepc are capable of holding all 31-bit values. Bit 0 is hardwired to 0, as per
the specification.

All traps on Hazard3 are precise. For example, a load/store bus error will set mepc to the exact
address of the load/store instruction which encountered the fault.

3.1.16. mcause
Address: 0x342

Exception cause. Set when entering a trap to indicate the reason for the trap. Readable and writable
by software.

On Hazard3, most bits of mcause are hardwired to 0. Only bit 31, and enough least-
significant bits to index all exception and all interrupt causes (at least four bits), are
backed by registers. Only these bits are writable; the RISC-V specification only
requires that mcause be able to hold all legal cause values.

NOTE

The most significant bit of mcause is set to 1 to indicate an interrupt cause, and 0 to indicate an
exception cause. The following interrupt causes may be set by Hazard3 hardware:

10



Cause Description

3 Software interrupt (mip.msip)
7 Timer interrupt (mip.mtip)
11 External interrupt (mip.meip)

Numbers >16 are used for to disambiguate between external IRQs when expanded vectoring is
enabled —see midcr.

The following exception causes may be set by Hazard3 hardware:

Cause Description

Instruction access fault
Illegal instruction
Breakpoint

Load address misaligned
Load access fault

Store/AMO address misaligned

N Y G W N e

Store/AMO access fault

11 Environment call

Not every instruction fetch bus cycle which returns a bus error leads to an
exception. Hazard3 prefetches instructions ahead of execution, and associated bus

NOTE errors are speculated through to the point the processor actually attempts to decode
the instruction. Until this point, the error can be flushed by a branch, with no ill
effect.

3.1.17. mtval

Address: 0x343

Hardwired to 0.

3.1.18. pmpcfg0...3
Address: 0x3a0 through 0x3a3

Unimplemented. Access will cause an illegal instruction exception.

3.1.19. pmpaddr0...15
Address: 0x3b0 through 0x3bf

Unimplemented. Access will cause an illegal instruction exception.

11



3.1.20. mcycle

Address: 0xb0o

Lower half of the 64-bit cycle counter. Readable and writable by software. Increments every cycle,
unless mcountinhibit.cy is 1, or the processor is in Debug Mode (as dcsr.stopcount is hardwired to 1).

If written with a value n and read on the very next cycle, the value read will be exactly n + 1
(ignoring wrapping).

3.1.21. mcycleh

Address: 0xb80

Upper half of the 64-bit cycle counter. Readable and writable by software. Increments every time
mcycle wraps from Oxffffffff to 0x00000000 upon increment.

3.1.22. minstret

Address: 0xb02

Lower half of the 64-bit instruction retire counter. Readable and writable by software. Increments
with every instruction exectued, unless mcountinhibit.ir is 1, or the processor is in Debug Mode (as
dcsr.stopcount is hardwired to 1).

3.1.23. minstreth

Address: 0xb82

Upper half of the 64-bit instruction retire counter. Readable and writable by software. Increments
every time minstret wraps from 0xffffffff to 0x00000000 upon increment.

3.1.24. mhpmcounter3...31

Address: 0xb@3 through 0xb1f

Hardwired to 0.

3.1.25. mhpmcounter3...31h
Address: 0xb83 through 0xb9f

Hardwired to 0.

3.1.26. mcountinhibit

Address: 0x320

Counter inhibit. Read-write. The table below lists the fields which are not hardwired to O:

12



Bits Name Description
2 ir When 1, inhibit counting of minstret/minstreth

0 cy When 1, inhibit counting

3.1.27. mhpmevent3...31
Address: 0x323 through 0x33f

Hardwired to 0.

3.1.28. tselect
Address: 0x7a0

Unimplemented. Reads as 0, write causes illegal instruction exception.

3.1.29. tdatal...3
Address: 0x7a1 through 0x7a3

Unimplemented. Access will cause an illegal instruction exception.

3.2. Standard Debug Mode CSRs

This section describes the Debug Mode CSRs, which are follow the 0.13.2 RISC-V debug specification.
The Debug section gives more detail on the remainder of Hazard3’s debug implementation,
including the Debug Module.

All Debug Mode CSRs are 32-bit; DXLEN is always 32.

3.2.1. dcsr
Address: 0x7b0

Debug control and status register. Access outside of Debug Mode will cause an illegal instruction
exception. Relevant fields are implemented as follows:

Bits Name Description

31:28 xdebugver Hardwired to 4: external debug support as per RISC-V 0.13.2 debug
specification.

15 ebreakm When 1, ebreak instructions will break to Debug Mode instead of

trapping in M mode.

11 stepie Hardwired to 0: no interrupts are taken during hardware single-
stepping.
10 stopcount Hardwired to 1: mcycle/mcycleh and minstret/minstreth do not

increment in Debug Mode.

13



Bits Name Description

9 stoptime Hardwired to 1: core-local timers don’t increment in debug mode.
This requires cooperation of external hardware based on the halt
status to implement correctly.

8:6 cause Read-only, set by hardware — see table below.

2 step When 1, re-enter Debug Mode after each instruction executed in M-
mode.

1:0 prv Hardwired to 3, as only M-mode is implemented.

Fields not mentioned above are hardwired to 0.

Hazard3 may set the following dcsr.cause values:

Cause Description
1 Processor entered Debug Mode due to an ebreak instruction executed in M-mode.

3 Processor entered Debug Mode due to a halt request, or a reset-halt request present
when the core reset was released.

4 Processor entered Debug Mode after executing one instruction with single-stepping
enabled.

Cause 5 (resethaltreq) is never set by hardware. This event is reported as a normal halt, cause 3.
Cause 2 (trigger) is never used because there are no triggers. (TODO?)

3.2.2. dpc

Address: 0x7b1

Debug program counter. When entering Debug Mode, dpc samples the current program counter,
e.g. the address of an ebreak which caused Debug Mode entry. When leaving debug mode, the
processor jumps to dpc. The host may read/write this register whilst in Debug Mode.

3.2.3. dscratchO

Address: 0x7b2
Not implemented. Access will cause an illegal instruction exception.

To provide data exchange between the Debug Module and the core, the Debug Module’s data0
register is mapped into the core’s CSR space at a read/write M-custom address — see dmdata0.

3.2.4. dscratch1
Address: 0x7b3

Not implemented. Access will cause an illegal instruction exception.

14



3.3. Custom CSRs

These are all allocated in the space 0xbc@ through @xbff which is available for custom read/write M-
mode CSRs, and 0xfc@ through 0xfff which is available for custom read-only M-mode CSRs.

Hazard3 also allocates a custom Debug Mode register dmdata0 in this space.

3.3.1. dmdata0

Address: 0xbff

The Debug Module’s internal data® register is mapped to this CSR address when the core is in debug
mode. At any other time, access to this CSR address will cause an illegal instruction exception.

The 0.13.2 debug specification allows for the Debug Module’s abstract data registers
to be mapped into the core’s CSR address space, but there is no Debug-custom space,
so the read/write M-custom space is used instead to avoid conflict with future
versions of the debug specification.

NOTE

The Debug Module uses this mapping to exchange data with the core by injecting csrr/csrw
instructions into the prefetch buffer. This in turn is used to implement the Abstract Access Register
command. See Debug.

This CSR address is given by the dataaddress field of the Debug Module’s hartinfo register, and
hartinfo.dataaccess is set to 0 to indicate this is a CSR mapping, not a memory mapping.

3.3.2. midcr

Address: 0xbc@

Implementation-defined control register. Miscellaneous nonstandard controls.

Bits Name Description
31:1 - RESO
0 eivect Modified external interrupt vectoring. If 0, use standard behaviour:

all external interrupts set interrupt mcause of 11 and vector to mtvec
+ 0x2c. If 1, external interrupts use distinct interrupt mcause
numbers 16 upward, and distinct vectors mtvec + (irq + 16) * 4.
Resets to 0. Has no effect when mtvec[0] is 0.

3.3.3. meie0
Address: 0xbed

External interrupt enable register 0. Contains a read-write bit for each external interrupt request
IRQO through IRQ31. A 1 bit indicates that interrupt is currently enabled.

Addresses 0xbe1 through 0xbe3 are reserved for further meie registers, supporting up to 128 external

15



interrupts.
An external interrupt is taken when all of the following are true:

* The interrupt is currently asserted in meip®

The matching interrupt enable bit is set in meie®

The standard M-mode interrupt enable mstatus.mie is set

The standard M-mode global external interrupt enable mie.meie is set

meied resets to all-ones, for compatibility with software which is only aware of mstatus and mie.
Because mstatus.mie and mie.meie are both initially clear, the core will not take interrupts straight
out of reset, but it is strongly recommended to configure meie® before setting the global interrupt
enable, to avoid interrupts from unexpected sources.

3.3.4. meip0

Address: 0xfe0

External IRQ pending register 0. Contains a read-only bit for each external interrupt request IRQO
through IRQ31. A 1 bit indicates that interrupt is currently asserted. IRQs are assumed to be level-
sensitive, and the relevant meip@ bit is cleared by servicing the requestor so that it deasserts its
interrupt request.

Addresses 0xfel through 0xfe3 are reserved for further meip registers, supporting up to 128 external
interrupts.

When any bit is set in both meip@ and meie0, the standard external interrupt pending bit mip.meip is
also set. In other words, meip@ is filtered by meie®@ to generate the standard mip.meip flag. So, an
external interrupt is taken when all of the following are true:

* An interrupt is currently asserted in meip®

* The matching interrupt enable bit is set in meie®

The standard M-mode interrupt enable mstatus.mie is set

The standard M-mode global external interrupt enable mie.meie is set
In this case, the processor jumps to either:

 mtvec directly, if vectoring is disabled (mtvec[0] is 0)

* mtvec + Ox2c, if vectoring is enabled (mtvec[@] is 1) and modified external IRQ vectoring is
disabled (midcr.eivect is 0)

* mtvect + (mlei + 16) * 4, if vectoring is enabled (mtvec[0] is 1) and modified external IRQ
vectoring is enabled (midcr.eivect is 1).

o mlei is a read-only CSR containing the lowest-numbered pending-and-enabled external
interrupt.

16



3.3.5. mlei

Address: 0xfe4

Lowest external interrupt. Contains the index of the lowest-numbered external interrupt which is
both asserted in meip@ and enabled in meied. Can be used for faster software vectoring when
modified external interrupt vectoring (midcr.eivect = 1) is not in use.

Bits Name Description
31:5 - RESO
4:0 - Index of the lowest-numbered active external interrupt. A LSB-first

priority encode of meip@ & meie@. Zero when no external interrupts
are both pending and enabled.

3.3.6. Maybe-adds

An option to clear a bit in meie@d when that interrupt is taken, and set it when an mret has a
matching mcause for that interrupt. Makes preemption support easier.

17



Chapter 4. Debug

Hazard3, along with its external debug components, implements version 0.13.2 of the RISC-V debug
specification. The goals of this implementation are:

* Minimal impact on core timing when present

* No external components which need integrating at the other end of your bus fabric —just slap
the Debug Module onto the core and away you go

 Efficient block data transfers to target RAM for faster edit-compile-run cycle
Hazard3’s debug support implements the following:

* Run/halt/reset control as required

Abstract GPR access as required
* Program Buffer, 2 words plus impebreak

* Automatic trigger of abstract command (abstractauto) on data@ or Program Buffer access for
efficient memory block transfers from the host

(TODO) Some minimum useful trigger unit — likely just breakpoints, no watchpoints

4.1. Debug Topologies

Hazard3’s Debug Module has the following interfaces:
* An upstream AMBA 3 APB port— the "Debug Module Interface" —for host access to the Debug
Module

* A downstream Hazard3-specific interface to one or more cores (multicore support is
experimental)

» Some reset request/acknowledge signals which require careful handshaking with system-level

reset logic

The Debug Module must be connected directly to the processors without intervening registers. This
implies the Debug Module is in the same clock domain as the processors, so multiple processors on
the same Debug Module must share a common clock. This is shown in the example topology below.

18



Debug

! Clock Y :
+ Domain Debug Transport ;
' Module

b CcDC B e S
: Processor i
{  Clock APB !
*  Domain ¥ ‘
: Hazard3 System :
! «»| Reset '
Debug Module Controller :
E Core-specific :
: interface !
Hazard3 Hazard3
‘ Core 0 Core 1 '
! | AHB D AHB | AHB D AHB :
: I v | L 4 :
: | System Bus | .

Upstream of the Debug Module is at least one Debug Transport Module, which bridges some host-
facing interface such as JTAG to the APB Debug Module Interface. An APB arbiter could be inserted
here, to allow multiple transports to be used, provided the host(s) avoid using multiple transports
concurrently.

Hazard3 provides an implementation of a standard RISC-V JTAG-DTM, but any APB master could be
used. The Debug Module requires at least 7 bits of word addressing, i.e. 9 bits of byte address space.

The clock domain crossing (if any) occurs on the downstream port of the Debug Transport Module.
Hazard3’s JTAG-DTM implementation runs entirely in the TCK domain, and instantiates a bus clock-
crossing module internally to bridge a TCK-domain internal APB bus to an external bus in the
processor clock domain.

It is possible to instantiate multiple Debug Modules, one per core, and attach them to a single Debug
Transport Module. This is not the preferred topology, but it does allow multiple cores to be
independently clocked.

4.2. Debug Module to Core Interface

The DM can inject instructions directly into the core’s instruction prefetch buffer. This mechanism
is used to execute the Program Buffer, or used directly by the DM, issuing hardcoded instructions to
manipulate core state.

The DM’s data0 register is exposed to the core as a debug mode CSR. By issuing instructions to make
the core read or write this dummy CSR, the DM can exchange data with the core. To read from a
GPR x into data@, the DM issues a csrw datald, x instruction. Similarly csrr x, data@ will write data®
to that GPR. The DM always follows the CSR instruction with an ebreak, just like the implicit ebreak
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at the end of the Program Buffer, so that it is notified by the core when the GPR read instruction
sequence completes.

The debug host must use the Program Buffer to access CSRs and memory. This carries some
overhead for individual accesses, but is efficient for bulk transfers: the abstractauto feature allows
the DM to trigger the Program Buffer and/or a GPR tranfer automatically following every data0
access, which can be used for e.g. autoincrementing read/write memory bursts. Program Buffer
read/writes can also be used as abstractauto triggers: this is less useful than the data0 trigger, but
takes little extra effort to implement, and can be used to read/write a large number of CSRs
efficiently.

Abstract memory access is not implemented because it offers no better throughput than Program
Buffer execution with abstractauto for bulk transfers, and non-bulk transfers are still
instantaneous from the perspective of the human at the other end of the wire.

The Hazard3 Debug Module has experimental support for multi-core debug. Each core possesses
exactly one hardware thread (hart) which is exposed to the debugger. The RISC-V specification does
not mandate what mapping is used between the Debug Module hart index hartsel and each core’s
mhartid CSR, but a 1:1 match of these values is the least likely to cause issues. Each core’s mhartid
can be configured using the MHARTID_VAL parameter during instantiation.

4.3. Implementation-defined behaviour

Features implemented by DM (beyond the mandatory):

* Halt-on-reset, selectable per-hart
* Program Buffer, size 2 words, impebreak = 1.
* A single data register (data®) is implemented as a per-hart CSR accessible by the DM

 abstractauto is supported on the datal register

Up to 32 harts selectable via hartsel
Not implemented:

* Hart array mask selection

* Abstract access memory

* Abstract access CSR

» Post-incrementing abstract access GPR

» System bus access
Core behaviour:

* Branch, jal, jalr and auipc are illegal in debug mode, because they observe PC: attempting to
execute will halt Program Buffer execution and report an exception in abstractcs.cmderr

* The dret instruction is not implemented (a special purpose DM-to-core signal is used to signal
resume)
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* The dscratch CSRs are not implemented

» External data@ register is exposed as a dummy CSR mapped at 0x7b2 (the location of dscratch@),
readable and writable by the DM.

o This is a debug mode CSR, so raises an illegal instruction exception when accessed in
machine mode

- The DM ignores writes unless it is currently executing an abstract command on this core
(hartsel = this core, abstractcs.busy = 1)

 desr.stepie is hardwired to 0 (no interrupts during single stepping)

e desr.stopcount and desr.stoptime are hardwired to 1 (no counter or internal timer increment in
debug mode)

e desr.mprven is hardwired to 0

e desr.prvis hardwired to 3 (M-mode)

4.4. UART DTM

Hazard3 defines a minimal UART Debug Transport Module, which allows the Debug Module to be
accessed via a standard 8n1l asynchronous serial port. The UART DTM is always accessed by the
host using a two-wire serial interface (TXD RXD) running at 1 Mbaud. The interface between the
DTM and DM is an AMBA 3 APB port with a 32-bit data bus and 8-bit address bus.

This is a quick hack, and not suitable for production systems:

* Debug hardware should not expect a frequency reference for a UART to be present

* The UART DTM does not implement any flow control or error detection/correction

The host may send the following commands:

Command To DTM From DTM

0x00 NOP - -

0x01 Read ID - 4-byte ID, same format as JTAG-DTM
ID (JEP106-compatible)

0x02 Read DMI 1 address byte 4 data bytes

0x03 Write DMI 1 address byte, 4 data bytes data bytes echoed back

0xab Disconnect - -

Initially after power-on the DTM is in the Dormant state, and will ignore any commands. The host
sends the magic sequence "SUP?" (0x53, @x55, 0x50, 0x3f) to wake the DTM, and then issues a Read
ID command to check the link is up. The DTM can be returned to the Dormant state at any time
using the @xa5 Disconnect command.

So that the host can queue up batches of commands in its transmit buffer, without overrunning the
DTM’s transmit bandwidth, it’s recommended to pad each command with NOPs so that it is strictly
larger than the response. For example, a Read ID should be followed by four NOPs, and a Read DMI
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should be followed by 3 NOPs.

To recover command framing, write 6 NOP commands (the length of the longest commands). This
will be interpreted as between 1 and 6 NOPs depending on the DTM’s state.

This interface assumes the DMI data transfer takes very little time compared with the UART access
(typically less than one baud period). When the host-to-DTM bandwidth is kept greater than the
DTM-to-host bandwidth, thanks to appropriate NOP padding, the host can queue up batches of
commands in its transmit buffer, and this should never overrun the DTM’s response channel. So,
the 1 Mbaud 8n1 UART link provides 67 kB/s of half-duplex data bandwidth between host and DM,
which is enough to get your system off the ground.
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