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Chapter 1. Introduction

Hazard3 is a configurable 3-stage RISC-V processor, implementing:

 RV32I: 32-bit base instruction set

* M: integer multiply/divide/modulo

* A: atomic memory operations, with AHB5 global exclusives
* (: compressed instructions

» Zicsr: CSR access

* 7/ba: address generation

* 7bb: basic bit manipulation

* 7bc: carry-less multiplication

* Zbs: single-bit manipulation

* Zbkb: basic bit manipulation for scalar cryptography

* Zcb: basic additional compressed instructions

 Zcmp: push/pop and double-move compressed instructions
* Debug, Machine and User privilege/execution modes

* Privileged instructions ECALL, EBREAK, MRET and WFI

» External debug support

¢ Instruction address trigger unit (hardware breakpoints)

1.1. Architectural Overview

1.1.1. Pipe Stages
The three stages are:

 F: Fetch

o Contains the data phase for instruction fetch

- Contains the instruction prefetch buffer

o Predecodes register numbers rs1/rs2, for faster register file read and register bypass
* X: Execute

> Decode and execute instructions

o Drive the address phase for load/store/AMO

o Generate jump/branch addresses
* M: Memory

o Contains the data phase for load/store/AMO

- Register writeback is at the end of stage M



o Generate exception addresses

The instruction fetch address phase is best thought of as residing in stage X. The 2-cycle feedback
loop between jump/branch decode into address issue in stage X, and the fetch data phase in stage F,
is what defines Hazard3’s jump/branch performance.

1.1.2. Bus Interfaces

Hazard3 implements either one or two AHB5 bus master ports. The single-port configuration is
used when ease of integration is a priority, since it supports simpler bus topologies. The dual-port
configuration adds a dedicated port for instruction fetch, which improves both the maximum
frequency and the clock-for-clock performance.

Hazard3 uses AHBS5 specifically, rather than older versions of the AHB standard, because of its
support for global exclusives. This is a bus feature that allows a processor to perform an ordered
read-modify-write sequence with a guarantee that no other processor has written to the same
address range in between. Hazard3 uses this to implement multiprocessor support for the A
(atomics) extension.

1.1.3. Multiply/Divide

For minimal M-extension support, Hazard3 instantiates a sequential multiply/divide circuit
(restoring divide, naive repeated-addition multiply). Instructions stall in stage X until the
multiply/divide completes. Optionally, the circuit can be unrolled by a small factor to produce
multiple bits ber clock— 2 or 4 is achievable in practice.

A single-cycle multiplier can be instantiated, retiring either to stage 3 or stage 2 (configurable). By
default only 32-bit mul is supported, which is by far the most common of the four multiply
instructions.

1.2. List of RISC-V Specifications

These are links to the ratified versions of the base instruction set and extensions implemented by
Hazard3.

Extension Specification

RV32I v2.1 Unprivileged ISA 20191213

Mv2.0 Unprivileged ISA 20191213

Av2.1 Unprivileged ISA 20191213

Cv2.0 Unprivileged ISA 20191213

Zicsr v2.0 Unprivileged ISA 20191213

Zifencei v2.0 Unprivileged ISA 20191213

Zba v1.0.0 Bit Manipulation ISA extensions 20210628
Zbb v1.0.0 Bit Manipulation ISA extensions 20210628
Zbc v1.0.0 Bit Manipulation ISA extensions 20210628


https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0-38-g865e7a7.pdf
https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0-38-g865e7a7.pdf
https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0-38-g865e7a7.pdf

Extension

Zbs v1.0.0

Zbkb v1.0.1

Zcb v1.0.3-1

Zcmp v1.0.3-1
Machine ISA v1.12
Debug v0.13.2

Specification

Bit Manipulation ISA extensions 20210628
Scalar Cryptography ISA extensions 20220218
Code Size Reduction extensions frozen v1.0.3-1
Code Size Reduction extensions frozen v1.0.3-1
Privileged Architecture 20211203

RISC-V External Debug Support 20190322


https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0-38-g865e7a7.pdf
https://github.com/riscv/riscv-crypto/releases/download/v1.0.1-scalar/riscv-crypto-spec-scalar-v1.0.1.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.3-1/Zc-v1.0.3-1.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.3-1/Zc-v1.0.3-1.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf

Chapter 2. Configuration and Integration

2.1. Hazard3 Source Files

Hazard3’s source is written in Verilog 2005, and is self-contained. It can be found here:
github.com/Wren6991/Hazard3/blob/master/hdl. The file hdl/hazard3.f is a list of all the source files
required to instantiate Hazard3.

Files ending with .vh are preprocessor include files used by the Hazard3 source. Two to take note of
are:

* hazard3_config.vh: the main Hazard3 configuration header. Lists and describes Hazard3’s
global configuration parameters, such as ISA extension support
* hazard3_config_inst.vh: a file which propagates configuration parameters through module
instantiations, all the way down from Hazard3’s top-level modules through the internals
Therefore there are two ways to configure Hazard3:
* Directly edit the parameter defaults in hazard3_config.vh in your local Hazard3 checkout (and
then let the top-level parameters default when instantiating Hazard3)

* Set all configuration parameters in your Hazard3 instantiation, and let the parameters
propagate down through the hierarchy

2.2. Top-level Modules

Hazard3 has two top-level modules:

* hazard3_cpu_1port

* hazard3_cpu_2port

These are both thin wrappers around the hazard3_core module. hazard3_cpu_lport has a single
AHBS5 bus port which is shared for instruction fetch, loads, stores and AMOs. hazard3_cpu_2port has
two AHBS5 bus ports, one for instruction fetch, and the other for loads, stores and AMOs. The 2-port
wrapper has higher potential for performance, but the 1-port wrapper may be simpler to integrate,
since there is no need to arbitrate multiple bus masters externally.

The core module hazard3_core can also be instantiated directly, which may be more efficient if
support for some other bus standard is desired. However, the interface of hazard3_core will not be
documented and is not guaranteed to be stable.

2.3. Configuration Parameters

2.3.1. Reset state configuration


https://github.com/Wren6991/Hazard3/tree/master/hdl
https://github.com/Wren6991/Hazard3/blob/master/hdl/hazard3.f
https://github.com/Wren6991/Hazard3/blob/master/hdl/hazard3_config.vh
https://github.com/Wren6991/Hazard3/blob/master/hdl/hazard3_config_inst.vh
https://github.com/Wren6991/Hazard3/blob/master/hdl/hazard3_cpu_1port.v
https://github.com/Wren6991/Hazard3/blob/master/hdl/hazard3_cpu_2port.v
https://github.com/Wren6991/Hazard3/blob/master/hdl/hazard3_core.v

RESET_VECTOR

Address of the first instruction executed after Hazard3 comes out of reset.

Default value: all-zeroes.

MTVEC_INIT

Initial value of the machine trap vector base CSR (mtvec).

Bits clear in MTVEC_WMASK will never change from this initial value. Bits set in MTVEC_WMASK
can be written/set/cleared as normal.

Default value: all-zeroes.

2.3.2. Standard RISC-V ISA support

EXTENSION_A

Support for the A extension: atomic read/modify/write. 0 for disable, 1 for enable.

Default value: 1

EXTENSION_C

Support for the C extension: compressed (variable-width). 0 for disable, 1 for enable.

Default value: 1

EXTENSION_M

Support for the M extension: hardware multiply/divide/modulo. 0 for disable, 1 for enable.

Default value: 1

EXTENSION_ZBA

Support for Zba address generation instructions. 0 for disable, 1 for enable.

Default value: 0

EXTENSION_ZBB

Support for Zbb basic bit manipulation instructions. 0 for disable, 1 for enable.

Default value: 0

EXTENSION_ZBC

Support for Zbc carry-less multiplication instructions. 0 for disable, 1 for enable.

Default value: 0



EXTENSION_ZBS

Support for Zbs single-bit manipulation instructions. 0 for disable, 1 for enable.

Default value: 0

EXTENSION_ZBKB

Support for Zbkb basic bit manipulation for cryptography.

Requires: EXTENSION_ZBB. (Since Zbb and Zbkb have a large overlap, this flag enables only those
instructions which are in Zbkb but aren’t in Zbb. Therefore both flags must be set for full Zbkb
support.)

Default value: 0

EXTENSION_ZCB:

Support for Zcb basic additional compressed instructions

Requires: EXTENSION_C. (Some Zcb instructions also require Zbb or M, as they are 16-bit aliases of
32-bit instructions present in those extensions.)

Note Zca is equivalent to C, as we do not support the F extension.

Default value: 0

EXTENSION_ZCMP

Support for Zcmp push/pop and double-move instructions.
Requires: EXTENSION_C.
Note Zca is equivalent to C, as we do not support the F extension.

Default value: 0

EXTENSION_ZIFENCEI

Support for the fence.i instruction. When the branch predictor is not present, this instruction is
optional, since a plain branch/jump is sufficient to flush the instruction prefetch queue. When the
branch predictor is enabled (BRANCH_PREDICTOR is 1), this instruction must be implemented.

Default value: 0

2.3.3. Custom Hazard3 Extensions

EXTENSION_XH3BEXTM

Custom bit manipulation instructions for Hazard3: h3.bextm and h3.bextmi. See Xh3bextm: Hazard3
bit extract multiple.



Default value: 0

EXTENSION_XH3IRQ

Custom preemptive, prioritised interrupt support. Can be disabled if an external interrupt
controller (e.g. PLIC) is used. If disabled, and NUM_IRQS > 1, the external interrupts are simply OR’d
into mip.meip. See Xh3irq: Hazard3 interrupt controller.

Default value: 0

EXTENSION_XH3PMPM

Custom PMPCFGMx CSRs to enforce PMP regions in M-mode without locking. See Xh3pmpm: M-
mode PMP regions.

Default value: 0

EXTENSION_XH3POWER

Custom power management controls for Hazard3. This adds the msleep CSR, and the h3.block and
h3.unblock hint instructions. See Xh3power: Hazard3 power management

Default value: 0

2.3.4. CSR support

the Zicsr extension is implied by any of CSR_M_MANDATORY, CSR_M_TRAP,
CSR_COUNTER.

NOTE

CSR_M_MANDATORY

Bare minimum CSR support e.g. misa. This flag is an absolute requirement for compliance with the
RISC-V privileged specification. However, the privileged specification itself is an optional extension.
Hazard3 allows the mandatory CSRs to be disabled to save a small amount of area in deeply-
embedded implementations.

Default value: 1

CSR_M_TRAP
Include M-mode trap-handling CSRs, and enable trap support.

Default value: 1

CSR_COUNTER

Include the basic performance counters (cycle/instret) and relevant CSRs. Note that these
performance counters are now in their own separate extension (Zicntr) and are no longer
mandatory.

Default value: 0



U_MODE

Support the U (user) privilege level. In U-mode, the core performs unprivileged bus accesses, and
software’s access to CSRs is restricted. Additionally, if the PMP is included, the core may restrict U-
mode software’s access to memory.

Requires: CSR_M_TRAP.

Default value: 0

PMP_REGIONS

Number of physical memory protection regions, or 0 for no PMP. PMP is more useful if U-mode is
supported, but this is not a requirement.

Hazard3’s PMP supports only the NAPOT and(if PMP_GRAIN is 0) NA4 region types.
Requires: CSR_M_TRAP.

Default value: 0

PMP_GRAIN

This is the G parameter in the privileged spec, which defines the granularity of PMP regions.
Minimum PMP region size is 1 << (G + 2) bytes.

If G >0, pmcfg.a can not be set to NA4 (attempting to do so will set the region to OFF instead).

If G > 1, the G - 1 LSBs of pmpaddr are read-only-0 when pmpcfg.a is OFF, and read-only-1 when
pmpcfg.a is NAPOT.

Default value: 0

PMP_HARDWIRED

PMPADDR_HARDWIRED: If a bit is 1, the corresponding region’s pmpaddr and pmpcfg registers are
read-only, with their values fixed when the processor is instantiated. PMP_GRAIN is ignored on
hardwired regions.

Hardwired regions are far cheaper, both in area and comparison delay, than dynamically
configurable regions.

Hardwired PMP regions are a good option for setting default U-mode permissions on regions which
have access controls outside of the processor, such as peripheral regions. For this case it’s
recommended to make hardwired regions the highest-numbered, so they can be overridden by
lower-numbered dynamic regions.

Default value: all-zeroes.

PMP_HARDWIRED_ADDR

Values of pmpaddr registers whose PMP_HARDWIRED bits are set to 1. Has no effect on PMP



regions which are not hardwired.

Default value: all-zeroes.

PMP_HARDWIRED_CFG

Values of pmpcfg registers whose PMP_HARDWIRED bhits are set to 1. Has no effect on PMP regions
which are not hardwired.

Default value: all-zeroes.

DEBUG_SUPPORT

Support for run/halt and instruction injection from an external Debug Module, support for Debug
Mode, and Debug Mode CSRs.

Requires: CSR_M_MANDATORY, CSR_M_TRAP.

Default value: 0

BREAKPOINT_TRIGGERS

Number of hardware breakpoints. A breakpoint is implemented as a trigger that supports only
exact execution address matches, ignoring instruction size. That is, a trigger which supports type=2
execute=1 (but not store/load=1, i.e. not a watchpoint).

Requires: DEBUG_SUPPORT

Default value: 0

2.3.5. External interrupt support

NUM_IRQS

NUM_IRQS: Number of external IRQs. Minimum 1, maximum 512. Note that if EXTENSION_XH3IRQ
(Hazard3 interrupt controller) is disabled then multiple external interrupts are simply OR’d into
mip.meip.

Default value: 1

IRQ_PRIORITY_BITS

IRQ_PRIORITY_BITS: Number of priority bits implemented for each interrupt in meipra, if
EXTENSION_XH3IRQ is enabled. The number of distinct levels is (1 << IRQ_PRIORITY_BITS).
Minimum 0, max 4. Note that multiple priority levels with a large number of IRQs will have a
severe effect on timing.

Default value: 0



IRQ_INPUT_BYPASS

Disable the input registers on the external interrupts, to reduce latency by one cycle. Can be applied
on an IRQ-by-IRQ basis.

Ignored if EXTENSION_XH3IRQ is disabled.

Default value: all-zeroes (not bypassed).

2.3.6. Identification Registers

MVENDORID_VAL

Value of the mvendorid CSR. JEDEC JEP106-compliant vendor ID, or all-zeroes. 31:7 is continuation
code count, 6:0 is ID. Parity bit is not stored.

Default value: all-zeroes.

MIMPID_VAL

Value of the mimpid CSR. Implementation ID for this specific version of Hazard3. Should be a git
hash, or all-zeroes.

Default value: all-zeroes.

MHARTID_VAL

Value of the mhartid CSR. Each Hazard3 core has a single hardware thread. Multiple cores should
have unique IDs.

Default value: all-zeroes.

MCONFIGPTR_VAL

Value of the mconfigptr CSR. Pointer to configuration structure blob, or all-zeroes. Must be at least
4-byte-aligned.

Default value: all-zeroes.

2.3.7. Performance/size options

REDUCED_BYPASS

Remove all forwarding paths except XX (so back-to-back ALU ops can still run at 1 CPI), to save
area. This has a significant impact on per-clock performance, so should only be considered for
extremely low-area implementations.

Default value: 0

10



MULDIV_UNROLL

Bits per clock for multiply/divide circuit, if present. Must be a power of 2.

Default value: 1

MUL_FAST

Use single-cycle multiply circuit for MUL instructions, retiring to stage 3. The sequential
multiply/divide circuit is still used for MULH*

Default value: 0

MUL_FASTER

Retire fast multiply results to stage 2 instead of stage 3. Throughput is the same, but latency is
reduced from 2 cycles to 1 cycle.

Requires: MUL_FAST.

Default value: 0

MULH_FAST

Extend the fast multiply circuit to also cover MULH* and remove the multiply functionality from
the sequential multiply/divide circuit.

Requires: MUL_FAST

Default value: 0

FAST BRANCHCMP

Instantiate a separate comparator (eq/lt/ltu) for branch comparisons, rather than using the ALU.
Improves fetch address delay, especially if Zba extension is enabled. Disabling may save area.

Default value: 1

RESET_REGFILE

Whether to support reset of the general purpose registers. There are around 1k bits in the register
file, so the reset can be disabled e.g. to permit block-RAM inference on FPGA.

Default value: 1

BRANCH_PREDICTOR

Enable branch prediction. The branch predictor consists of a single BTB entry which is allocated on
a taken backward branch, and cleared on a mispredicted nontaken branch, a fence.i or a trap.
Successful prediction eliminates the 1-cyle fetch bubble on a taken branch, usually making tight
loops faster.

11



Requires: EXTENSION_ZIFENCEI
Default value: 0

MTVEC_WMASK

MTVEC_WMASK: Mask of which bits in mtvec are writable. Full writability (except for bit 1) is
recommended, because a common idiom in setup code is to set mtvec just past code that may trap,
as a hardware try {:-'} catch block.

» The vectoring mode can be made fixed by clearing the LSB of MTVEC_WMASK

» In vectored mode, the vector table must be aligned to its size, rounded up to a power of two.

Default: All writable except for bit 1.

2.4. Interfaces (Top-level Ports)

TODO lol
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Chapter 3. CSRs

The RISC-V privileged specification affords flexibility as to which CSRs are implemented, and how
they behave. This section documents the concrete behaviour of Hazard3’s standard and
nonstandard M-mode CSRs, as implemented.

All CSRs are 32-bit; MXLEN is fixed at 32 bits on Hazard3. All CSR addresses not listed in this section
are unimplemented. Accessing an unimplemented CSR will cause an illegal instruction exception
(mcause = 2). This includes all U-mode and S-mode CSRs.

The RISC-V Privileged Specification should be your primary reference for
writing software to run on Hazard3. This section specifies those details

IMPORTANT which are left implementation-defined by the RISC-V Privileged
Specification, for sake of completeness, but portable RISC-V software should
not rely on these details.

3.1. Standard M-mode Identification CSRs

3.1.1. mvendorid
Address: 0xf11

Vendor identifier. Read-only, configurable constant. Should contain either all-zeroes, or a valid
JEDEC JEP106 vendor ID using the encoding in the RISC-V specification.

Bits Name Description

31:7 bank The number of continuation codes in the vendor JEP106 ID. One less
than the JEP106 bank number.

6:0 offset Vendor ID within the specified bank. LSB (parity) is not stored.

3.1.2. marchid
Address: 0xf12

Architecture identifier for Hazard3. Read-only, constant.

Bits Name Description

31 - 0: Open-source implementation

30:0 - 0x1b (decimal 27): the registered architecture ID for Hazard3
3.1.3. mimpid

Address: 0xf13

Implementation identifier. Read-only, configurable constant.
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Bits Name Description

31:0 - Should contain the git hash of the Hazard3 revision from which the
processor was synthesised, or all-zeroes.

3.1.4. mhartid

Address: 0xf14

Hart identification register. Read-only, configurable constant.

Bits Name Description

31:0 - Hazard3 cores possess only one hardware thread, so this is a unique
per-core identifier, assigned consecutively from 0.
3.1.5. mconfigptr

Address: 0xf15

Pointer to configuration data structure. Read-only, configurable constant.

Bits Name Description

31:0 - Either pointer to configuration data structure, containing
information about the harts and system, or all-zeroes. At least 4-
byte-aligned.

3.1.6. misa

Address: 0x301

Read-only, constant. Value depends on which ISA extensions Hazard3 is configured with. The table
below lists the fields which are not always hardwired to 0:

Bits Name Description

31:30 mx1 Always 0x1. Indicates this is a 32-bit processor.

23 X 1 if any custom extension is enabled (Custom Hazard3 Extensions),
otherwise 0.

20 u 1 if User mode is supported, otherwise 0.

12 m 1 if the M extension is present, otherwise 0.

2 c 1 if the C extension is present, otherwise 0.

0 a 1 if the A extension is present, otherwise 0.

3.2. Standard M-mode Trap Handling CSRs
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3.2.1. mstatus

Address: 0x300

The below table lists the fields which are not hardwired to O:

Bits

21

17

12:11

Name
tw

mprv

mpp

mpie

mie

3.2.2. mstatush

Address: 0x310

Hardwired to 0.

3.2.3. medeleg

Address: 0x302

Description

Timeout wait. Only present if U-mode is supported. When 1,
attempting to execute a WFI instruction in U-mode will instantly
cause an illegal instruction exception.

Modify privilege. Only present if U-mode is supported. If 1, loads and
stores behave as though the current privilege level were mpp. This
includes physical memory protection checks, and the privilege level
asserted on the system bus alongside the load/store address.

Previous privilege level. If U-mode is supported, this register can
store the values 3 (M-mode) or 0 (U-mode). Otherwise, only 3 (M-
mode). If another value is written, hardware rounds to the nearest
supported mode.

Previous interrupt enable. Readable and writable. Is set to the
current value of mstatus.mie on trap entry. Is set to 1 on trap return.

Interrupt enable. Readable and writable. Is set to 0 on trap entry. Is
set to the current value of mstatus.mpie on trap return.

Unimplemented, as neither U-mode traps nor S-mode are supported. Access will cause an illegal

instruction exception.

3.2.4. mideleg

Address: 0x303

Unimplemented, as neither U-mode traps nor S-mode are supported. Access will cause an illegal

instruction exception.

3.2.5. mie

Address: 0x304
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Interrupt enable register. Not to be confused with mstatus.mie, which is a global enable, having the
final say in whether any interrupt which is both enabled in mie and pending in mip will actually
cause the processor to transfer control to a handler.

The table below lists the fields which are not hardwired to 0:

Bits Name Description

11 meie External interrupt enable. Hazard3 has internal custom CSRs to
further filter external interrupts, see meiea.

7 mtie Timer interrupt enable. A timer interrupt is requested when
mie.mtie, mip.mtip and mstatus.mie are all 1.

3 msie Software interrupt enable. A software interupt is requested when
mie.msie, mip.mtip and mstatus.mie are all 1.

RISC-V reserves bits 16+ of mie/mip for platform use, which Hazard3 could use for
external interrupt control. On RV32I this could only control 16 external interrupts,
so Hazard3 instead adds nonstandard interrupt enable registers starting at meiea,
and keeps the upper half of mie reserved.

NOTE

3.2.6. mip

Address: 0x344

Interrupt pending register. Read-only.
The RISC-V specification lists mip as a read-write register, but the bits which are
NOTE writable correspond to lower privilege modes (S- and U-mode) which are not

implemented on Hazard3, so it is documented here as read-only.

The table below lists the fields which are not hardwired to 0:

Bits Name Description

11 meip External interrupt pending. When 1, indicates there is at least one
interrupt which is asserted (hence pending in meipa) and enabled in
meiea.

7 mtip Timer interrupt pending. Level-sensitive interrupt signal from
outside the core. Connected to a standard, external RISC-V 64-bit
timer.

3 msip Software interrupt pending. In spite of the name, this is not

triggered by an instruction on this core, rather it is wired to an
external memory-mapped register to provide a cross-hart level-
sensitive doorbell interrupt.
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3.2.7. mtvec

Address: 0x305

Trap vector base address. Read-write. Exactly which bits of mtvec can be modified (possibly none) is
configurable when instantiating the processor, but by default the entire register is writable. The
reset value of mtvec is also configurable.

Bits Name Description

31:2 base Base address for trap entry. In Vectored mode, this is OR’d with the
trap offset to calculate the trap entry address, so the table must be
aligned to its total size, rounded up to a power of 2. In Direct mode,
base is word-aligned.

0 mode 0 selects Direct mode — all traps (wWhether exception or interrupt)
jump to base. 1 selects Vectored mode — exceptions go to base,
interrupts go to base | mcause << 2.

In the RISC-V specification, mode is a 2-bit write-any read-legal field in bits 1:0.

NOTE
Hazard3 implements this by hardwiring bit 1 to 0.

3.2.8. mscratch

Address: 0x340

Read-write 32-bit register. No specific hardware function — available for software to swap with a
register when entering a trap handler.

3.2.9. mepc

Address: 0x341

Exception program counter. When entering a trap, the current value of the program counter is
recorded here. When executing an mret, the processor jumps to mepc. Can also be read and written
by software.

On Hazard3, bits 31:2 of mepc are capable of holding all 30-bit values. Bit 1 is writable only if the C
extension is implemented, and is otherwise hardwired to 0. Bit 0 is hardwired to 0, as per the
specification.

All traps on Hazard3 are precise. For example, a load/store bus error will set mepc to the exact
address of the load/store instruction which encountered the fault.

3.2.10. mcause

Address: 0x342

Exception cause. Set when entering a trap to indicate the reason for the trap. Readable and writable
by software.

17



NOTE

On Hazard3, most bits of mcause are hardwired to 0. Only bit 31, and enough least-
significant bits to index all exception and all interrupt causes (at least four bits), are
backed by registers. Only these bits are writable; the RISC-V specification only
requires that mcause be able to hold all legal cause values.

The most significant bit of mcause is set to 1 to indicate an interrupt cause, and 0 to indicate an
exception cause. The following interrupt causes may be set by Hazard3 hardware:

Cause
3

7

11

Description
Software interrupt (mip.msip)
Timer interrupt (mip.mtip)

External interrupt (mip.meip)

The following exception causes may be set by Hazard3 hardware:

Cause

N Y G W N =, o

[y
[

Description

Instruction address misaligned
Instruction access fault

Illegal instruction

Breakpoint

Load address misaligned

Load access fault

Store/AMO address misaligned
Store/AMO access fault

Environment call

3.2.11. mtval

Address: 0x343

Hardwired to 0.

3.2.12. mcounteren

Address: 0x306

Counter enable. Control access to counters from U-mode. Not to be confused with mcountinhibit.

This register only exists if U-mode is supported.

Bits

31:3

18
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Bits Name Description

2 ir If 1, U-mode is permitted to access the instret/instreth instruction
retire counter CSRs. Otherwise, U-mode accesses to these CSRs will
trap.

1 tm No hardware effect, as the time/timeh CSRs are not implemented.

However, this field still exists, as M-mode software can use it to track
whether it should emulate U-mode attempts to access those CSRs.

0 cy If 1, U-mode is permitted to access the cycle/cycleh cycle counter
CSRs. Otherwise, U-mode accesses to these CSRs will trap.

3.3. Standard Memory Protection CSRs

3.3.1. pmpcfg0...3

Address: 0x3a0 through 0x3a3

Configuration registers for up to 16 physical memory protection regions. Only present if PMP
support is configured. If so, all 4 registers are present, but some registers may be
partially/completely hardwired depending on the number of PMP regions present.

By default, M-mode has full permissions (RWX) on all of memory, and U-mode has no permissions.
A PMP region can be configured to alter this default within some range of addresses. For every
memory location executed, loaded or stored, the processor looks up the lowest active region that
overlaps that memory location, and applies its permissions to determine whether this access is
allowed. The full description can be found in the RISC-V privileged ISA manual.

Each pmpcfg register divides into four identical 8-bit chunks, each corresponding to one region, and
laid out as below:

Bits Name Description

7 L Lock region, and additionally enforce its permissions on M-mode as
well as U-mode.

6:5 - RESO

4:3 A Address-matching mode. Values supported are 0 (OFF), 2 (NA4,
naturally aligned 4-byte) and 3 (NAPOT, naturally aligned power-of-
two). Attempting to write an unsupported value will set the region to

OFF.
2 X Execute permission
1 W Write permission
0 R Read permission

3.3.2. pmpaddr0...15

Address: 0x3b0 through 0x3bf
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Address registers for up to 16 physical memory protection regions. Only present if PMP support is
configured. If so, all 16 registers are present, but some may fully/partially hardwired.

pmpaddr registers express addresses in units of 4 bytes, so on Hazard3 (a 32-bit processor with no
virtual address support) only the lower 30 bits of each address register are implemented.

The interpretation of the pmpaddr bits depends on the A mode configured in the corresponding
pmpcfg register field:

» For NA4, the entire 30-bit PMP address is matched against the 30 MSBs of the checked address.

» For NAPOT, pmpaddr bits up to and including the least-significant zero bit are ignored, and the
remaining bits are matched against the MSBs of the checked address.

3.4. Standard M-mode Performance Counters

3.4.1. mcycle

Address: 0xb0o

Lower half of the 64-bit cycle counter. Readable and writable by software. Increments every cycle,
unless mcountinhibit.cy is 1, or the processor is in Debug Mode (as dcsr.stopcount is hardwired to 1).

If written with a value n and read on the very next cycle, the value read will be exactly n. The RISC-
V spec says this about mcycle: "Any CSR write takes effect after the writing instruction has otherwise
completed.”

3.4.2. mcycleh

Address: 0xb80

Upper half of the 64-bit cycle counter. Readable and writable by software. Increments on cycles
where mcycle has the value Oxffffffff, unless mcountinhibit.cy is 1, or the processor is in Debug
Mode.

This includes when mcycle is written on that same cycle, since RISC-V specifies the CSR write takes
place after the increment for that cycle.

3.4.3. minstret

Address: 0xb02

Lower half of the 64-bit instruction retire counter. Readable and writable by software. Increments
with every instruction executed, unless mcountinhibit.ir is 1, or the processor is in Debug Mode (as
dcsr.stopcount is hardwired to 1).

If some value n is written to minstret, and it is read back by the very next instruction, the value read
will be exactly n. This is because the CSR write logically takes place after the instruction has
otherwise completed.
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3.4.4. minstreth
Address: 0xb82

Upper half of the 64-bit instruction retire counter. Readable and writable by software. Increments
when the core retires an instruction and the value of minstret is Oxffffffff, unless mcountinhibit.ir
is 1, or the processor is in Debug Mode.

3.4.5. mhpmcounter3...31
Address: 0xb03 through 0xb1f

Hardwired to 0.

3.4.6. mhpmcounter3...31h

Address: 0xb83 through 0xb9f

Hardwired to 0.

3.4.7. mcountinhibit
Address: 0x320

Counter inhibit. Read-write. The table below lists the fields which are not hardwired to O:

Bits Name Description
2 ir When 1, inhibit counting of minstret/minstreth. Resets to 1.
0 cy When 1, inhibit counting of mcycle/mcycleh. Resets to 1.

3.4.8. mhpmevent3...31
Address: 0x323 through 0x33f

Hardwired to 0.

3.5. Standard Trigger CSRs

3.5.1. tselect
Address: 0x7a0

Unimplemented. Reads as 0, write causes illegal instruction exception.

3.5.2. tdatal...3
Address: 0x7a1 through 0x7a3

Unimplemented. Access will cause an illegal instruction exception.
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3.6. Standard Debug Mode CSRs

This section describes the Debug Mode CSRs, which follow the 0.13.2 RISC-V debug specification.
The Debug section gives more detail on the remainder of Hazard3’s debug implementation,
including the Debug Module.

All Debug Mode CSRs are 32-bit; DXLEN is always 32.

3.6.1. dcsr

Address: 0x7b0

Debug control and status register. Access outside of Debug Mode will cause an illegal instruction
exception. Relevant fields are implemented as follows:

Bits Name Description

31:28 xdebugver Hardwired to 4: external debug support as per RISC-V 0.13.2 debug
specification.

15 ebreakm When 1, ebreak instructions executed in M-mode will break to Debug

Mode instead of trapping

12 ebreaku When 1, ebreak instructions executed in U-mode will break to Debug
Mode instead of trapping. Hardwired to 0 if U-mode is not
supported.

11 stepie Hardwired to 0: no interrupts are taken during hardware single-
stepping.

10 stopcount Hardwired to 1: mcycle/mcycleh and minstret/minstreth do not

increment in Debug Mode.

9 stoptime Hardwired to 1: core-local timers don’t increment in debug mode.
This requires cooperation of external hardware based on the halt
status to implement correctly.

8:6 cause Read-only, set by hardware — see table below.

2 step When 1, re-enter Debug Mode after each instruction executed in M-
mode.

1:0 prv Read the privilege state the core was in when it entered Debug

Mode, and set the privilege state it will be in when it exits Debug
Mode. If U-mode is implemented, the values 3 and 0 are supported.
Otherwise hardwired to 3.

Fields not mentioned above are hardwired to 0.

Hazard3 may set the following dcsr.cause values:

Cause Description

1 Processor entered Debug Mode due to an ebreak instruction executed in M-mode.
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Cause Description

3 Processor entered Debug Mode due to a halt request, or a reset-halt request present
when the core reset was released.

4 Processor entered Debug Mode after executing one instruction with single-stepping
enabled.

Cause 5 (resethaltreq) is never set by hardware. This event is reported as a normal halt, cause 3.
Cause 2 (trigger) is never used because there are no triggers. (TODO?)

3.6.2. dpc

Address: 0x7b1

Debug program counter. When entering Debug Mode, dpc samples the current program counter,
e.g. the address of an ebreak which caused Debug Mode entry. When leaving debug mode, the
processor jumps to dpc. The host may read/write this register whilst in Debug Mode.

3.6.3. dscratch0
Address: 0x7b2
Not implemented. Access will cause an illegal instruction exception.

To provide data exchange between the Debug Module and the core, the Debug Module’s data0
register is mapped into the core’s CSR space at a read/write M-custom address — see dmdata0.

3.6.4. dscratch1
Address: 0x7b3

Not implemented. Access will cause an illegal instruction exception.

3.7. Custom Debug Mode CSRs

3.7.1. dmdata0
Address: 0xbff

The Debug Module’s internal data® register is mapped to this CSR address when the core is in debug
mode. At any other time, access to this CSR address will cause an illegal instruction exception.

The 0.13.2 debug specification allows for the Debug Module’s abstract data registers
to be mapped into the core’s CSR address space, but there is no Debug-custom space,
so the read/write M-custom space is used instead to avoid conflict with future
versions of the debug specification.

NOTE

The Debug Module uses this mapping to exchange data with the core by injecting csrr/csrw
instructions into the prefetch buffer. This in turn is used to implement the Abstract Access Register
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command. See Debug.

This CSR address is given by the dataaddress field of the Debug Module’s hartinfo register, and
hartinfo.dataaccess is set to O to indicate this is a CSR mapping, not a memory mapping.

3.8. Custom Interrupt Handling CSRs

3.8.1. meiea
Address: 0xbed

External interrupt enable array. Contains a read-write bit for each external interrupt request: a 1
bit indicates that interrupt is currently enabled. At reset, all external interrupts are disabled.

If enabled, an external interrupt can cause assertion of the standard RISC-V machine external
interrupt pending flag (mip.meip), and therefore cause the processor to enter the external interrupt
vector. See meipa.

There are up to 512 external interrupts. The upper half of this register contains a 16-bit window
into the full 512-bit vector. The window is indexed by the 5 LSBs of the write data. For example:

csrrs ad, meiea, a@ // Read IRQ enables from the window selected by a0
csrw meiea, ad // Write a@[31:16] to the window selected by a@[4:0]
csrr ald, meiea // Read from window @ (edge case)

The purpose of this scheme is to allow software to index an array of interrupt enables (something
not usually possible in the CSR space) without introducing a stateful CSR index register which may
have to be saved/restored around IRQs.

Bits Name Description

31:16 window 16-bit read/write window into the external interrupt enable array
15:5 - RESO

4:0 index Write-only self-clearing field (no value is stored) used to control

which window of the array appears in window.

3.8.2. meipa
Address: 0xbe1

External interrupt pending array. Contains a read-only bit for each external interrupt request.
Similarly to meiea, this register is a window into an array of up to 512 external interrupt flags. The
status appears in the upper 16 bits of the value read from meipa, and the lower 5 bits of the value
written by the same CSR instruction (or 0 if no write takes place) select a 16-bit window of the full
interrupt pending array.

A 1 bit indicates that interrupt is currently asserted. IRQs are assumed to be level-sensitive, and the
relevant meipa bit is cleared by servicing the requestor so that it deasserts its interrupt request.
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When any interrupt of sufficient priority is both set in meipa and enabled in meiea, the standard
RISC-V external interrupt pending bit mip.meip is asserted. In other words, meipa is filtered by meiea
to generate the standard mip.meip flag. So, an external interrupt is taken when all of the following
are true:

* An interrupt is currently asserted in meipa

* The matching interrupt enable bit is set in meiea

The interrupt priority is greater than or equal to the preemption priority in meicontext

The standard M-mode interrupt enable mstatus.mie is set

The standard M-mode global external interrupt enable mie.meie is set
In this case, the processor jumps to either:

* mtvec directly, if vectoring is disabled (mtvec[0] is 0)

» mtvec + 0x2c, if vectoring is enabled (mtvec[0] is 1)

Bits Name Description

31:16 window 16-bit read-only window into the external interrupt pending array
15:5 - RESO

4:0 index Write-only, self-clearing field (no value is stored) used to control

which window of the array appears in window.

3.8.3. meifa
Address: 0xbe2

External interrupt force array. Contains a read-write bit for every interrupt request. Writing a 1 to a
bit in the interrupt force array causes the corresponding bit to become pending in meipa. Software
can use this feature to manually trigger a particular interrupt.

There are no restrictions on using meifa inside of an interrupt. The more useful case here is to
schedule some lower-priority handler from within a high-priority interrupt, so that it will execute
before the core returns to the foreground code. Implementers may wish to reserve some external
IRQs with their external inputs tied to 0 for this purpose.

Bits can be cleared by software, and are cleared automatically by hardware upon a read of meinext
which returns the corresponding IRQ number in meinext.irq (no matter whether meinext.update is
written).

meifa implements the same array window indexing scheme as meiea and meipa.

Bits Name Description
31:16 window 16-bit read/write window into the external interrupt force array
15:5 - RESO
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Bits Name Description

4:0 index Write-only, self-clearing field (no value is stored) used to control
which window of the array appears in window.

3.8.4. meipra

Address: 0xbe3

External interrupt priority array. Each interrupt has an (up to) 4-bit priority value associated with
it, and each access to this register reads and/or writes a 16-bit window containing four such priority
values. When less than 16 priority levels are available, the LSBs of the priority fields are hardwired
to 0.

When an interrupt’s priority is lower than the current preemption priority meicontext.preempt, it is
treated as not being pending. The pending bit in meipa will still assert, but the machine external
interrupt pending bit mip.meip will not, so the processor will ignore this interrupt. See meicontext.

Bits Name Description

31:16 window 16-bit read/write window into the external interrupt priority array,
containing four 4-bit priority values.

15:7 - RESO

6:0 index Write-only, self-clearing field (no value is stored) used to control
which window of the array appears in window.

3.8.5. meinext

Address: 0xbe4

Get next interrupt. Contains the index of the highest-priority external interrupt which is both
asserted in meipa and enabled in meiea, left-shifted by 2 so that it can be used to index an array of
32-bit function pointers. If there is no such interrupt, the MSB is set.

When multiple interrupts of the same priority are both pending and enabled, the lowest-numbered
wins. Interrupts with priority less than meicontext.ppreempt—the previous preemption
priority — are treated as though they are not pending. This is to ensure that a preempting interrupt
frame does not service interrupts which may be in progress in the frame that was preempted.

Bits Name Description

31 noirq Set when there is no external interrupt which is enabled, pending,
and has sufficient priority. Can be efficiently tested with a b1tz or
bgez instruction.

30:11 - RESO

10:2 irg Index of the highest-priority active external interrupt. Zero when no
external interrupts with sufficient priority are both pending and
enabled.
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Bits Name Description
1 - RESO

0 update Writing 1 (self-clearing) causes hardware to update meicontext
according to the IRQ number and preemption priority of the
interrupt indicated in noirg/irg. This should be done in a single
atomic operation, i.e. csrrsi a@, meinext, 0x1.

3.8.6. meicontext

Address: 0xbeb

External interrupt context register. Configures the priority level for interrupt preemption, and
helps software track which interrupt it is currently in. The latter is useful when a common
interrupt service routine handles interrupt requests from multiple instances of the same
peripheral.

A three-level stack of preemption priorities is maintained in the preempt, ppreempt and pppreempt
fields. The priority stack is saved when hardware enters the external interrupt vector, and restored
by an mret instruction if meicontext.mreteirqis set.

The top entry of the priority stack, preempt, is used by hardware to ensure that only higher-priority
interrupts can preempt the current interrupt. The next entry, ppreempt, is used to avoid servicing
interrupts which may already be in progress in a frame that was preempted. The third entry,
pppreempt, has no hardware effect, but ensures that preempt and ppreempt can be correctly
saved/restored across arbitary levels of preemption.

Bits Name Description

31:28 pppreempt Previous ppreempt. Set to ppreempt on priority save, set to zero on
priority restore. Has no hardware effect, but ensures that when
meicontext is saved/restored correctly, preempt and ppreempt stack
correctly through arbitrarily many preemption frames.

27:24 ppreempt Previous preempt. Set to preempt on priority save, restored to to
pppreempt on priority restore.

IRQs of lower priority than ppreempt are not visible in meinext, so
that a preemptee is not re-taken in the preempting frame.

23:21 - RESO
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Bits Name Description

20:16 preempt Minimum interrupt priority to preempt the current interrupt.
Interrupts with lower priority than preempt do not cause the core to
transfer to an interrupt handler. Updated by hardware when when
meinext.update is written, or when hardware enters the external
interrupt vector.

If an interrupt is present in meinext, then preempt is set to one level
greater than that interrupt’s priority. Otherwise, ppreempt is set to
one level greater than the maximum interrupt priority, disabling
preemption.

15 noirq Not in interrupt (read/write). Set to 1 at reset. Set to meinext.noirg
when meinext.update is written. No hardware effect.

14:13 - RESO

12:4 irq Current IRQ number (read/write). Set to meinext.irq when
meinext.update is written.

3 mtiesave Reads as the current value of mie.mtie, if clearts is set. Otherwise
reads as 0. Writes are ORed into mie.mtie.

2 msiesave Reads as the current value of mie.msie, if clearts is set. Otherwise
reads as 0. Writes are ORed into mie.msie.

1 clearts Write-1 self-clearing field. Writing 1 will clear mie.mtie and mie.ms1e,
and present their prior values in the mtiesave and msiesave of this
register. This makes it safe to re-enable IRQs (via mstatus.mie)
without the possibility of being preempted by the standard timer
and soft interrupt handlers, which may not be aware of Hazard3’s
interrupt hardware.

The clear due to clearts takes precedence over the set due to
mtiesave/msiesave, although it would be unusual for software to
write both on the same cycle.

0 mreteirg Enable restore of the preemption priority stack on mret. This bit is
set on entering the external interrupt vector, cleared by mret, and
cleared upon taking any trap other than an external interrupt.

Provided meicontext is saved on entry to the external interrupt
vector (before enabling preemption), is restored before exiting, and
the standard software/timer IRQs are prevented from preempting
(e.g. by using clearts), this flag allows the hardware to safely
manage the preemption priority stack even when an external
interrupt handler may take exceptions.

The following is an example of an external interrupt vector (mip.meip) which implements nested,
prioritised interrupt dispatch using meicontext and meinext:
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isr_external_irq:
// Save caller saves and exception return state whilst IRQs are disabled.
// We can't be pre-empted during this time, but if a higher-priority IRQ
// arrives ("late arrival"), that will be the one displayed in meinext.
addi sp, sp, -80
sw ra, 0(sp)

. snip

sw t6, 60(sp)

csrr a@, mepc

sw a@, 64(sp)

// Set bit 1 when reading to clear+save mie.mtie and mie.msie
csrrsi a@, meicontext, 0x2

sw ad, 68(sp)

csrr a@, mstatus

sw a@, 72(sp)

j get_next_irg

dispatch_irg:
// Preemption priority was configured by meinext update, so enable preemption:
csrsi mstatus, 0x8
// meinext is pre-shifted by 2, so only an add is required to index table
la al, _external_irq_table
add al, al, a0
jalr ra, al

// Disable IRQs on returning so we can sample the next IRQ
csrci mstatus, 0x8

get_next_irg:
// Sample the current highest-priority active IRQ (left-shifted by 2) from
// meinext, and write 1 to the LSB to tell hardware to tell hw to update
// meicontext with the preemption priority (and IRQ number) of this IRQ
csrrsi a@, meinext, 0xI1
// MSB will be set if there is no active IRQ at the current priority level
bgez a®@, dispatch_irq

no_more_irqgs:
// Restore saved context and return from handler
1w a0, 64(sp)
csrw mepc, ad
1w a0, 68(sp)
csrw meicontext, ad
1w a0, 72(sp)
csrw mstatus, ad

lw ra, 0(sp)

. snip
1w t6, 60(sp)

29



addi sp, sp, 80
mret

3.9. Custom Memory Protection CSRs

3.9.1. pmpcfgmO

Address: 0xbd0

PMP M-mode configuration. One bit per PMP region. Setting a bit makes the corresponding region
apply to M-mode (like the pmpcfg.L bit) but does not lock the region.

PMP is useful for non-security-related purposes, such as stack guarding and peripheral emulation.
This extension allows M-mode to freely use any currently unlocked regions for its own purposes,
without the inconvenience of having to lock them.

Note that this does not grant any new capabilities to M-mode, since in the base standard it is
already possible to apply unlocked regions to M-mode by locking them. In general, PMP regions
should be locked in ascending region number order so they can’t be subsequently overridden by
currently unlocked regions.

Note also that this is not the same as the "rule locking bypass" bit in the ePMP extension, which
does not permit locked and unlocked M-mode regions to coexist.

Bits Name Description

31:16 - RESO

15:0 m Regions apply to M-mode if this bit or the corresponding pmpcfg.L bit
is set. Regions are locked if and only if the corresponding pmpcfg.L
bit is set.

3.10. Custom Power Control CSRs

3.10.1. msleep

Address: 0xbf0

M-mode sleep control register. Resets to all-zeroes.

Bits Name Description
31:3 - RESO
2 sleeponblock Enter the deep sleep state on a h3.block instruction as well as a

standard wfi. If this bit is clear, a h3.block is always implemented as
a simple pipeline stall.
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Bits
1

Name

powerdown

deepsleep

Description

Release the external power request when going to sleep. The
function of this is platform-defined — it may do nothing, it may do
something simple like clock-gating the fabric, or it may be tied to
some complex system-level power controller.

When waking, the processor reasserts its external power-up request,
and will not fetch any instructions until the request is
acknowledged. This may add considerable latency to the wakeup.

Deassert the processor clock enable when entering the sleep state. If
a clock gate is instantiated, this allows most of the processor
(everything except the power state machine and the interrupt and
halt input registers) to be clock gated whilst asleep, which may
reduce the sleep current. This adds one cycle to the wakeup latency.
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Chapter 4. Custom Extensions

Hazard3 implements a small number of custom extensions. All are optional: custom extensions are
only included if the relevant feature flags are set to 1 when instantiating the processor
(Configuration Parameters). Hazard3 is always a conforming RISC-V implementation, and when
these extensions are disabled it is also a standard RISC-V implementation.

If any one of these extensions is enabled, the x bit in misa is set to indicate the presence of a
nonstandard extension.

4.1. Xh3irq: Hazard3 interrupt controller

This is a lightweight extension to control up to 512 external interrupts, with up to 16 levels of
preemption.

This extension does not add any instructions, but does add several CSRs:
* meiea
* meipa
* meifa
* meipra
* meinext

* meicontext

If this extension is disabled then Hazard3 supports a single external interrupt input (or multiple
inputs that it simply ORs together in an uncontrolled fashion), so an external PLIC can be used for
standard interrupt support.

Note that, besides the additional CSRs, this extension is effectively a slightly more complicated way
of driving the standard mip.meip flag (mip). The RISC-V trap handling CSRs themselves are always
completely standard.

4.2. Xh3pmpm: M-mode PMP regions

This extension adds a new M-mode CSR, pmpcfgmO0, which allows a PMP region to be enforced in
M-mode without locking the region.

This is useful when the PMP is used for non-security-related purposes such as stack guarding, or
trapping and emulation of peripheral accesses.

4.3. Xh3power: Hazard3 power management

This extension adds a new M-mode CSR (msleep), and two new hint instructions, h3.block and
h3.unblock, in the s1t nop-compatible custom hint space.

The msleep CSR controls how deeply the processor sleeps in the WFI sleep state. By default, a WFI is
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implemented as a normal pipeline stall. By configuring msleep appropriately, the processor can gate
its own clock when asleep or, with a simple 4-phase req/ack handshake, negotiate power up/down
of external hardware with an external power controller. These options can improve the sleep
current at the cost of greater wakeup latency.

The hints allow processors to sleep until woken by other processors in a multiprocessor
environment. They are implemented on top of the standard WFI state, which means they interact in
the same way with external debug, and benefit from the same deep sleep states in msleep.

4.3.1. h3.block

Enter a WFI sleep state until either an unblock signal is received, or an interrupt is asserted that
would cause a WFI to exit.

If mstatus.tw is set, attempting to execute this instruction in privilege modes lower than M-mode
will generate an illegal instruction exception.

If an unblock signal has been received in the time since the last h3.block, this instruction executes
as a nop, and the processor does not enter the sleep state. Conceptually, the sleep state falls through
immediately because the corresponding unblock signal has already been received.

An unblock signal is received when a neighbouring processor (the exact definition of
"neighbouring" being left to the implementor) executes an h3.unblock instruction, or for some other
platform-defined reason.

This instruction is encoded as slt x@, x@, x@, which is part of the custom nop-compatible hint
encoding space.

Example C macro:

#define __h3_block() asm ("slt x@, x@, x@")

Example assembly macro:

.macro h3.block
slt x0, x0, x0
.endm

4.3.2. h3.unblock

Post an unblock signal to other processors in the system. For example, to notify another processor
that a work queue is now nonempty.

If mstatus.tw is set, attempting to execute this instruction in privilege modes lower than M-mode
will generate an illegal instruction exception.

This instruction is encoded as slt x@, x@, x1, which is part of the custom nop-compatible hint
encoding space.
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Example C macro:

#idefine

Example assembly macro:

.macro h3.unblock

slt x0,

.endm

x0, x1

__h3_unblock() asm ("s1lt x@, x0, x1")

4.4. Xh3bextm: Hazard3 bit extract multiple

This is a small extension with multi-bit versions of the "bit extract" instructions from Zbs, used for

extracting small, contiguous bit fields.

4.4.1. h3.bextm

"Bit extract multiple", a multi-bit version of the bext instruction from Zbs. Perform a right-shift
followed by a mask of 1-8 LSBs.

Encoding (R-type):

Bits Name Value
31:29 funct7[6:4] 0b000
28:26 size -

25 funct7[0] 0bo
24:20 rs2 -
19:15 rsi -
14:12 funct3 0b000o
11:7 rd .

6:2 opc 0b01011
1:0 size 0b11

Description
RESO

Number of ones in mask, values 0 — 7 encode
1 - 8 bits.

RESO, because aligns with shamt[5] of potential
RV64 version of h3.bextmi

Source register 2 (shift amount)
Source register 1

h3.bextm

Destination register

customO opcode

32-bit instruction

Example C macro (using GCC statement expressions):

// nbits must be a constant expression

#idefine __h3_bextm(nbits, rs1, rs2) ({\
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uint32_ t

asm (".insn r 0x@b, 0, %3, %0, %1, %2"\

__h3_bextm_rd; \

r" (__h3_bextm_rd) \



2 "r" (rs1), "r" (rs2), "i" ((((nbits) - 1) & 0x7) << 1)\
JFR
__h3_bextm_rd; \
b

Example assembly macro:

// rd = (rs1 >> rs2[4:0]) & ~(-1 << nbits)
.macro h3.bextm rd rs1 rs2 nbits
.if (\nbits < 1) || (\nbits > 8)
.err
.endif
#if NO_HAZARD3_CUSTOM
srl \rd, \rs1, \rs2
andi \rd, \rd, ((1 << \nbits) - 1)
felse
.insn r @x@0b, 0x0, (((\nbits - 1) & 0x7 ) << 1), \rd, \rs1, \rs2
fendif
.endm

4.4.2. h3.bextmi

Immediate variant of h3.bextm.

Encoding (I-type):

Bits Name Value Description

31:29 imm[11:9] 0b000 RESO

28:26 size - Number of ones in mask, values 0 — 7 encode
1- 8 bits.

25 imm[5] 0bo RESO, for potential future RV64 version

24:20 shamt - Shift amount, 0 through 31

19:15 rsi - Source register 1

14:12 funct3 0b100 h3.bextmi

11:7 rd - Destination register

6:2 opc 0b@1011 customO opcode

1:0 size 0b11 32-bit instruction

Example C macro (using GCC statement expressions):

// nbits and shamt must be constant expressions
fidefine __h3_bextmi(nbits, rs1, shamt) ({\

uint32_t __h3_bextmi_rd; \
asm ("_iﬂSﬂ i 0x0b, Ox4, %0, %1, %2"\
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: "=r" (__h3_bextmi_rd) \
:"r" (rs1), "i" ((((nbits) - 1) & 0x7) << 6 | ((shamt) & 0x1f)) \
)i\
__h3_bextmi_rd; \
1)

Example assembly macro:

// rd = (rs1 >> shamt) & ~(-1 << nbits)
.macro h3.bextmi rd rs1 shamt nbits
.if (\nbits < 1) || (\nbits > 8)
.err
.endif
.if (\shamt < @) || (\shamt > 31)
.err
.endif
#if NO_HAZARD3_CUSTOM
srli \rd, \rs1, \shamt
andi \rd, \rd, ((1 << \nbits) - 1)
felse
.insn i @x@b, @x4, \rd, \rs1, (\shamt & @x1f) | (((\nbits - 1) & @0x7 ) << 6)
fendif
.endm
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Chapter 5. Debug

Hazard3, along with its external debug components, implements version 0.13.2 of the RISC-V debug
specification. It supports the following:

* Run/halt/reset control as required

» Abstract GPR access as required

* Program Buffer, 2 words plus impebreak

* Automatic trigger of abstract command (abstractauto) on data@ or Program Buffer access for
efficient memory block transfers from the host

(Optional) System Bus Access, either through a dedicated AHB-Lite master, or multiplexed with
a processor load/store port

* (Optional) An instruction address trigger unit (hardware breakpoints)

5.1. Debug Topologies

Hazard3’s Debug Module has the following interfaces:

* An upstream AMBA 3 APB port— the "Debug Module Interface" — for host access to the Debug
Module

* A downstream Hazard3-specific interface to one or more cores (multicore support is
experimental)

* Some reset request/acknowledge signals which require careful handshaking with system-level
reset logic

This is shown in the example topology below.
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The Debug Module must be connected directly to the processors without intervening registers. This
implies the Debug Module is in the same clock domain as the processors, so multiple processors on
the same Debug Module must share a common clock.

Upstream of the Debug Module is at least one Debug Transport Module, which bridges some host-
facing interface such as JTAG to the APB Debug Module Interface. Hazard3 provides an
implementation of a standard RISC-V JTAG-DTM, but any APB master could be used. The Debug
Module requires at least 7 bits of word addressing, i.e. 9 bits of byte address space.

An APB arbiter could be inserted here, to allow multiple transports to be used, provided the host(s)
avoid using multiple transports concurrently. This also admits simple implementation of self-hosted
debug, by mapping the Debug Module to a system-level peripheral address space.

The clock domain crossing (if any) occurs on the downstream port of the Debug Transport Module.
Hazard3’s JTAG-DTM implementation runs entirely in the TCK domain, and instantiates a bus clock-
crossing module internally to bridge a TCK-domain internal APB bus to an external bus in the
processor clock domain.

It is possible to instantiate multiple Debug Modules, one per core, and attach them to a single Debug
Transport Module. This is not the preferred topology, but it does allow multiple cores to be
independently clocked.

5.2. Implementation-defined behaviour

Features implemented by the Hazard3 Debug Module (beyond the mandatory):

* Halt-on-reset, selectable per-hart
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* Program Buffer, size 2 words, impebreak = 1.
* A single data register (data®) is implemented as a per-hart CSR accessible by the DM

* abstractauto is supported on the datal register

Up to 32 harts selectable via hartsel
Not implemented:

* Hart array mask selection

* Abstract access memory

* Abstract access CSR

» Post-incrementing abstract access GPR

» System bus access
The core behaves as follows:
* Branch, jal, jalr and auipc are illegal in debug mode, because they observe PC: attempting to

execute will halt Program Buffer execution and report an exception in abstractcs.cmderr

* The dret instruction is not implemented (a special purpose DM-to-core signal is used to signal
resume)

* The dscratch CSRs are not implemented
* The DM’s data@ register is mapped into the core as a CSR, dmdata0, address 0xbff.
o Raises an illegal instruction exception when accessed outside of Debug Mode

o The DM ignores attempted core writes to the CSR, unless the DM is currently executing an
abstract command on that core

o Used by the DM to implement abstract GPR access, by injecting CSR read/write instructions
* dcsr.stepie is hardwired to 0 (no interrupts during single stepping)

e dcsr.stopcount and desr.stoptime are hardwired to 1 (no counter or internal timer increment in
debug mode)

e desr.mprven is hardwired to 0

e desr.prv is hardwired to 3 (M-mode)
See also Standard Debug Mode CSRs for more details on the core-side Debug Mode registers.

The debug host must use the Program Buffer to access CSRs and memory. This carries some
overhead for individual accesses, but is efficient for bulk transfers: the abstractauto feature allows
the DM to trigger the Program Buffer and/or a GPR tranfer automatically following every data0
access, which can be used for e.g. autoincrementing read/write memory bursts. Program Buffer
read/writes can also be used as abstractauto triggers: this is less useful than the data0 trigger, but
takes little extra effort to implement, and can be used to read/write a large number of CSRs
efficiently.

Abstract memory access is not implemented because, for bulk transfers, it offers no better
throughput than Program Buffer execution with abstractauto. Non-bulk transfers, while slower, are
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still instantaneous from the perspective of the human at the other end of the wire.

The Hazard3 Debug Module has experimental support for multi-core debug. Each core possesses
exactly one hardware thread (hart) which is exposed to the debugger. The RISC-V specification does
not mandate what mapping is used between the Debug Module hart index hartsel and each core’s
mhartid CSR, but a 1:1 match of these values is the least likely to cause issues. Each core’s mhartid
can be configured using the MHARTID_VAL parameter during instantiation.

5.3. Debug Module to Core Interface

The DM can inject instructions directly into the core’s instruction prefetch buffer. This mechanism
is used to execute the Program Buffer, or used directly by the DM, issuing hardcoded instructions to
manipulate core state.

The DM’s data0 register is exposed to the core as a debug mode CSR. By issuing instructions to make
the core read or write this dummy CSR, the DM can exchange data with the core. To read from a
GPR x into data@, the DM issues a csrw datad, x instruction. Similarly csrr x, data@ will write data@
to that GPR. The DM always follows the CSR instruction with an ebreak, just like the implicit ebreak
at the end of the Program Buffer, so that it is notified by the core when the GPR read instruction
sequence completes.

TODO reset interface description
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Appendix A: Instruction Cycle Counts

All timings are given assuming perfect bus behaviour (no downstream bus stalls), and that the core
is configured with MULDIV_UNROLL = 2 and all other configuration options set for maximum

performance.

A.1. RV321

Instruction

Integer Register-register

add rd, rs1, rs2
sub rd, rs1, rs2
slt rd, rs1, rs2
sltu rd, rs1, rs2
and rd, rs1, rs2
or rd, rs1, rs2
xor rd, rs1, rs2
s1ll rd, rs1, rs2
srl rd, rs1, rs2

sra rd, rs1, rs2

Integer Register-immediate

addi rd, rs1, imm

slti rd, rs1, imm

sltiu rd, rs1, imm

andi rd, rs1, imm
ori rd, rs1, imm
xori rd, rs1, imm
s11i rd, rs1, imm
srli rd, rs1, imm
srai rd, rs1, imm
Large Immediate
lui rd, imm

auipc rd, imm
Control Transfer
jal rd, label

jalr rd, rs1, imm

Cycles Note

S S S R Y

—

nop is a pseudo-op for addi x@, x0, @

[ O WY

[ O WY
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Instruction Cycles Note

beq rs1, rs2, label 1 or 2" 1if correctly predicted, 2 if mispredicted.
bne rs1, rs2, label 1 or 2! 1if correctly predicted, 2 if mispredicted.
blt rs1, rs2, label 1 or 2™ 1 if correctly predicted, 2 if mispredicted.
bge rs1, rs2, label 1 or 2™ 1if correctly predicted, 2 if mispredicted.
bltu rs1, rs2, label 1 or 2" 11if correctly predicted, 2 if mispredicted.
bgeu rs1, rs2, label 1 or 2" 1if correctly predicted, 2 if mispredicted.

Load and Store

lw rd, imm(rs1) lor2 1 if next instruction is independent, 2 if dependent.”
lh rd, imm(rs1) lor2 1 if next instruction is independent, 2 if dependent."”
Lhu rd, imm(rs1) lor2 1 if next instruction is independent, 2 if dependent."”
1b rd, imm(rs1) 1or2 1 if next instruction is independent, 2 if dependent."”
lbu rd, imm(rs1) lor2 1 if next instruction is independent, 2 if dependent.”
sw rs2, imm(rs1) 1
sh rs2, imm(rs1) 1
sb rs2, imm(rs1) 1

A.2. M Extension

Timings assume the core is configured with MULDIV_UNROLL = 2 and MUL_FAST = 1. Le. the sequential
multiply/divide circuit processes two bits per cycle, and a separate dedicated multiplier is present
for the mul instruction.

Instruction Cycles Note
32 x 32 — 32 Multiply

mul rd, rs1, rs2 1

32 x 32 - 64 Multiply, Upper Half

mulh rd, rs1, rs2 1
mulhsu rd, rs1, rs2 1
mulhu rd, rs1, rs2 1

Divide and Remainder

div rd, rs1, rs2 18 or 19 Depending on sign correction
divu rd, rs1, rs2 18
rem rd, rs1, rs2 18 or 19 Depending on sign correction
remu rd, rsl1, rs2 18
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A.3. A Extension

Instruction

Load-Reserved/Store-Conditional

1r.w rd, (rs1)

sc.w rd, rs2, (rs1)
Atomic Memory Operations
amoswap.w rd, rs2, (rs1)
amoadd.w rd, rs2, (rs1)
amoxor.w rd, rs2, (rs1)
amoand.w rd, rs2, (rs1)
amoor.w rd, rs2, (rs1)
amomin.w rd, rs2, (rs1)
amomax.w rd, rs2, (rs1)
amominu.w rd, rs2, (rs1)

amomaxu.w rd, rs2, (rs1)

Cycles Note

lor2
lor2

A.4. C Extension

4 per attempt.
4 per attempt.
4 per attempt.
4 per attempt.
4 per attempt.
4 per attempt.
4 per attempt.
4 per attempt.

4 per attempt.

2 if next instruction is dependent'”, an 1r.w, sc.w or amo*.w.

2 if next instruction is dependent', an 1r.w, sc.w or amo*.w.”

Multiple attempts if reservation is lost."

Multiple attempts if reservation is lost."”

Multiple attempts if reservation is lost."”

Multiple attempts if reservation is lost."

Multiple attempts if reservation is lost."

Multiple attempts if reservation is lost."”

Multiple attempts if reservation is lost."”

Multiple attempts if reservation is lost."

Multiple attempts if reservation is lost."

[3]

1

All C extension 16-bit instructions are aliases of base RV32I instructions. On Hazard3, they perform
identically to their 32-bit counterparts.

A consequence of the C extension is that 32-bit instructions can be non-naturally-aligned. This has
no penalty during sequential execution, but branching to a 32-bit instruction that is not 32-bit-
aligned carries a 1 cycle penalty, because the instruction fetch is cracked into two naturally-aligned

bus accesses.

A.5. Privileged Instructions (including Zicsr)

Instruction

CSR Access

csrrw rd, csr, rsf
csrrc rd, csr, rsi
csrrs rd, csr, rsl
csrrwi rd, csr, imm
csrrci rd, csr, imm

csrrsi rd, csr, imm

Trap Request

Cycles

Note

43



Instruction

ecall

ebreak

Cycles

A.6. Bit Manipulation

Instruction

Zba (address generation)
shladd rd, rs1, rs2

sh2add rd, rs1, rs2
sh3add rd, rs1, rs2

Zbb (basic bit manipulation)

andn rd, rsl1, rs2
clz rd, rsi

cpop rd, rs1

ctz rd, rsil

max rd, rs1, rs2
maxu rd, rs1, rs2
min rd, rs1, rs2
minu rd, rs1, rs2
orc.b rd, rsi

orn rd, rs1, rs2
rev8 rd, rsi

rol rd, rs1, rs2
ror rd, rs1, rs2
rori rd, rs1, imm
sext.b rd, rsi
sext.h rd, rs1
xnor rd, rs1, rs2
zext.h rd, rsi
zext.b rd, rs1
Zhc (carry-less multiply)
c¢lmul rd, rs1, rs2
clmulh rd, rs1, rs2

clmulr rd, rs1, rs2
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Time given is for jumping to mtvec

Time given is for jumping to mtvec

Note

zext.b is a pseudo-op for andi rd, rs1, Oxff



Instruction Cycles Note

Zbs (single-bit manipulation)

bclr rd, rs1, rs2 1
bclri rd, rs1, imm 1
bext rd, rs1, rs2 1
bexti rd, rs1, imm 1
binv rd, rs1, rs2 1
binvi rd, rs1, imm 1
bset rd, rs1, rs2 1
bseti rd, rs1, imm 1

Zbkb (basic bit manipulation for cryptography)

pack rd, rs1, rs2 1
packh rd, rs1, rs2 1
brev8 rd, rsi 1
zip rd, rs1 1
unzip rd, rsi 1

A.7. Zcb Extension

Similarly to the C extension, this extension contains 16-bit variants of common 32-bit instructions:

e RV32I base ISA: 1bu, 1h, 1hu, sb, sh, zext.b (alias of andi), not (alias of xori)
* 7Zbb extension: sext.b, zext.h, sext.h

« M extension: mul

They perform identically to their 32-bit counterparts.

A.8. Zcmp Extension

Instruction Cycles Note

cm.push {rlist}, -imm 1+n n is number of registers in rlist
cm.pop {rlist}, imm 1+n n is number of registers in rlist
cm.popret {rlist}, imm 4(n=1D"or2+nmn>=2)" n is number of registers in rlist
cm.popretz {rlist}, imm 5(n=1"or3+n(n>=2)" n is number of registers in rlist
cm.mva@ls r1s', r2s' 2

cm.mvsa@l r1s', r2s' 2
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A.9. Branch Predictor

Hazard3 includes a minimal branch predictor, to accelerate tight loops:

e The instruction frontend remembers the last taken, backward branch
* If the same branch is seen again, it is predicted taken
* All other branches are predicted nontaken

* If a predicted-taken branch is not taken, the predictor state is cleared, and it will be predicted
nontaken on its next execution.

Correctly predicted branches execute in one cycle: the frontend is able to stitch together the two
nonsequential fetch paths so that they appear sequential. Mispredicted branches incur a penalty
cycle, since a nonsequential fetch address must be issued when the branch is executed.

[1] A jump or branch to a 32-bit instruction which is not 32-bit-aligned requires one additional cycle, because two naturally aligned
bus cycles are required to fetch the target instruction.

[2] If an instruction in stage 2 (e.g. an add) uses data from stage 3 (e.g. a 1w result), a 1-cycle bubble is inserted between the pair. A
load data — store data dependency is not an example of this, because data is produced and consumed in stage 3. However, load
data - load address would qualify, as would e.g. sc.w — beqz.

[3] A pipeline bubble is inserted between 1r.w/sc.w and an immediately-following 1r.w/sc.w/amo*, because the AHB5 bus standard
does not permit pipelined exclusive accesses. A stall would be inserted between 1r.w and sc.w anyhow, so the local monitor can be
updated based on the 1r.w data phase in time to suppress the sc.w address phase.

[4] AMOs are issued as a paired exclusive read and exclusive write on the bus, at the maximum speed of 2 cycles per access, since
the bus does not permit pipelining of exclusive reads/writes. If the write phase fails due to the global monitor reporting a lost
reservation, the instruction loops at a rate of 4 cycles per loop, until success. If the read reservation is refused by the global
monitor, the instruction generates a Store/AMO Fault exception, to avoid an infinite loop.

[5] The single-register variants of cm.popret and cm.popretz take the same number of cycles as the two-register variants, because of
an internal load-use dependency on the loaded return address.
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Appendix B: Instruction Pseudocode

This section is a quick reference for the operation of the instructions supported by Hazard3, in
Verilog syntax. Conventions used in this section:

* rs1, rs2 and rd are 32-bit unsigned vector variables referring to the two register operands and
the destination register

 immis a 32-bit unsigned vector referring to the instruction’s immediate value
* pc is a 32-bit unsigned vector referring to the program counter

* mem is an array of 8-bit unsigned vectors, each corresponding to a byte address in memory.

B.1. RV32I: Register-register

With the exception of the shift instructions, all instructions in this section have an immediate range
of -2048 to 2047. Negative immediates can be useful for the bitwise operations too: for example not
rd, rs1isa pseudo-op for xori rd, rs1, -1.

Shift instructions have an immediate range of 0 to 31.

B.1.1. add
Add register to register.

Syntax:
add rd, rsl1, rs2
Operation:

rd = rs1 + rs2;

B.1.2. sub
Subtract register from register.

Syntax:
sub rd, rs1, rs2
Operation:

rd = rs1 - rs2;
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B.1.3. slt
Set if less than (signed).

Syntax:

slt rd, rs1, rs2

Operation:

rd = $signed(rs1) < $signed(rs2);

B.1.4. sltu
Set if less than (unsigned).

Syntax:

sltu rd, rs1, rs

Operation:

rd = rs1 < rs2;

B.1.5. and

Bitwise AND.

Syntax:

and rd, rs1, rs2

Operation:

rd = rs1 & rs2;

B.1.6. or

Bitwise OR.

Syntax:
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or rd, rs1, rs2'

Operation:

rd = rs1 | rs2;

B.1.7. xor
Bitwise XOR.

Syntax:

xor rd, rs1, rs2

Operation:

rd = rs1 M rs2;

B.1.8.sll
Shift left, logical.

Syntax:

s1l rd, rs1, rs2

Operation:

rd = rs1 << rs2;

B.1.9. srl
Shift right, logical.

Syntax:

srl rd, rs1, rs2

Operation:

rd = rs1 > rs2;
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B.1.10. sra
Shift right, arithmetic.

Syntax:
sra rd, rs1, rs2
Operation:

rd = rs1 >>> rs2;

B.2. RV32I: Register-immediate

B.2.1. addi
Add register to immediate.

Syntax:
addi rd, rs1, imm
Operation:

rd = rsT + imm

B.2.2. slti
Set if less than immediate (signed).

Syntax:
slti rd, rs1, imm
Operation:

rd = $signed(rs1) < $signed(imm);

B.2.3. sltiu
Set if less than immediate (unsigned).

Syntax:
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sltiu rd, rs1, imm

Operation:

rd = rs1 < imm;

B.2.4. andi

Bitwise AND with immediate.

Syntax:

andi rd, rs1, imm

Operation:

rd = rs1 & imm;

B.2.5. ori
Bitwise OR with immediate.

Syntax:

ori rd, rs1, imm

Operation:

rd = rs1 \| imm;

B.2.6. xori

Bitwise XOR with immediate.

Syntax:

xori rd, rs1, imm

Operation:

rd = rs1 A imm;
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B.2.7. slli
Shift left, logical, immediate.

Syntax:
s11i rd, rs1, imm
Operation:

rd = rs1 << imm;

B.2.8. srli
Shift right, logical, immediate.

Syntax:
srli rd, rs1, imm
Operation:

rd = rs1 >> imm;

B.2.9. srai
Shift right, arithmetic, immediate.

Syntax:
srai rd, rs1, imm
Operation:

rd = rs1 >>> imm;

B.3. RV32I: Large immediate

B.3.1. lui
Load upper immediate.

Syntax:
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lui rd, imm
Operation:
rd = imm;

(imm is a 20-bit value followed by 12 zeroes)

B.3.2. auipc

Add upper immediate to program counter.

Syntax:

auipc rd, imm
Operation:

rd = pc + imm;

(imm is a 20-bit value followed by 12 zeroes)

B.4. RV32I: Control transfer

B.4.1. jal
Jump and link.

Syntax:

jal rd, label

j label // rd is implicitly x0
Operation:
rd = pc + 4;
pc = label;
NOTE the 16-bit variant, c.jal, writes pc + 2 to rd, rather than pc + 4. The rd value always

points to the sequentially-next instruction.
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B.4.2. jalr
Jump and link, target is register.

Syntax:

jalr rd, rs1, imm // imm is implicitly @ if omitted.

jrors1l, imm // rd is implicitly x@. imm is implicitly @ if omitted.
ret // pseudo-op for jr ra
Operation:
rd = pc + 4;
pc = rs1 + imm;

the 16-bit variant, c.jalr, writes pc + 2 to rd, rather than pc + 4. The rd value

NOTE . . . .
always points to the sequentially-next instruction.

B.4.3. beq
Branch if equal.

Syntax:
beq rs1, rs2, label
Operation:

if (rs1 == rs2)
pc = label;

B.4.4. bne
Branch if not equal.

Syntax:
bne rs1, rs2, label
Operation:

if (rs1 1= rs2)
pc = label;
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B.4.5. blt
Branch if less than (signed).

Syntax:
blt rs1, rs2, label
Operation:

if ($signed(rs1) < $signed(rs2))
pc = label;

B.4.6. bge
Branch if greater than or equal (signed).

Syntax:
bge rs1, rs2, label
Operation:

if ($signed(rs1) >= $signed(rs2))
pc = label;

B.4.7. bltu
Branch if less than (unsigned).

Syntax:
bltu rs1, rs2, label
Operation:

if (rs1 < rs2)
pc = label;

B.4.8. bgeu

Branch if less than or equal (unsigned).
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Syntax:
bgeu rs1, rs2, label
Operation:

if (rs1 >= rs2)
pc = label;

B.5. RV32I: Load and Store

B.5.1. 1w

Load word.

Syntax:

lw rd, imm(rs1)
1w rd, (rs1) // imm is implicitly @ if omitted.

Operation:
rd = {
mem[rs1 + imm + 3],
mem[rs1 + imm + 2],
mem[rs1 + imm + 1],
mem[rs1 + imm]
I
B.5.2. 1h
Load halfword (signed).
Syntax:

1h rd, imm(rs1)
1h rd, (rs1) // imm is implicitly @ if omitted.

Operation:

rd = {
{16{mem[rs1 + imm + 1][7]}}, // Sign-extend
mem[rs1 + imm + 1],
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mem[rs1 + imm]

+

B.5.3. lhu
Load halfword (unsigned).

Syntax:

lhu rd, imm(rs?1)
lhu rd, (rs1) // imm is implicitly @ if omitted.

Operation:

rd = {
16'h0000, // Zero-extend
mem[rs1 + imm + 1],
mem[rs1 + imm]

+

B.5.4.1b
Load byte (signed).
Syntax:

1b rd, imm(rs1)
1b rd, (rs1) // imm is implicitly @ if omitted.

Operation:

rd = {
{24{mem[rs1 + imm][7]}}, // Sign-extend
mem[rs1 + imm]

+

B.5.5. 1bu
Load byte (unsigned).

Syntax:

1bu rd, imm(rs1)
1bu rd, (rs1) // imm is implicitly @ if omitted.



Operation:

rd = {
24'h000000, // Zero-extend
mem[rs1 + imm]

+

B.5.6. sw

Store word.

Syntax:

sw rs2, imm(rs1)
sw rs2, (rs1) // imm is implicitly @ if omitted.

Operation:
mem[rs1 + imm] = rs2[7:0];
mem[rs1 + imm + 1] = rs2[15:8];
mem[rs1 + imm + 2] = rs2[23:16];
mem[rs1 + imm + 3] = rs2[31:24];
B.5.7. sh

Store halfword.

Syntax:

sh rs2, imm(rs1)
sh rs2, (rs1) // imm is implicitly @ if omitted.

Operation:

rs2[7:0];
rs2[15:8];

mem[rs1 + imm]
mem[rs1 + imm + 1]

B.5.8. sb
Store byte.

Syntax:

sb rs2, imm(rs1)
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sb rs2, (rs1) // imm is implicitly @ if omitted.
Operation:

mem[rs1 + imm] = rs2[7:0];

B.6. M Extension

B.6.1. mul
Multiply 32 x 32 - 32.

Syntax:
mul rd, rsl1, rs2
Operation:

rd = rs1 * rs2;

B.6.2. mulh
Multiply signed (32) by signed (32), return upper 32 bits of the 64-bit result.

Syntax:
mulh rd, rsl1, rs2
Operation:

// Both operands are sign-extended to 64 bits:
wire [63:0] result full = {{32{rs1[31]1}}, rs1} * {{32{rs2[31]}}, rs2};
rd = result_full[63:32];

B.6.3. mulhsu
Multiply signed (32) by unsigned (32), return upper 32 bits of the 64-bit result.

Syntax:

mulhsu rd, rs1, rs2
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Operation:

// rs1 is sign-extended, rs2 is zero-extended:
wire [63:0] result_full = {{32{rs1[31}}, rs1} * {32'h00000000, rs2};
rd = result full[63:32];

B.6.4. mulhu
Multiply unsigned (32) by unsigned (32), return upper 32 bits of the 64-bit result.

Syntax:

mulhu rd, rs1, rs2

Operation:

wire [63:0] result_full = {32'h00000000, rs1} * {32'h00000000, rs2};
rd = result_full[63:32];

B.6.5. div
Divide (signed).

Syntax:

div rd, rs1, rs2

Operation:

if (rs2 == 32'h0)
rd = 32'hffffffff;

else if (rs1 == 32'h80000000 && rs2 == 32'hffffffff) // Signed overflow
rd = 32'h80000000;

else
rd = $signed(rs1) / $signed(rs2);

B.6.6. divu
Divide (unsigned).

Syntax:

divu rd, rs1, rs2
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Operation:

if (rs2 == 32'h0)

rd = 32'hffffffff;
else

rd = rs1 / rs2;

B.6.7. rem
Remainder (signed).

Syntax:
rem rd, rs1, rs2
Operation:

if (rs2 == 32'h0)
rd = rs1;
else
rd = $signed(rs1) % $signed(rs2);

B.6.8. remu
Remainder (unsigned).

Syntax:
remu rd, rsl1, rs2
Operation:

if (rs2 == 32'h0)
rd = rsl;

else
rd = rs1 % rs2;

B.7. A Extension

(TODO)



B.8. C Extension

All C extension instructions are 16-bit aliases of 32-bit instructions from other extensions (in the
case of Hazard3, entirely from the RV32I base extension). They behave identically to their 32-bit
counterparts.

B.9. Zba: Bit manipulation (address generation)

B.9.1. shladd
Add, with the first addend shifted left by 1.

Syntax:
shladd rd, rs1, rs2
Operation:

rd = (rs1 << 1) + rs2;

B.9.2. sh2add
Add, with the first addend shifted left by 2.

Syntax:
sh2add rd, rs1, rs2
Operation:

rd = (rs1 << 2) + rs2;

B.9.3. sh3add
Add, with the first addend shifted left by 3.

Syntax:
sh3add rd, rs1, rs2

Operation:
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rd = (rs1 << 3) + rs2;

B.10. Zbb: Bit manipulation (basic)

B.10.1. andn

Bitwise AND with inverted operand.

Syntax:
andn rd, rs1, rs2
Operation:

rd = rs1 & ~rs2;

B.10.2. clz

Count leading zeroes (starting from MSB, searching LSB-ward).

Syntax:

clz rd, rsi

Operation:

rd = 32; // Default = 32 if no set bits
reg found = 1'b@; // Local variable

for (i =0; 1 <32; i=1+1) begin
if (rs1[31 - i] && !found) begin
found = 1'b1;
rd = 1i;
end
end

B.10.3. cpop
Population count.

Syntax:
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cpop rd, rsi

Operation:

rd = 0;
for (i =0; 1<32; i=1+1)
rd = rd + rs1[i];
B.10.4. ctz

Count trailing zeroes (starting from LSB, searching MSB-ward).

Syntax:

ctz rd, rsi

Operation:

rd = 32; // Default = 32 if no set bits
reg found = 1'b@; // Local variable

for (i =0; 1 <32; i=1+1) begin
if (rs1[i] && !found) begin
found = 1'b1;
rd = 1;
end
end

B.10.5. max
Maximum of two values (signed).

Syntax:

max rd, rs1, rs2

Operation:

if ($signed(rs1) < $signed(rs2))
rd = rs2;

else
rd = rs1;
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B.10.6. maxu
Maximum of two values (unsigned).

Syntax:

maxu rd, rs1, rs2

Operation:

if (rs1 < rs2)

rd = rs2;
else
rd = rs1;
B.10.7. min

Minimum of two values (signed).

Syntax:

min rd, rs1, rs2

Operation:

if ($signed(rs1) < $signed(rs2))

rd = rd1;

else
rd = rs2;
B.10.8. minu

Minimum of two values (unsigned).

Syntax:

minu rd, rsl1, rs2

Operation:

if (rs1 < rs2)
rd = rsl;
else
rd = rs2;
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B.10.9. orc.b
Or-combine of bits within each byte.

Syntax:

orc.b rd, rsi

Operation:

rd = {
{8{|rs1[31:241}},
{8{|rs1[23:16]1}},
{8{|rs1[15:81}},
{8{|rs1[7:01}}

B.10.10. orn
Bitwise OR with inverted operand.

Syntax:

orn rd, rs1, rs2

Operation:

rd = rs1 | ~rs2;

B.10.11. rev8
Reverse bytes within word.

Syntax:

rev8 rd, rsi

Operation:

rd = {
rs1[7:0],
rs1[15:8],
rs1[23:16],
rs1[31:24]
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B.10.12. rol
Rotate left.

Syntax:

rol rd, rs1, rs2

Operation:

if (rs2[4:0] == 0)
rd = rsl;
else
rd = (rs1 << rs2[4:0]) | (rs1 >> (32 - rs2[4:0]));

B.10.13. ror
Rotate right.

Syntax:

ror rd, rs1, rs2

Operation:

if (rs2[4:0] == 0)
rd = rsl;
else
rd = (rs1 >> rs2[4:0]) | (rs1 << (32 - rs2[4:0]));

B.10.14. rori
Rotate right, immediate.

Syntax:

ror rd, rs1, imm

Operation:

if (imm[4:0] == 0)
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rd = rsl;
else
rd

(rs1 >> imm[4:0]) | (rs1 << (32 - inm[4:0]));

B.10.15. sext.b
Sign-extend from byte.

Syntax:

sext.b rd, rs1

Operation:

rd = {
{24{rs1[71}},
rs1[7:0]

+

B.10.16. sext.h
Sign-extend from halfword.

Syntax:

sext.h rd, rs1

Operation:

rd = {
{16{rs1[151}},
rs1[15:0]

b

B.10.17. xnor
Bitwise XOR with inverted operand.

Syntax:

xnor rd, rs1, rs2

Operation:
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rd = rs1 N ~rs2;

B.10.18. zext.h
Zero-extend from halfword.

Syntax:
zext.h rd, rs1
Operation:

rd = {
16'h0000,
rs1[15:0]
bt

B.10.19. zext.b
Zero-extend from byte.

Syntax:
zext.b rd, rs1
Operation:

// Pseudo-op for RV32I instruction
andi rd, rs1, Oxff

B.11. Zbc: Bit manipulation (carry-less multiply)

Each of these three instructions returns a 32-bit slice of the following 64-bit result:

reg [63:0] clmul_result;

always @ (*) begin
clmul_result = 0;
for (i =0; i <32; i =1+ 1) begin
if (rs2[i])) begin
clmul_result = clmul_result A ({32'h0@, rs1} << i);
end
end



end

B.11.1. clmul
Carry-less multiply, low half.

Syntax:
clmul rd, rs1, rs2
Operation:

rd = cmul_result[31:0];

B.11.2. clmulh
Carry-les multiply, high half.

Syntax:
clmulh rd, rs1, rs2
Operation:

rd = clmul_result[63:32];

B.11.3. clmulr
Bit-reverse of carry-less multiply of bit-reverse.

Syntax:
clmulr rd, rs1, rs2
Operation:

rd = clmul_result[32:1];

B.12. Zbs: Bit manipulation (single-bit)
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B.12.1. bclr
Clear single bit.

Syntax:

belr rd, rs1, rs2

Operation:

rd = rs1 & ~(32'h1 << rs2[4:0]);

B.12.2. bclri
Clear single bit (immediate).

Syntax:

belri rd, rs1, imm

Operation:

rd = rs1 & ~(32'h1 << imm[4:0]);

B.12.3. bext
Extract single bit.

Syntax:

bext rd, rs1, rs2

Operation:

rd = (rs1 >> rs2[4:0]) & 32'h1;

B.12.4. bexti
Extract single bit (immediate).

Syntax:
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bexti rd, rs1, imm

Operation:

rd = (rs1 >> imm[4:0]) & 32'h1;

B.12.5. binv
Invert single bit.

Syntax:

binv rd, rs1, rs2

Operation:

rd = rs1 A (32'h1 << rs2[4:0]);

B.12.6. binvi
Invert single bit (immediate).

Syntax:

binvi rd, rs1, imm

Operation:

rd = rs1 A (32'h1 << imm[4:0]);

B.12.7. bset
Set single bit.

Syntax:

bset rd, rs1, rs2

Operation:

rd = rs1 | (32'h1 << rs2[4:0])
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B.12.8. bseti
Set single bit (immediate).

Syntax:
bseti rd, rs1, imm
Operation:

rd = rs1 | (32'h1 << imm[4:0]);

B.13. Zbkbh: Basic bit manipulation for cryptography

Zbkb has a large overlap with Zbb (basic bit manipulation). This section covers only

NOTE
those instruction in Zbkb but not in Zbb.

B.13.1. brev8
Bit-reverse within each byte.

Syntax:
brev8 rd, rsf
Operation:

for (i =0; 1 <32; i =1+ 8) begin
for (j =0; j <8, j =j+1) begin

rd[i + j] = rs1[i + (7 - j)]1;
end
end
B.13.2. pack
Pack halfwords into word.
Syntax:

pack rd, rs1, rs2

Operation:



rd = {
rs2[15:07,
rs1[15:0]
bt

B.13.3. packh
Pack bytes into halfword.

Syntax:

packh rd, rs1, rs2

Operation:
rd = {
16"h0000,
rs2[7:0],
rs1[7:0]
Irs
B.13.4. Zip

Interleave upper/lower half of register into odd/even bits of result.

Syntax:

zip rd, rs1

Operation:

for (i =0; i <32; i =1+ 2) begin
rd[i] = rs1li / 21;
rd[i + 1] = rs1[i / 2 + 16];
end
B.13.5. unzip

Deinterleave odd/even bits of register into upper/lower half of result.

Syntax:

unzip rd, rsT
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Operation:

for (i =0; i <32; i =1+ 2) begin
rd[i / 2] = rsl1[il;
rd[i / 2 + 16] = rs1[i + 1];

end
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