Hazard3

Table of Contents

1. Introduction
2. Instruction Cycle Counts
2.1. RV32I
2.2. M Extension
2.3. C Extension
2.4. Privileged Instructions (including Zicsr)
3. CSRs
3.1. Standard CSRs
3.1.1. mvendorid
3.1.2. marchid
3.1.3. mimpid
3.1.4. mstatus
3.1.5. misa
3.2. Custom CSRs
3.2.1. midcr
3.2.2. meie0
3.2.3. meip0
3.2.4. mlei
3.2.5. Maybe-adds
4. Debug
4.1. Implementation-defined behaviour
4.2. UART DTM

© 00 00 4 9 o o U1 g1 g1 U1 1 U1 U1 U1 U1 N e

Chapter 1. Introduction

Hazard3 is a 3-stage RISC-V processor, providing the following architectural support:

RV32I: 32-bit base instruction set

* M extension: integer multiply/divide/modulo

* (extension: compressed instructions

* Zicsr extension: CSR access

* M-mode privileged instructions ECALL, EBREAK, MRET

* The machine-mode (M-mode) privilege state, and standard M-mode CSRs

The following are planned for future implementation:

Support for WFI instruction

* Debug support

* A extension: atomic memory access
o LR/SC fully supported

> AMONone PMA on all of memory (AMOs are decoded but unconditionally trigger access
fault without attempting memory access)

* Some nonstandard M-mode CSRs for interrupt control etc

Chapter 2. Instruction Cycle Counts

All timings are given assuming perfect bus behaviour (no stalls). Stalling of the I bus can delay
execution indefinitely, as can stalling of the D bus during a load or store.

2.1. RV32I

Instruction Cycles Note

Integer Register-register
add rd, rs1, rs2

sub rd, rs1, rs2

slt rd, rs1, rs2

[O WY

sltu rd, rs1, rs2
and rd, rs1, rs2
or rd, rs1, rs2

xor rd, rs1, rs2

[O WY

s1ll rd, rs1, rs2

srl rd, rs1, rs2

—

sra rd, rs1, rs2 1

Integer Register-immediate

addi rd, rs1, imm 1 nop is a pseudo-op for addi x@, x0, 0
slti rd, rs1, imm 1

sltiu rd, rs1, imm 1

andi rd, rs1, imm 1

ori rd, rs1, imm 1

xori rd, rs1, imm 1

s11i rd, rs1, imm 1

srli rd, rs1, imm 1

srai rd, rs1, imm 1

Large Immediate

lui rd, imm 1

auipc rd, imm 1

Control Transfer

jal rd, label ot

jalr rd, rs1, imm ot

beq rs1, rs2, label 1 or 2" 1 if nontaken, 2 if taken.

Instruction Cycles Note

bne rs1, rs2, label 1 or 2" 1 if nontaken, 2 if taken.
blt rs1, rs2, label 1 or 2" 1 if nontaken, 2 if taken.
bge rs1, rs2, label 1 or 2" 1 if nontaken, 2 if taken.
bltu rs1, rs2, label 1 or 2" 1 if nontaken, 2 if taken.
bgeu rs1, rs2, label 1 or 2" 1if nontaken, 2 if taken.

Load and Store

lw rd, imm(rs1) 1or2 1 if next instruction is independent, 2 if dependent."”
lh rd, imm(rs1) lor2 1 if next instruction is independent, 2 if dependent.”
lhu rd, imm(rs1) lor2 1 if next instruction is independent, 2 if dependent."”
1b rd, imm(rs1) lor2 1 if next instruction is independent, 2 if dependent."”
lbu rd, imm(rs1) 1or2 1 if next instruction is independent, 2 if dependent."”
sw rs2, imm(rs1) 1
sh rs2, imm(rs1) 1
sb rs2, imm(rs1) 1

2.2. M Extension

Timings assume the core is configured with MULDIV_UNROLL = 2 and MUL_FAST = 1. Le. the sequential
multiply/divide circuit processes two bits per cycle, and a separate dedicated multiplier is present
for the mul instruction.

Instruction Cycles Note
32 x 32 - 32 Multiply

mul rd, rs1, rs2 1or2 1 if next instruction is independent, 2 if dependent.

32 x 32 - 64 Multiply, Upper Half

mulh rd, rs1, rs2 18 to 20 Depending on sign correction
mulhsu rd, rs1, rs2 18 to 20 Depending on sign correction
mulhu rd, rs1, rs2 18

Divide and Remainder

div 18 or 19 Depending on sign correction
divu 18
rem 18 or 19 Depending on sign correction
remu 18

2.3. C Extension

All C extension 16-bit instructions on Hazard3 are aliases of base RV32I instructions. They perform
identically to their 32-bit counterparts.

A consequence of the C extension is that 32-bit instructions can be non-naturally-aligned. This has
no penalty during sequential execution, but branching to a 32-bit instruction that is not 32-bit-
aligned carries a 1 cycle penalty, because the instruction fetch is cracked into two naturally-aligned
bus accesses.

2.4. Privileged Instructions (including Zicsr)

Instruction Cycles Note

CSR Access

csrrw rd, csr, rsl 1

csrrc rd, csr, rsi 1

csrrs rd, csr, rsi 1

csrrwi rd, csr, imm 1

csrrci rd, csr, imm 1

csrrsi rd, csr, imm 1

Trap Request

ecall 3 Time given is for jumping to mtvec
ebreak 3 Time given is for jumping to mtvec

[1] A branch to a 32-bit instruction which is not 32-bit-aligned requires one additional cycle, because two naturally-aligned bus
cycles are required to fetch the target instruction.

[2] If an instruction uses load data (from stage 3) in stage 2, a 1-cycle bubble is inserted after the load. Load-data to store-data
dependency does not experience this, because the store data is used in stage 3. However, load-data to store-address (or e.g. load-to-
add) does qualify.

Chapter 3. CSRs

The RISC-V privileged specification affords flexibility as to which CSRs are implemented, and how
they behave. This section documents the concrete behaviour of Hazard3’s standard and
nonstandard M-mode CSRs, as implemented.

3.1. Standard CSRs

3.1.1. mvendorid

Address: 0xf11

Read-only, constant. Value is configured when the processor is instantiated. Should contain either
all-zeroes, or a valid JEDEC JEP106 vendor ID.

3.1.2. marchid
Address: 0xf12

Read-only, constant. Architecture identifier for Hazard3, value can be altered when the processor is
instantiated. Default is currently all zeroes as unregistered.

3.1.3. mimpid

Address: 0xf12

Read-only, constant. Value is configured when the processor is instantiated. Should contain either
all-zeroes, or some number specifiying a version of Hazard3 (e.g. git hash).

3.1.4. mstatus

blah blah

3.1.5. misa

Read-only, constant. Value depends on which ISA extensions Hazard5 is configured with.

3.2. Custom CSRs

These are all allocated in the space 0xbc@ through @xbff which is available for custom read/write M-
mode CSRs, and 0xfc@ through 0xfff which is available for custom read-only M-mode CSRs.

3.2.1. midcr
Address: 0xbc0

Implementation-defined control register. Miscellaneous nonstandard controls.

Bits Name Description
31:1 - RESO

0 eivect Modified external interrupt vectoring. If 0, use standard behaviour:
all external interrupts set interrupt mcause of 11 and vector to mtvec
+ 0x2c. If 1, external interrupts use distinct interrupt mcause
numbers 16 upward, and distinct vectors mtvec + (irq + 16) * 4.
Resets to 0. Has no effect when mtvec[0] is O.

3.2.2. meie0

Address: 0xbed

External interrupt enable register 0. Contains a read-write bit for each external interrupt request
IRQO through IRQ31. A 1 bit indicates that interrupt is currently enabled.

Addresses 0xbe1 through 0xbe3 are reserved for further meie registers, supporting up to 128 external
interrupts.

An external interrupt is taken when all of the following are true:

* The interrupt is currently asserted in meip®

The matching interrupt enable bit is set in meie®

The standard M-mode interrupt enable mstatus.mie is set

* The standard M-mode global external interrupt enable mie.meie is set

meied resets to all-ones, for compatibility with software which is only aware of mstatus and mie.
Because mstatus.mie and mie.meie are both initially clear, the core will not take interrupts straight
out of reset, but it is strongly recommended to configure meie® before setting the global interrupt
enable, to avoid interrupts from unexpected sources.

3.2.3. meip0

Address: 0xfe0

External IRQ pending register 0. Contains a read-only bit for each external interrupt request IRQO
through IRQ31. A 1 bit indicates that interrupt is currently asserted. IRQs are assumed to be level-
sensitive, and the relevant meip@ bit is cleared by servicing the requestor so that it deasserts its
interrupt request.

Addresses 0xfel through 0xfe3 are reserved for further meip registers, supporting up to 128 external
interrupts.

When any bit is set in both meip0 and meie0, the standard external interrupt pending bit mip.meip is
also set. In other words, meip@ is filtered by meie®d to generate the standard mip.meip flag. So, an
external interrupt is taken when all of the following are true:

* An interrupt is currently asserted in meip®

* The matching interrupt enable bit is set in meie@
* The standard M-mode interrupt enable mstatus.mie is set

* The standard M-mode global external interrupt enable mie.meie is set
In this case, the processor jumps to either:

* mtvec directly, if vectoring is disabled (mtvec[@] is 0)

* mtvec + Ox2c, if vectoring is enabled (mtvec[@] is 1) and modified external IRQ vectoring is
disabled (midcr.eivect is 0)

* mtvect + (mlei + 16) * 4, if vectoring is enabled (mtvec[@] is 1) and modified external IRQ
vectoring is enabled (midcr.eivect is 1). °

o mlei is a read-only CSR containing the lowest-numbered pending-and-enabled external
interrupt.

3.2.4. mlei

Address: 0xfed

Lowest external interrupt. Contains the index of the lowest-numbered external interrupt which is
both asserted in meip@ and enabled in meied. Can be used for faster software vectoring when
modified external interrupt vectoring (midcr.eivect = 1) is not in use.

Bits Name Description
31:5 - RESO
4:0 - Index of the lowest-numbered active external interrupt. A LSB-first

priority encode of meip0 & meie. Zero when no external interrupts
are both pending and enabled.

3.2.5. Maybe-adds

An option to clear a bit in meie@ when that interrupt is taken, and set it when an mret has a
matching mcause for that interrupt. Makes preemption support easier.

Chapter 4. Debug

Currently the plan is for Hazard3, with its associated debug module (DM), to support the following:

Run/halt/reset control as required
» Abstract GPR access as required
» Program Buffer, 2 words plus impebreak

* Automatic trigger of abstract command on data/progbuf access (abstractauto) for efficient
memory block transfers from the host

* Some minimum useful trigger unit —likely just breakpoints, no watchpoints
The core itself will implement the following, enabling the DM to provide a compliant debug
interface:
* Debug mode CSRs dcsr, dpc and datad
* Ability to enter debug mode with correct update of desr and dpc
o Synchronously via exception, ebreak or trigger match
> Asynchronously via external halt request
* Ability to exit debug mode to M mode
 Direct read/write access to the data@d CSR from an external Debug Module
* Ability to inject words into the instruction prefetch queue when in debug mode
* Address query/match interface for external trigger unit
 Ability to suppress exception entry when executing instructions in debug mode, and provide an

external signal to indicate the exception took place

The DM implements abstract GPR access by reading/writing the data@ CSR, and injecting CSR access
instructions. A GPR write uses a data® write followed by a csrr x, data®, and a GPR read uses a csrw
data®, x followed by a data® read.

The debugger implements memory and CSR access using the Program Buffer, which uses the same
instruction injection interface used by the DM to implement abstract GPR access. The abstractauto
feature allows the DM to execute the program buffer automatically following every abstract GPR
access, which can be used for e.g. autoincrementing read/write memory bursts.

4.1. Implementation-defined behaviour
This is not an exhaustive list (yet).
DM feature support:

» Abstract CSR and memory access are not implemented
* The Program Buffer is implemented, size 2 words, impebreak = 1.

* A single data register (data@) is implemented as a per-hart CSR accessible by the DM

 abstractauto is supported on the program buffer registers and the data register

» Multiple hart selection (hasel = 1) is not supported

Core behaviour:

 All control transfer instructions are illegal in debug mode (depend on value of PC)

* auipc isillegal in debug mode (depends on value of PC)

* The dret instruction is not supported (a special purpose DM-to-core signal is used to signal

resume)

* Entering and exiting debug mode does not clear an atomic load reservation; the host may
explicitly clear a reservation using a dummy sc instruction via the program buffer.

* The dscratch CSRs are not implemented

* datal is implemented as a scratch CSR mapped at 0x7b2 (the location of dscratch@), readable and
writable by the debugger.

* desr.stepie is hardwired to 0 (no interrupts during single stepping)

* desr.stopcount and desr.stoptime are hardwired to 1 (no counter/timer increment in debug

mode)

* desr.mprven is hardwired to 0

e desr.prvis hardwired to 3 (M-mode)

4.2. UART DTM

Hazard3 defines a minimal UART Debug Transport Module, which allows the Debug Module to be
accessed via a standard 8nl asynchronous serial port. The UART DTM is always accessed by the
host using a two-wire serial interface (TXD RXD) running at 1 Mbaud. The interface between the
DTM and DM is an AMBA 3 APB port with a 32-bit data bus and 8-bit address bus.

This is a quick hack, and not suitable for production systems:

* Debug hardware should not expect a frequency reference for a UART to be present

* The UART DTM does not implement any flow control or error detection/correction

The host may send the following commands:

Command
0x00 NOP
0x01 Read ID

0x02 Read DMI
0x03 Write DMI

0xab Disconnect

To DTM

1 address byte
1 address byte, 4 data bytes

From DTM

4-byte ID, same format as JTAG-DTM
ID (JEP106-compatible)

4 data bytes
data bytes echoed back

Initially after power-on the DTM is in the Dormant state, and will ignore any commands. The host
sends the magic sequence "SUP?" (0x53, 0x55, 0x50, 0x3f) to wake the DTM, and then issues a Read
ID command to check the link is up. The DTM can be returned to the Dormant state at any time
using the @xa5 Disconnect command.

So that the host can queue up batches of commands in its transmit buffer, without overrunning the
DTM’s transmit bandwidth, it’s recommended to pad each command with NOPs so that it is strictly
larger than the response. For example, a Read ID should be followed by four NOPs, and a Read DMI
should be followed by 3 NOPs.

To recover command framing, write 6 NOP commands (the length of the longest commands). This
will be interpreted as between 1 and 6 NOPs depending on the DTM’s state.

This interface assumes the DMI data transfer takes very little time compared with the UART access
(typically less than one baud period). When the host-to-DTM bandwidth is kept greater than the
DTM-to-host bandwidth, thanks to appropriate NOP padding, the host can queue up batches of
commands in its transmit buffer, and this should never overrun the DTM’s response channel. So,
the 1 Mbaud 8n1 UART link provides 67 kB/s of half-duplex data bandwidth between host and DM,
which is enough to get your system off the ground.

10

	Hazard3
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Instruction Cycle Counts
	2.1. RV32I
	2.2. M Extension
	2.3. C Extension
	2.4. Privileged Instructions (including Zicsr)

	Chapter 3. CSRs
	3.1. Standard CSRs
	3.1.1. mvendorid
	3.1.2. marchid
	3.1.3. mimpid
	3.1.4. mstatus
	3.1.5. misa

	3.2. Custom CSRs
	3.2.1. midcr
	3.2.2. meie0
	3.2.3. meip0
	3.2.4. mlei
	3.2.5. Maybe-adds

	Chapter 4. Debug
	4.1. Implementation-defined behaviour
	4.2. UART DTM

