#include #include #include #include #include #include #include #include #include // Device-under-test model generated by CXXRTL: #include "dut.cpp" #include static const unsigned int MEM_SIZE = 16 * 1024 * 1024; uint8_t mem[MEM_SIZE]; static const unsigned int IO_BASE = 0x80000000; enum { IO_PRINT_CHAR = 0x000, IO_PRINT_U32 = 0x004, IO_EXIT = 0x008, IO_MTIME = 0x100, IO_MTIMEH = 0x104, IO_MTIMECMP = 0x108, IO_MTIMECMPH = 0x10c }; static const int TCP_BUF_SIZE = 256; const char *help_str = "Usage: tb [vcdfile] [--dump start end] [--cycles n] [--port n]\n" " vcdfile : Path to dump waveforms to\n" " --dump start end : Print out memory contents between start and end (exclusive)\n" " after execution finishes. Can be passed multiple times.\n" " --cycles n : Maximum number of cycles to run before exiting.\n" " Default is 0 (no maximum).\n" " --port n : Port number to listen for openocd remote bitbang\n" ; void exit_help(std::string errtext = "") { std::cerr << errtext << help_str; exit(-1); } int main(int argc, char **argv) { bool dump_waves = false; std::string waves_path; std::vector> dump_ranges; int64_t max_cycles = 0; uint16_t port = 9824; for (int i = 1; i < argc; ++i) { std::string s(argv[i]); if (i == 1 && s.rfind("--", 0) != 0) { // Optional positional argument: vcdfile dump_waves = true; waves_path = s; } else if (s == "--dump") { if (argc - i < 3) exit_help("Option --dump requires 2 arguments\n"); dump_ranges.push_back(std::pair( std::stoul(argv[i + 1], 0, 0), std::stoul(argv[i + 2], 0, 0) ));; i += 2; } else if (s == "--cycles") { if (argc - i < 2) exit_help("Option --cycles requires an argument\n"); max_cycles = std::stol(argv[i + 1], 0, 0); i += 1; } else if (s == "--port") { if (argc - i < 2) exit_help("Option --port requires an argument\n"); port = std::stol(argv[i + 1], 0, 0); i += 1; } else { std::cerr << "Unrecognised argument " << s << "\n"; exit_help(""); } } int server_fd, sock_fd; struct sockaddr_in sock_addr; int sock_opt = 1; socklen_t sock_addr_len = sizeof(sock_addr); char txbuf[TCP_BUF_SIZE], rxbuf[TCP_BUF_SIZE]; int rx_ptr = 0, rx_remaining = 0, tx_ptr = 0; server_fd = socket(AF_INET, SOCK_STREAM, 0); if (server_fd == 0) { fprintf(stderr, "socket creation failed\n"); exit(-1); } int setsockopt_rc = setsockopt( server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &sock_opt, sizeof(sock_opt) ); if (setsockopt_rc) { fprintf(stderr, "setsockopt failed\n"); exit(-1); } sock_addr.sin_family = AF_INET; sock_addr.sin_addr.s_addr = INADDR_ANY; sock_addr.sin_port = htons(port); if (bind(server_fd, (struct sockaddr *)&sock_addr, sizeof(sock_addr)) < 0) { fprintf(stderr, "bind failed\n"); exit(-1); } printf("Waiting for connection on port %u\n", port); if (listen(server_fd, 3) < 0) { fprintf(stderr, "listen failed\n"); exit(-1); } sock_fd = accept(server_fd, (struct sockaddr *)&sock_addr, &sock_addr_len); if (sock_fd < 0) { fprintf(stderr, "accept failed\n"); exit(-1); } printf("Connected\n"); cxxrtl_design::p_tb top; std::fill(std::begin(mem), std::end(mem), 0); std::ofstream waves_fd; cxxrtl::vcd_writer vcd; if (dump_waves) { waves_fd.open(waves_path); cxxrtl::debug_items all_debug_items; top.debug_info(all_debug_items); vcd.timescale(1, "us"); vcd.add(all_debug_items); } bool bus_trans = false; bool bus_write = false; bool bus_trans_i = false; uint32_t bus_addr_i = 0; uint32_t bus_addr = 0; uint8_t bus_size = 0; // Never generate bus stalls top.p_i__hready.set(true); top.p_d__hready.set(true); uint64_t mtime = 0; uint64_t mtimecmp = 0; // Reset + initial clock pulse top.step(); top.p_clk.set(true); top.p_tck.set(true); top.step(); top.p_clk.set(false); top.p_tck.set(false); top.p_trst__n.set(true); top.p_rst__n.set(true); top.step(); top.step(); // workaround for github.com/YosysHQ/yosys/issues/2780 for (int64_t cycle = 0; cycle < max_cycles || max_cycles == 0; ++cycle) { top.p_clk.set(false); top.step(); if (dump_waves) vcd.sample(cycle * 2); top.p_clk.set(true); top.step(); top.step(); // workaround for github.com/YosysHQ/yosys/issues/2780 // Most bitbang commands complete in one cycle (e.g. TCK/TMS/TDI // writes) but reads take 0 cycles, step=false. bool got_exit_cmd = false; bool step = false; while (!step) { if (rx_remaining > 0) { char c = rxbuf[rx_ptr++]; --rx_remaining; if (c == 'r' || c == 's') { top.p_trst__n.set(true); step = true; } else if (c == 't' || c == 'u') { top.p_trst__n.set(false); } else if (c >= '0' && c <= '7') { int mask = c - '0'; top.p_tck.set(mask & 0x4); top.p_tms.set(mask & 0x2); top.p_tdi.set(mask & 0x1); step = true; } else if (c == 'R') { txbuf[tx_ptr++] = top.p_tdo.get() ? '1' : '0'; if (tx_ptr >= TCP_BUF_SIZE || rx_remaining == 0) { send(sock_fd, txbuf, tx_ptr, 0); tx_ptr = 0; } } else if (c == 'Q') { printf("OpenOCD sent quit command\n"); got_exit_cmd = true; step = true; } } else { // Potentially the last command was not a read command, but // OpenOCD is still waiting for a last response from its // last command packet before it sends us any more, so now is // the time to flush TX. if (tx_ptr > 0) { send(sock_fd, txbuf, tx_ptr, 0); tx_ptr = 0; } rx_ptr = 0; rx_remaining = read(sock_fd, &rxbuf, TCP_BUF_SIZE); } } // Default update logic for mtime, mtimecmp ++mtime; top.p_timer__irq.set(mtime >= mtimecmp); if (top.p_d__hready.get()) { // Clear bus error by default top.p_d__hresp.set(false); // Handle current data phase uint32_t rdata = 0; bool bus_err = false; if (bus_trans && bus_write) { uint32_t wdata = top.p_d__hwdata.get(); if (bus_addr <= MEM_SIZE - 4u) { unsigned int n_bytes = 1u << bus_size; // Note we are relying on hazard3's byte lane replication for (unsigned int i = 0; i < n_bytes; ++i) { mem[bus_addr + i] = wdata >> (8 * i) & 0xffu; } } else if (bus_addr == IO_BASE + IO_PRINT_CHAR) { putchar(wdata); } else if (bus_addr == IO_BASE + IO_PRINT_U32) { printf("%08x\n", wdata); } else if (bus_addr == IO_BASE + IO_EXIT) { printf("CPU requested halt. Exit code %d\n", wdata); printf("Ran for %ld cycles\n", cycle + 1); break; } else if (bus_addr == IO_BASE + IO_MTIME) { mtime = (mtime & 0xffffffff00000000u) | wdata; } else if (bus_addr == IO_BASE + IO_MTIMEH) { mtime = (mtime & 0x00000000ffffffffu) | ((uint64_t)wdata << 32); } else if (bus_addr == IO_BASE + IO_MTIMECMP) { mtimecmp = (mtimecmp & 0xffffffff00000000u) | wdata; } else if (bus_addr == IO_BASE + IO_MTIMECMPH) { mtimecmp = (mtimecmp & 0x00000000ffffffffu) | ((uint64_t)wdata << 32); } else { bus_err = true; } } else if (bus_trans && !bus_write) { if (bus_addr <= MEM_SIZE - (1u << bus_size)) { bus_addr &= ~0x3u; rdata = (uint32_t)mem[bus_addr] | mem[bus_addr + 1] << 8 | mem[bus_addr + 2] << 16 | mem[bus_addr + 3] << 24; } else if (bus_addr == IO_BASE + IO_MTIME) { rdata = mtime; } else if (bus_addr == IO_BASE + IO_MTIMEH) { rdata = mtime >> 32; } else if (bus_addr == IO_BASE + IO_MTIMECMP) { rdata = mtimecmp; } else if (bus_addr == IO_BASE + IO_MTIMECMPH) { rdata = mtimecmp >> 32; } else { bus_err = true; } } if (bus_err) { // Phase 1 of error response top.p_d__hready.set(false); top.p_d__hresp.set(true); } top.p_d__hrdata.set(rdata); // Progress current address phase to data phase bus_trans = top.p_d__htrans.get() >> 1; bus_write = top.p_d__hwrite.get(); bus_size = top.p_d__hsize.get(); bus_addr = top.p_d__haddr.get(); } else { // hready=0. Currently this only happens when we're in the first // phase of an error response, so go to phase 2. top.p_d__hready.set(true); } if (top.p_i__hready.get()) { top.p_i__hresp.set(false); if (bus_trans_i) { bus_addr_i &= ~0x3u; if (bus_addr_i < MEM_SIZE) { top.p_i__hrdata.set( (uint32_t)mem[bus_addr_i] | mem[bus_addr_i + 1] << 8 | mem[bus_addr_i + 2] << 16 | mem[bus_addr_i + 3] << 24 ); } else { top.p_i__hready.set(false); top.p_i__hresp.set(true); } } bus_trans_i = top.p_i__htrans.get() >> 1; bus_addr_i = top.p_i__haddr.get(); } else { top.p_i__hready.set(true); } if (dump_waves) { // The extra step() is just here to get the bus responses to line up nicely // in the VCD (hopefully is a quick update) top.step(); vcd.sample(cycle * 2 + 1); waves_fd << vcd.buffer; vcd.buffer.clear(); } if (cycle + 1 == max_cycles) printf("Max cycles reached\n"); if (got_exit_cmd) break; } close(sock_fd); for (auto r : dump_ranges) { printf("Dumping memory from %08x to %08x:\n", r.first, r.second); for (int i = 0; i < r.second - r.first; ++i) printf("%02x%c", mem[r.first + i], i % 16 == 15 ? '\n' : ' '); printf("\n"); } return 0; }