693 lines
19 KiB
C++
693 lines
19 KiB
C++
#include <iostream>
|
|
#include <fstream>
|
|
#include <cstdint>
|
|
#include <string>
|
|
#include <stdio.h>
|
|
|
|
#include <unistd.h>
|
|
#include <sys/socket.h>
|
|
#include <netinet/in.h>
|
|
|
|
// Device-under-test model generated by CXXRTL:
|
|
#include "dut.cpp"
|
|
#include <cxxrtl/cxxrtl_vcd.h>
|
|
|
|
// There must be a better way
|
|
#ifdef __x86_64__
|
|
#define I64_FMT "%ld"
|
|
#else
|
|
#define I64_FMT "%lld"
|
|
#endif
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
static const int MEM_SIZE = 16 * 1024 * 1024;
|
|
static const int N_RESERVATIONS = 2;
|
|
static const uint32_t RESERVATION_ADDR_MASK = 0xfffffff8u;
|
|
|
|
static const unsigned int IO_BASE = 0x80000000;
|
|
enum {
|
|
IO_PRINT_CHAR = 0x000,
|
|
IO_PRINT_U32 = 0x004,
|
|
IO_EXIT = 0x008,
|
|
IO_SET_SOFTIRQ = 0x010,
|
|
IO_CLR_SOFTIRQ = 0x014,
|
|
IO_GLOBMON_EN = 0x018,
|
|
IO_SET_IRQ = 0x020,
|
|
IO_CLR_IRQ = 0x030,
|
|
IO_MTIME = 0x100,
|
|
IO_MTIMEH = 0x104,
|
|
IO_MTIMECMP0 = 0x108,
|
|
IO_MTIMECMP0H = 0x10c,
|
|
IO_MTIMECMP1 = 0x110,
|
|
IO_MTIMECMP1H = 0x114
|
|
};
|
|
|
|
struct mem_io_state {
|
|
uint64_t mtime;
|
|
uint64_t mtimecmp[2];
|
|
|
|
bool exit_req;
|
|
uint32_t exit_code;
|
|
|
|
uint8_t *mem;
|
|
|
|
bool monitor_enabled;
|
|
bool reservation_valid[2];
|
|
uint32_t reservation_addr[2];
|
|
|
|
mem_io_state() {
|
|
mtime = 0;
|
|
mtimecmp[0] = 0;
|
|
mtimecmp[1] = 0;
|
|
exit_req = false;
|
|
exit_code = 0;
|
|
monitor_enabled = false;
|
|
for (int i = 0; i < N_RESERVATIONS; ++i) {
|
|
reservation_valid[i] = false;
|
|
reservation_addr[i] = 0;
|
|
}
|
|
mem = new uint8_t[MEM_SIZE];
|
|
for (size_t i = 0; i < MEM_SIZE; ++i)
|
|
mem[i] = 0;
|
|
}
|
|
|
|
// Where we're going we don't need a destructor B-)
|
|
|
|
void step(cxxrtl_design::p_example__soc &tb) {
|
|
// Default update logic for mtime, mtimecmp
|
|
++mtime;
|
|
// tb.p_timer__irq.set<uint8_t>((mtime >= mtimecmp[0]) | (mtime >= mtimecmp[1]) << 1);
|
|
}
|
|
};
|
|
|
|
typedef enum {
|
|
SIZE_BYTE = 0,
|
|
SIZE_HWORD = 1,
|
|
SIZE_WORD = 2
|
|
} bus_size_t;
|
|
|
|
struct bus_request {
|
|
uint32_t addr;
|
|
bus_size_t size;
|
|
bool write;
|
|
bool excl;
|
|
uint32_t wdata;
|
|
int reservation_id;
|
|
bus_request(): addr(0), size(SIZE_BYTE), write(0), excl(0), wdata(0), reservation_id(0) {}
|
|
};
|
|
|
|
struct bus_response {
|
|
uint32_t rdata;
|
|
int stall_cycles;
|
|
bool err;
|
|
bool exokay;
|
|
bus_response(): rdata(0), stall_cycles(0), err(false), exokay(true) {}
|
|
};
|
|
|
|
bus_response mem_access(cxxrtl_design::p_example__soc &tb, mem_io_state &memio, bus_request req) {
|
|
bus_response resp;
|
|
|
|
// Global monitor. When monitor is not enabled, HEXOKAY is tied high
|
|
if (memio.monitor_enabled) {
|
|
if (req.excl) {
|
|
// Always set reservation on read. Always clear reservation on
|
|
// write. On successful write, clear others' matching reservations.
|
|
if (req.write) {
|
|
resp.exokay = memio.reservation_valid[req.reservation_id] &&
|
|
memio.reservation_addr[req.reservation_id] == (req.addr & RESERVATION_ADDR_MASK);
|
|
memio.reservation_valid[req.reservation_id] = false;
|
|
if (resp.exokay) {
|
|
for (int i = 0; i < N_RESERVATIONS; ++i) {
|
|
if (i == req.reservation_id)
|
|
continue;
|
|
if (memio.reservation_addr[i] == (req.addr & RESERVATION_ADDR_MASK))
|
|
memio.reservation_valid[i] = false;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
resp.exokay = true;
|
|
memio.reservation_valid[req.reservation_id] = true;
|
|
memio.reservation_addr[req.reservation_id] = req.addr & RESERVATION_ADDR_MASK;
|
|
}
|
|
}
|
|
else {
|
|
resp.exokay = false;
|
|
// Non-exclusive write still clears others' reservations
|
|
if (req.write) {
|
|
for (int i = 0; i < N_RESERVATIONS; ++i) {
|
|
if (i == req.reservation_id)
|
|
continue;
|
|
if (memio.reservation_addr[i] == (req.addr & RESERVATION_ADDR_MASK))
|
|
memio.reservation_valid[i] = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (req.write) {
|
|
if (memio.monitor_enabled && req.excl && !resp.exokay) {
|
|
// Failed exclusive write; do nothing
|
|
}
|
|
else if (req.addr <= MEM_SIZE - 4u) {
|
|
unsigned int n_bytes = 1u << (int)req.size;
|
|
// Note we are relying on hazard3's byte lane replication
|
|
for (unsigned int i = 0; i < n_bytes; ++i) {
|
|
memio.mem[req.addr + i] = req.wdata >> (8 * i) & 0xffu;
|
|
}
|
|
}
|
|
else if (req.addr == IO_BASE + IO_PRINT_CHAR) {
|
|
putchar(req.wdata);
|
|
}
|
|
else if (req.addr == IO_BASE + IO_PRINT_U32) {
|
|
printf("%08x\n", req.wdata);
|
|
}
|
|
else if (req.addr == IO_BASE + IO_EXIT) {
|
|
if (!memio.exit_req) {
|
|
memio.exit_req = true;
|
|
memio.exit_code = req.wdata;
|
|
}
|
|
}
|
|
else if (req.addr == IO_BASE + IO_SET_SOFTIRQ) {
|
|
// tb.p_soft__irq.set<uint8_t>(tb.p_soft__irq.get<uint8_t>() | req.wdata);
|
|
}
|
|
else if (req.addr == IO_BASE + IO_CLR_SOFTIRQ) {
|
|
// tb.p_soft__irq.set<uint8_t>(tb.p_soft__irq.get<uint8_t>() & ~req.wdata);
|
|
}
|
|
else if (req.addr == IO_BASE + IO_GLOBMON_EN) {
|
|
memio.monitor_enabled = req.wdata;
|
|
}
|
|
else if (req.addr == IO_BASE + IO_SET_IRQ) {
|
|
// tb.p_irq.set<uint32_t>(tb.p_irq.get<uint32_t>() | req.wdata);
|
|
}
|
|
else if (req.addr == IO_BASE + IO_CLR_IRQ) {
|
|
// tb.p_irq.set<uint32_t>(tb.p_irq.get<uint32_t>() & ~req.wdata);
|
|
}
|
|
else if (req.addr == IO_BASE + IO_MTIME) {
|
|
memio.mtime = (memio.mtime & 0xffffffff00000000u) | req.wdata;
|
|
}
|
|
else if (req.addr == IO_BASE + IO_MTIMEH) {
|
|
memio.mtime = (memio.mtime & 0x00000000ffffffffu) | ((uint64_t)req.wdata << 32);
|
|
}
|
|
else if (req.addr == IO_BASE + IO_MTIMECMP0) {
|
|
memio.mtimecmp[0] = (memio.mtimecmp[0] & 0xffffffff00000000u) | req.wdata;
|
|
}
|
|
else if (req.addr == IO_BASE + IO_MTIMECMP0H) {
|
|
memio.mtimecmp[0] = (memio.mtimecmp[0] & 0x00000000ffffffffu) | ((uint64_t)req.wdata << 32);
|
|
}
|
|
else if (req.addr == IO_BASE + IO_MTIMECMP1) {
|
|
memio.mtimecmp[1] = (memio.mtimecmp[1] & 0xffffffff00000000u) | req.wdata;
|
|
}
|
|
else if (req.addr == IO_BASE + IO_MTIMECMP1H) {
|
|
memio.mtimecmp[1] = (memio.mtimecmp[1] & 0x00000000ffffffffu) | ((uint64_t)req.wdata << 32);
|
|
}
|
|
else {
|
|
resp.err = true;
|
|
}
|
|
}
|
|
else {
|
|
if (req.addr <= MEM_SIZE - (1u << (int)req.size)) {
|
|
req.addr &= ~0x3u;
|
|
resp.rdata =
|
|
(uint32_t)memio.mem[req.addr] |
|
|
memio.mem[req.addr + 1] << 8 |
|
|
memio.mem[req.addr + 2] << 16 |
|
|
memio.mem[req.addr + 3] << 24;
|
|
}
|
|
else if (req.addr == IO_BASE + IO_SET_SOFTIRQ || req.addr == IO_BASE + IO_CLR_SOFTIRQ) {
|
|
// resp.rdata = tb.p_soft__irq.get<uint8_t>();
|
|
}
|
|
else if (req.addr == IO_BASE + IO_SET_IRQ || req.addr == IO_BASE + IO_CLR_IRQ) {
|
|
// resp.rdata = tb.p_irq.get<uint32_t>();
|
|
}
|
|
else if (req.addr == IO_BASE + IO_MTIME) {
|
|
resp.rdata = memio.mtime;
|
|
}
|
|
else if (req.addr == IO_BASE + IO_MTIMEH) {
|
|
resp.rdata = memio.mtime >> 32;
|
|
}
|
|
else if (req.addr == IO_BASE + IO_MTIMECMP0) {
|
|
resp.rdata = memio.mtimecmp[0];
|
|
}
|
|
else if (req.addr == IO_BASE + IO_MTIMECMP0H) {
|
|
resp.rdata = memio.mtimecmp[0] >> 32;
|
|
}
|
|
else if (req.addr == IO_BASE + IO_MTIMECMP1) {
|
|
resp.rdata = memio.mtimecmp[1];
|
|
}
|
|
else if (req.addr == IO_BASE + IO_MTIMECMP1H) {
|
|
resp.rdata = memio.mtimecmp[1] >> 32;
|
|
}
|
|
else {
|
|
resp.err = true;
|
|
}
|
|
}
|
|
if (resp.err) {
|
|
resp.exokay = false;
|
|
}
|
|
return resp;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
const char *help_str =
|
|
"Usage: tb [--bin x.bin] [--port n] [--vcd x.vcd] [--dump start end] \\\n"
|
|
" [--cycles n] [--cpuret] [--jtagdump x] [--jtagreplay x]\n"
|
|
"\n"
|
|
" --bin x.bin : Flat binary file loaded to address 0x0 in RAM\n"
|
|
" --vcd x.vcd : Path to dump waveforms to\n"
|
|
" --dump start end : Print out memory contents from start to end (exclusive)\n"
|
|
" after execution finishes. Can be passed multiple times.\n"
|
|
" --cycles n : Maximum number of cycles to run before exiting.\n"
|
|
" Default is 0 (no maximum).\n"
|
|
" --port n : Port number to listen for openocd remote bitbang. Sim\n"
|
|
" runs in lockstep with JTAG bitbang, not free-running.\n"
|
|
" --cpuret : Testbench's return code is the return code written to\n"
|
|
" IO_EXIT by the CPU, or -1 if timed out.\n"
|
|
" --jtagdump : Dump OpenOCD JTAG bitbang commands to a file so they\n"
|
|
" can be replayed. (Lower perf impact than VCD dumping)\n"
|
|
" --jtagreplay : Play back some dumped OpenOCD JTAG bitbang commands\n"
|
|
;
|
|
|
|
void exit_help(std::string errtext = "") {
|
|
std::cerr << errtext << help_str;
|
|
exit(-1);
|
|
}
|
|
|
|
int wait_for_connection(int server_fd, uint16_t port, struct sockaddr *sock_addr, socklen_t *sock_addr_len) {
|
|
int sock_fd;
|
|
printf("Waiting for connection on port %u\n", port);
|
|
if (listen(server_fd, 3) < 0) {
|
|
fprintf(stderr, "listen failed\n");
|
|
exit(-1);
|
|
}
|
|
sock_fd = accept(server_fd, sock_addr, sock_addr_len);
|
|
if (sock_fd < 0) {
|
|
fprintf(stderr, "accept failed\n");
|
|
exit(-1);
|
|
}
|
|
printf("Connected\n");
|
|
return sock_fd;
|
|
}
|
|
|
|
static const int TCP_BUF_SIZE = 256;
|
|
|
|
int main(int argc, char **argv) {
|
|
|
|
bool load_bin = false;
|
|
std::string bin_path;
|
|
bool dump_waves = false;
|
|
std::string waves_path;
|
|
std::vector<std::pair<uint32_t, uint32_t>> dump_ranges;
|
|
int64_t max_cycles = 0;
|
|
bool propagate_return_code = false;
|
|
uint16_t port = 0;
|
|
bool dump_jtag = false;
|
|
std::string jtag_dump_path;
|
|
bool replay_jtag = false;
|
|
std::string jtag_replay_path;
|
|
|
|
for (int i = 1; i < argc; ++i) {
|
|
std::string s(argv[i]);
|
|
if (s.rfind("--", 0) != 0) {
|
|
std::cerr << "Unexpected positional argument " << s << "\n";
|
|
exit_help("");
|
|
}
|
|
else if (s == "--bin") {
|
|
if (argc - i < 2)
|
|
exit_help("Option --bin requires an argument\n");
|
|
load_bin = true;
|
|
bin_path = argv[i + 1];
|
|
i += 1;
|
|
}
|
|
else if (s == "--vcd") {
|
|
if (argc - i < 2)
|
|
exit_help("Option --vcd requires an argument\n");
|
|
dump_waves = true;
|
|
waves_path = argv[i + 1];
|
|
i += 1;
|
|
}
|
|
else if (s == "--jtagdump") {
|
|
if (argc - i < 2)
|
|
exit_help("Option --jtagdump requires an argument\n");
|
|
dump_jtag = true;
|
|
jtag_dump_path = argv[i + 1];
|
|
i += 1;
|
|
}
|
|
else if (s == "--jtagreplay") {
|
|
if (argc - i < 2)
|
|
exit_help("Option --jtagreplay requires an argument\n");
|
|
replay_jtag = true;
|
|
jtag_replay_path = argv[i + 1];
|
|
i += 1;
|
|
}
|
|
else if (s == "--dump") {
|
|
if (argc - i < 3)
|
|
exit_help("Option --dump requires 2 arguments\n");
|
|
dump_ranges.push_back(std::pair<uint32_t, uint32_t>(
|
|
std::stoul(argv[i + 1], 0, 0),
|
|
std::stoul(argv[i + 2], 0, 0)
|
|
));;
|
|
i += 2;
|
|
}
|
|
else if (s == "--cycles") {
|
|
if (argc - i < 2)
|
|
exit_help("Option --cycles requires an argument\n");
|
|
max_cycles = std::stol(argv[i + 1], 0, 0);
|
|
i += 1;
|
|
}
|
|
else if (s == "--port") {
|
|
if (argc - i < 2)
|
|
exit_help("Option --port requires an argument\n");
|
|
port = std::stol(argv[i + 1], 0, 0);
|
|
i += 1;
|
|
}
|
|
else if (s == "--cpuret") {
|
|
propagate_return_code = true;
|
|
}
|
|
else {
|
|
std::cerr << "Unrecognised argument " << s << "\n";
|
|
exit_help("");
|
|
}
|
|
}
|
|
if (!(load_bin || port != 0 || replay_jtag))
|
|
exit_help("At least one of --bin, --port or --jtagreplay must be specified.\n");
|
|
if (dump_jtag && port == 0)
|
|
exit_help("--jtagdump specified, but there is no JTAG socket to dump from.\n");
|
|
if (replay_jtag && port != 0)
|
|
exit_help("Can't specify both --port and --jtagreplay\n");
|
|
|
|
int server_fd, sock_fd;
|
|
struct sockaddr_in sock_addr;
|
|
int sock_opt = 1;
|
|
socklen_t sock_addr_len = sizeof(sock_addr);
|
|
char txbuf[TCP_BUF_SIZE], rxbuf[TCP_BUF_SIZE];
|
|
int rx_ptr = 0, rx_remaining = 0, tx_ptr = 0;
|
|
|
|
if (port != 0) {
|
|
server_fd = socket(AF_INET, SOCK_STREAM, 0);
|
|
if (server_fd == 0) {
|
|
fprintf(stderr, "socket creation failed\n");
|
|
exit(-1);
|
|
}
|
|
|
|
int setsockopt_rc = setsockopt(
|
|
server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT,
|
|
&sock_opt, sizeof(sock_opt)
|
|
);
|
|
|
|
if (setsockopt_rc) {
|
|
fprintf(stderr, "setsockopt failed\n");
|
|
exit(-1);
|
|
}
|
|
|
|
sock_addr.sin_family = AF_INET;
|
|
sock_addr.sin_addr.s_addr = INADDR_ANY;
|
|
sock_addr.sin_port = htons(port);
|
|
if (bind(server_fd, (struct sockaddr *)&sock_addr, sizeof(sock_addr)) < 0) {
|
|
fprintf(stderr, "bind failed\n");
|
|
exit(-1);
|
|
}
|
|
|
|
sock_fd = wait_for_connection(server_fd, port, (struct sockaddr *)&sock_addr, &sock_addr_len);
|
|
}
|
|
|
|
mem_io_state memio;
|
|
|
|
if (load_bin) {
|
|
std::ifstream fd(bin_path, std::ios::binary | std::ios::ate);
|
|
if (!fd){
|
|
std::cerr << "Failed to open \"" << bin_path << "\"\n";
|
|
return -1;
|
|
}
|
|
std::streamsize bin_size = fd.tellg();
|
|
if (bin_size > MEM_SIZE) {
|
|
std::cerr << "Binary file (" << bin_size << " bytes) is larger than memory (" << MEM_SIZE << " bytes)\n";
|
|
return -1;
|
|
}
|
|
fd.seekg(0, std::ios::beg);
|
|
fd.read((char*)memio.mem, bin_size);
|
|
}
|
|
|
|
std::ofstream jtag_dump_fd;
|
|
if (dump_jtag) {
|
|
jtag_dump_fd.open(jtag_dump_path);
|
|
if (!jtag_dump_fd.is_open()) {
|
|
std::cerr << "Failed to open \"" << jtag_dump_path << "\"\n";
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
std::ifstream jtag_replay_fd;
|
|
if (replay_jtag) {
|
|
jtag_replay_fd.open(jtag_replay_path);
|
|
if (!jtag_replay_fd.is_open()) {
|
|
std::cerr << "Failed to open \"" << jtag_replay_path << "\"\n";
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
cxxrtl_design::p_example__soc top;
|
|
|
|
std::ofstream waves_fd;
|
|
cxxrtl::vcd_writer vcd;
|
|
if (dump_waves) {
|
|
waves_fd.open(waves_path);
|
|
cxxrtl::debug_items all_debug_items;
|
|
top.debug_info(&all_debug_items, /*scopes=*/nullptr, "");
|
|
vcd.timescale(1, "us");
|
|
vcd.add(all_debug_items);
|
|
}
|
|
|
|
// Loop-carried address-phase requests
|
|
bus_request req_i;
|
|
bus_request req_d;
|
|
bool req_i_vld = false;
|
|
bool req_d_vld = false;
|
|
req_i.reservation_id = 0;
|
|
req_d.reservation_id = 1;
|
|
|
|
// Set bus interfaces to generate good IDLE responses at first
|
|
// top.p_i__hready.set<bool>(true);
|
|
// top.p_d__hready.set<bool>(true);
|
|
|
|
// Reset + initial clock pulse
|
|
|
|
top.step();
|
|
top.p_clk.set<bool>(true);
|
|
top.p_tck.set<bool>(true);
|
|
top.step();
|
|
top.p_clk.set<bool>(false);
|
|
top.p_tck.set<bool>(false);
|
|
top.p_trst__n.set<bool>(true);
|
|
top.p_rst__n.set<bool>(true);
|
|
top.step();
|
|
top.step(); // workaround for github.com/YosysHQ/yosys/issues/2780
|
|
|
|
bool timed_out = false;
|
|
for (int64_t cycle = 0; cycle < max_cycles || max_cycles == 0; ++cycle) {
|
|
top.p_clk.set<bool>(false);
|
|
top.step();
|
|
if (dump_waves)
|
|
vcd.sample(cycle * 2);
|
|
top.p_clk.set<bool>(true);
|
|
top.step();
|
|
top.step(); // workaround for github.com/YosysHQ/yosys/issues/2780
|
|
|
|
// If --port is specified, we run the simulator in lockstep with the
|
|
// remote bitbang commands, to get more consistent simulation traces.
|
|
// This slows down simulation quite a bit compared with normal
|
|
// free-running.
|
|
//
|
|
// Most bitbang commands complete in one cycle (e.g. TCK/TMS/TDI
|
|
// writes) but reads take 0 cycles, step=false.
|
|
bool got_exit_cmd = false;
|
|
bool step = false;
|
|
if (port != 0 or replay_jtag) {
|
|
while (!step) {
|
|
if (rx_remaining > 0) {
|
|
char c = rxbuf[rx_ptr++];
|
|
--rx_remaining;
|
|
|
|
if (c == 'r' || c == 's') {
|
|
top.p_trst__n.set<bool>(true);
|
|
step = true;
|
|
}
|
|
else if (c == 't' || c == 'u') {
|
|
top.p_trst__n.set<bool>(false);
|
|
}
|
|
else if (c >= '0' && c <= '7') {
|
|
int mask = c - '0';
|
|
top.p_tck.set<bool>(mask & 0x4);
|
|
top.p_tms.set<bool>(mask & 0x2);
|
|
top.p_tdi.set<bool>(mask & 0x1);
|
|
step = true;
|
|
}
|
|
else if (c == 'R') {
|
|
txbuf[tx_ptr++] = top.p_tdo.get<bool>() ? '1' : '0';
|
|
if (tx_ptr >= TCP_BUF_SIZE || rx_remaining == 0) {
|
|
send(sock_fd, txbuf, tx_ptr, 0);
|
|
tx_ptr = 0;
|
|
}
|
|
}
|
|
else if (c == 'Q') {
|
|
printf("OpenOCD sent quit command\n");
|
|
got_exit_cmd = true;
|
|
step = true;
|
|
}
|
|
}
|
|
else {
|
|
// Potentially the last command was not a read command, but
|
|
// OpenOCD is still waiting for a last response from its
|
|
// last command packet before it sends us any more, so now is
|
|
// the time to flush TX.
|
|
if (tx_ptr > 0) {
|
|
send(sock_fd, txbuf, tx_ptr, 0);
|
|
tx_ptr = 0;
|
|
}
|
|
rx_ptr = 0;
|
|
if (replay_jtag) {
|
|
rx_remaining = jtag_replay_fd.readsome(rxbuf, TCP_BUF_SIZE);
|
|
}
|
|
else {
|
|
rx_remaining = read(sock_fd, &rxbuf, TCP_BUF_SIZE);
|
|
}
|
|
if (dump_jtag && rx_remaining > 0) {
|
|
jtag_dump_fd.write(rxbuf, rx_remaining);
|
|
}
|
|
if (rx_remaining == 0) {
|
|
if (port == 0) {
|
|
// Presumably EOF, so quit.
|
|
got_exit_cmd = true;
|
|
}
|
|
else {
|
|
// The socket is closed. Wait for another connection.
|
|
sock_fd = wait_for_connection(server_fd, port, (struct sockaddr *)&sock_addr, &sock_addr_len);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
memio.step(top);
|
|
|
|
// The two bus ports are handled identically. This enables swapping out of
|
|
// various `tb.v` hardware integration files containing:
|
|
//
|
|
// - A single, dual-ported processor (instruction fetch, load/store ports)
|
|
// - A single, single-ported processor (instruction fetch + load/store muxed internally)
|
|
// - A pair of single-ported processors, for dual-core debug tests
|
|
|
|
// if (top.p_d__hready.get<bool>()) {
|
|
// // Clear bus error by default
|
|
// top.p_d__hresp.set<bool>(false);
|
|
|
|
// // Handle current data phase
|
|
// req_d.wdata = top.p_d__hwdata.get<uint32_t>();
|
|
// bus_response resp;
|
|
// if (req_d_vld)
|
|
// resp = mem_access(top, memio, req_d);
|
|
// else
|
|
// resp.exokay = !memio.monitor_enabled;
|
|
// if (resp.err) {
|
|
// // Phase 1 of error response
|
|
// top.p_d__hready.set<bool>(false);
|
|
// top.p_d__hresp.set<bool>(true);
|
|
// }
|
|
// top.p_d__hrdata.set<uint32_t>(resp.rdata);
|
|
// top.p_d__hexokay.set<bool>(resp.exokay);
|
|
|
|
// // Progress current address phase to data phase
|
|
// req_d_vld = top.p_d__htrans.get<uint8_t>() >> 1;
|
|
// req_d.write = top.p_d__hwrite.get<bool>();
|
|
// req_d.size = (bus_size_t)top.p_d__hsize.get<uint8_t>();
|
|
// req_d.addr = top.p_d__haddr.get<uint32_t>();
|
|
// req_d.excl = top.p_d__hexcl.get<bool>();
|
|
// }
|
|
// else {
|
|
// // hready=0. Currently this only happens when we're in the first
|
|
// // phase of an error response, so go to phase 2.
|
|
// top.p_d__hready.set<bool>(true);
|
|
// }
|
|
|
|
|
|
// if (top.p_i__hready.get<bool>()) {
|
|
// top.p_i__hresp.set<bool>(false);
|
|
|
|
// req_i.wdata = top.p_i__hwdata.get<uint32_t>();
|
|
// bus_response resp;
|
|
// if (req_i_vld)
|
|
// resp = mem_access(top, memio, req_i);
|
|
// else
|
|
// resp.exokay = !memio.monitor_enabled;
|
|
// if (resp.err) {
|
|
// // Phase 1 of error response
|
|
// top.p_i__hready.set<bool>(false);
|
|
// top.p_i__hresp.set<bool>(true);
|
|
// }
|
|
// top.p_i__hrdata.set<uint32_t>(resp.rdata);
|
|
// top.p_i__hexokay.set<bool>(resp.exokay);
|
|
|
|
// // Progress current address phase to data phase
|
|
// req_i_vld = top.p_i__htrans.get<uint8_t>() >> 1;
|
|
// req_i.write = top.p_i__hwrite.get<bool>();
|
|
// req_i.size = (bus_size_t)top.p_i__hsize.get<uint8_t>();
|
|
// req_i.addr = top.p_i__haddr.get<uint32_t>();
|
|
// req_i.excl = top.p_i__hexcl.get<bool>();
|
|
// }
|
|
// else {
|
|
// // hready=0. Currently this only happens when we're in the first
|
|
// // phase of an error response, so go to phase 2.
|
|
// top.p_i__hready.set<bool>(true);
|
|
// }
|
|
|
|
if (dump_waves) {
|
|
// The extra step() is just here to get the bus responses to line up nicely
|
|
// in the VCD (hopefully is a quick update)
|
|
top.step();
|
|
vcd.sample(cycle * 2 + 1);
|
|
waves_fd << vcd.buffer;
|
|
vcd.buffer.clear();
|
|
}
|
|
|
|
if (memio.exit_req) {
|
|
printf("CPU requested halt. Exit code %d\n", memio.exit_code);
|
|
printf("Ran for " I64_FMT " cycles\n", cycle + 1);
|
|
break;
|
|
}
|
|
if (cycle + 1 == max_cycles) {
|
|
printf("Max cycles reached\n");
|
|
timed_out = true;
|
|
}
|
|
if (got_exit_cmd)
|
|
break;
|
|
}
|
|
|
|
close(sock_fd);
|
|
if (dump_jtag) {
|
|
jtag_dump_fd.close();
|
|
}
|
|
if (replay_jtag) {
|
|
jtag_replay_fd.close();
|
|
}
|
|
|
|
for (auto r : dump_ranges) {
|
|
printf("Dumping memory from %08x to %08x:\n", r.first, r.second);
|
|
for (int i = 0; i < r.second - r.first; ++i)
|
|
printf("%02x%c", memio.mem[r.first + i], i % 16 == 15 ? '\n' : ' ');
|
|
printf("\n");
|
|
}
|
|
|
|
if (propagate_return_code && timed_out) {
|
|
return -1;
|
|
}
|
|
else if (propagate_return_code && memio.exit_req) {
|
|
return memio.exit_code;
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|