Hazard3

Table of Contents

1. Introduction
2. Instruction Cycle Counts
2.1. RV32I
2.2. M Extension
2.3. C Extension
2.4. Privileged Instructions (including Zicsr)
3. CSRs
3.1. Standard CSRs
3.1.1. mvendorid
3.1.2. marchid
3.1.3. mimpid
3.1.4. mstatus
3.1.5. misa
3.2. Custom CSRs
3.2.1. midcr
3.2.2. meie0
3.2.3. meip0
3.2.4. mlei
3.2.5. Maybe-adds

<N 9 o o U1 g o U U1 U1 Ul U1 U1 WY N e

Chapter 1. Introduction

Hazard3 is a 3-stage RISC-V processor, providing the following architectural support:

RV32I: 32-bit base instruction set

* M extension: integer multiply/divide/modulo

* (extension: compressed instructions

* Zicsr extension: CSR access

* M-mode privileged instructions ECALL, EBREAK, MRET

* The machine-mode (M-mode) privilege state, and standard M-mode CSRs

The following are planned for future implementation:

Support for WFI instruction

* Debug support

* A extension: atomic memory access
o LR/SC fully supported

> AMONone PMA on all of memory (AMOs are decoded but unconditionally trigger access
fault without attempting memory access)

* Some nonstandard M-mode CSRs for interrupt control etc

Chapter 2. Instruction Cycle Counts

All timings are given assuming perfect bus behaviour (no stalls). Stalling of the I bus can delay
execution indefinitely, as can stalling of the D bus during a load or store.

2.1. RV32I

Instruction Cycles Note

Integer Register-register
add rd, rs1, rs2

sub rd, rs1, rs2

slt rd, rs1, rs2

[O WY

sltu rd, rs1, rs2
and rd, rs1, rs2
or rd, rs1, rs2

xor rd, rs1, rs2

[O WY

s1ll rd, rs1, rs2

srl rd, rs1, rs2

—

sra rd, rs1, rs2 1

Integer Register-immediate

addi rd, rs1, imm 1 nop is a pseudo-op for addi x@, x0, 0
slti rd, rs1, imm 1

sltiu rd, rs1, imm 1

andi rd, rs1, imm 1

ori rd, rs1, imm 1

xori rd, rs1, imm 1

s11i rd, rs1, imm 1

srli rd, rs1, imm 1

srai rd, rs1, imm 1

Large Immediate

lui rd, imm 1

auipc rd, imm 1

Control Transfer

jal rd, label ot

jalr rd, rs1, imm ot

beq rs1, rs2, label 1 or 2" 1 if nontaken, 2 if taken.

Instruction Cycles Note

bne rs1, rs2, label 1 or 2" 1 if nontaken, 2 if taken.
blt rs1, rs2, label 1 or 2" 1 if nontaken, 2 if taken.
bge rs1, rs2, label 1 or 2" 1 if nontaken, 2 if taken.
bltu rs1, rs2, label 1 or 2" 1 if nontaken, 2 if taken.
bgeu rs1, rs2, label 1 or 2" 1if nontaken, 2 if taken.

Load and Store

lw rd, imm(rs1) 1or2 1 if next instruction is independent, 2 if dependent."”
lh rd, imm(rs1) lor2 1 if next instruction is independent, 2 if dependent.”
lhu rd, imm(rs1) lor2 1 if next instruction is independent, 2 if dependent."”
1b rd, imm(rs1) lor2 1 if next instruction is independent, 2 if dependent."”
lbu rd, imm(rs1) 1or2 1 if next instruction is independent, 2 if dependent."”
sw rs2, imm(rs1) 1
sh rs2, imm(rs1) 1
sb rs2, imm(rs1) 1

2.2. M Extension

Timings assume the core is configured with MULDIV_UNROLL = 2 and MUL_FAST = 1. Le. the sequential
multiply/divide circuit processes two bits per cycle, and a separate dedicated multiplier is present
for the mul instruction.

Instruction Cycles Note
32 x 32 - 32 Multiply

mul rd, rs1, rs2 1or2 1 if next instruction is independent, 2 if dependent.

32 x 32 - 64 Multiply, Upper Half

mulh rd, rs1, rs2 18 to 20 Depending on sign correction
mulhsu rd, rs1, rs2 18 to 20 Depending on sign correction
mulhu rd, rs1, rs2 18

Divide and Remainder

div 18 or 19 Depending on sign correction
divu 18
rem 18 or 19 Depending on sign correction
remu 18

2.3. C Extension

All C extension 16-bit instructions on Hazard3 are aliases of base RV32I instructions. They perform
identically to their 32-bit counterparts.

A consequence of the C extension is that 32-bit instructions can be non-naturally-aligned. This has
no penalty during sequential execution, but branching to a 32-bit instruction that is not 32-bit-
aligned carries a 1 cycle penalty, because the instruction fetch is cracked into two naturally-aligned
bus accesses.

2.4. Privileged Instructions (including Zicsr)

Instruction Cycles Note

CSR Access

csrrw rd, csr, rsl 1

csrrc rd, csr, rsi 1

csrrs rd, csr, rsi 1

csrrwi rd, csr, imm 1

csrrci rd, csr, imm 1

csrrsi rd, csr, imm 1

Trap Request

ecall 3 Time given is for jumping to mtvec
ebreak 3 Time given is for jumping to mtvec

[1] A branch to a 32-bit instruction which is not 32-bit-aligned requires one additional cycle, because two naturally-aligned bus
cycles are required to fetch the target instruction.

[2] If an instruction uses load data (from stage 3) in stage 2, a 1-cycle bubble is inserted after the load. Load-data to store-data
dependency does not experience this, because the store data is used in stage 3. However, load-data to store-address (or e.g. load-to-
add) does qualify.

Chapter 3. CSRs

The RISC-V privileged specification affords flexibility as to which CSRs are implemented, and how
they behave. This section documents the concrete behaviour of Hazard3’s standard and
nonstandard M-mode CSRs, as implemented.

3.1. Standard CSRs

3.1.1. mvendorid

Address: 0xf11

Read-only, constant. Value is configured when the processor is instantiated. Should contain either
all-zeroes, or a valid JEDEC JEP106 vendor ID.

3.1.2. marchid
Address: 0xf12

Read-only, constant. Architecture identifier for Hazard3, value can be altered when the processor is
instantiated. Default is currently all zeroes as unregistered.

3.1.3. mimpid

Address: 0xf12

Read-only, constant. Value is configured when the processor is instantiated. Should contain either
all-zeroes, or some number specifiying a version of Hazard3 (e.g. git hash).

3.1.4. mstatus

blah blah

3.1.5. misa

Read-only, constant. Value depends on which ISA extensions Hazard5 is configured with.

3.2. Custom CSRs

These are all allocated in the space 0xbc@ through @xbff which is available for custom read/write M-
mode CSRs, and 0xfc@ through 0xfff which is available for custom read-only M-mode CSRs.

3.2.1. midcr
Address: 0xbc0

Implementation-defined control register. Miscellaneous nonstandard controls.

Bits Name Description
31:1 - RESO

0 eivect Modified external interrupt vectoring. If 0, use standard behaviour:
all external interrupts set interrupt mcause of 11 and vector to mtvec
+ 0x2c. If 1, external interrupts use distinct interrupt mcause
numbers 16 upward, and distinct vectors mtvec + (irq + 16) * 4.
Resets to 0. Has no effect when mtvec[0] is O.

3.2.2. meie0

Address: 0xbed

External interrupt enable register 0. Contains a read-write bit for each external interrupt request
IRQO through IRQ31. A 1 bit indicates that interrupt is currently enabled.

Addresses 0xbe1 through 0xbe3 are reserved for further meie registers, supporting up to 128 external
interrupts.

An external interrupt is taken when all of the following are true:

* The interrupt is currently asserted in meip®

The matching interrupt enable bit is set in meie®

The standard M-mode interrupt enable mstatus.mie is set

* The standard M-mode global external interrupt enable mie.meie is set

meied resets to all-ones, for compatibility with software which is only aware of mstatus and mie.
Because mstatus.mie and mie.meie are both initially clear, the core will not take interrupts straight
out of reset, but it is strongly recommended to configure meie® before setting the global interrupt
enable, to avoid interrupts from unexpected sources.

3.2.3. meip0

Address: 0xfe0

External IRQ pending register 0. Contains a read-only bit for each external interrupt request IRQO
through IRQ31. A 1 bit indicates that interrupt is currently asserted. IRQs are assumed to be level-
sensitive, and the relevant meip@ bit is cleared by servicing the requestor so that it deasserts its
interrupt request.

Addresses 0xfel through 0xfe3 are reserved for further meip registers, supporting up to 128 external
interrupts.

When any bit is set in both meip0 and meie0, the standard external interrupt pending bit mip.meip is
also set. In other words, meip@ is filtered by meie®d to generate the standard mip.meip flag. So, an
external interrupt is taken when all of the following are true:

* An interrupt is currently asserted in meip®

* The matching interrupt enable bit is set in meie@
* The standard M-mode interrupt enable mstatus.mie is set

* The standard M-mode global external interrupt enable mie.meie is set
In this case, the processor jumps to either:

* mtvec directly, if vectoring is disabled (mtvec[@] is 0)

* mtvec + Ox2c, if vectoring is enabled (mtvec[@] is 1) and modified external IRQ vectoring is
disabled (midcr.eivect is 0)

* mtvect + (mlei + 16) * 4, if vectoring is enabled (mtvec[@] is 1) and modified external IRQ
vectoring is enabled (midcr.eivect is 1). °

o mlei is a read-only CSR containing the lowest-numbered pending-and-enabled external
interrupt.

3.2.4. mlei

Address: 0xfed

Lowest external interrupt. Contains the index of the lowest-numbered external interrupt which is
both asserted in meip@ and enabled in meied. Can be used for faster software vectoring when
modified external interrupt vectoring (midcr.eivect = 1) is not in use.

Bits Name Description
31:5 - RESO
4:0 - Index of the lowest-numbered active external interrupt. A LSB-first

priority encode of meip0 & meie. Zero when no external interrupts
are both pending and enabled.

3.2.5. Maybe-adds

An option to clear a bit in meie@ when that interrupt is taken, and set it when an mret has a
matching mcause for that interrupt. Makes preemption support easier.

	Hazard3
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Instruction Cycle Counts
	2.1. RV32I
	2.2. M Extension
	2.3. C Extension
	2.4. Privileged Instructions (including Zicsr)

	Chapter 3. CSRs
	3.1. Standard CSRs
	3.1.1. mvendorid
	3.1.2. marchid
	3.1.3. mimpid
	3.1.4. mstatus
	3.1.5. misa

	3.2. Custom CSRs
	3.2.1. midcr
	3.2.2. meie0
	3.2.3. meip0
	3.2.4. mlei
	3.2.5. Maybe-adds

