Hazard3/test/sim/rvcpp/rv.cpp

441 lines
10 KiB
C++

#include <cstdint>
#include <cassert>
#include <cstdio>
#include <iostream>
#include <fstream>
#include <optional>
#include <tuple>
#include <vector>
#include "rv_types.h"
#include "mem.h"
// Minimal RISC-V interpreter, supporting RV32IM only
// Use unsigned arithmetic everywhere, with explicit sign extension as required.
static inline ux_t sext(ux_t bits, int sign_bit) {
if (sign_bit >= XLEN - 1)
return bits;
else
return (bits & (1u << sign_bit + 1) - 1) - ((bits & 1u << sign_bit) << 1);
}
static inline ux_t imm_i(uint32_t instr) {
return (instr >> 20) - (instr >> 19 & 0x1000);
}
static inline ux_t imm_s(uint32_t instr) {
return (instr >> 20 & 0xfe0u)
+ (instr >> 7 & 0x1fu)
- (instr >> 19 & 0x1000u);
}
static inline ux_t imm_u(uint32_t instr) {
return instr & 0xfffff000u;
}
static inline ux_t imm_b(uint32_t instr) {
return (instr >> 7 & 0x1e)
+ (instr >> 20 & 0x7e0)
+ (instr << 4 & 0x800)
- (instr >> 19 & 0x1000);
}
static inline ux_t imm_j(uint32_t instr) {
return (instr >> 20 & 0x7fe)
+ (instr >> 9 & 0x800)
+ (instr & 0xff000)
- (instr >> 11 & 0x100000);
}
struct RVCSR {
enum {
WRITE = 0,
WRITE_SET = 1,
WRITE_CLEAR = 2
};
enum {
MSCRATCH = 0x340,
MCYCLE = 0xb00,
MTIME = 0xb01,
MINSTRET = 0xb02
};
ux_t mcycle;
ux_t mscratch;
RVCSR(): mcycle(0), mscratch(0) {}
void step() {++mcycle;}
ux_t read(uint16_t addr, bool side_effect=true) {
if (addr == MCYCLE || addr == MTIME || addr == MINSTRET)
return mcycle;
else if (addr == MSCRATCH)
return mscratch;
else
return 0;
}
void write(uint16_t addr, ux_t data, uint op=WRITE) {
if (op == WRITE_CLEAR)
data = read(addr, false) & ~data;
else if (op == WRITE_SET)
data = read(addr, false) | data;
if (addr == MCYCLE)
mcycle = data;
else if (addr == MSCRATCH)
mscratch = data;
}
};
struct RVCore {
std::array<ux_t, 32> regs;
ux_t pc;
RVCSR csr;
RVCore(ux_t reset_vector=0xc0) {
std::fill(std::begin(regs), std::end(regs), 0);
pc = reset_vector;
}
enum {
OPC_LOAD = 0b00'000,
OPC_MISC_MEM = 0b00'011,
OPC_OP_IMM = 0b00'100,
OPC_AUIPC = 0b00'101,
OPC_STORE = 0b01'000,
OPC_OP = 0b01'100,
OPC_LUI = 0b01'101,
OPC_BRANCH = 0b11'000,
OPC_JALR = 0b11'001,
OPC_JAL = 0b11'011,
OPC_SYSTEM = 0b11'100
};
void step(MemBase32 &mem) {
uint32_t instr = mem.r32(pc);
std::optional<ux_t> rd_wdata;
std::optional<ux_t> pc_wdata;
uint regnum_rs1 = instr >> 15 & 0x1f;
uint regnum_rs2 = instr >> 20 & 0x1f;
uint regnum_rd = instr >> 7 & 0x1f;
ux_t rs1 = regs[regnum_rs1];
ux_t rs2 = regs[regnum_rs2];
bool instr_invalid = false;
uint opc = instr >> 2 & 0x1f;
uint funct3 = instr >> 12 & 0x7;
uint funct7 = instr >> 25 & 0x7f;
switch (opc) {
case OPC_OP: {
if (funct7 == 0b00'00000) {
if (funct3 == 0b000)
rd_wdata = rs1 + rs2;
else if (funct3 == 0b001)
rd_wdata = rs1 << (rs2 & 0x1f);
else if (funct3 == 0b010)
rd_wdata = (sx_t)rs1 < (sx_t)rs2;
else if (funct3 == 0b011)
rd_wdata = rs1 < rs2;
else if (funct3 == 0b100)
rd_wdata = rs1 ^ rs2;
else if (funct3 == 0b101)
rd_wdata = rs1 >> (rs2 & 0x1f);
else if (funct3 == 0b110)
rd_wdata = rs1 | rs2;
else if (funct3 == 0b111)
rd_wdata = rs1 & rs2;
else
instr_invalid = true;
}
else if (funct7 == 0b01'00000) {
if (funct3 == 0b000)
rd_wdata = rs1 - rs2;
else if (funct3 == 0b101)
rd_wdata = (sx_t)rs1 >> (rs2 & 0x1f);
else
instr_invalid = true;
}
else if (funct7 == 0b00'00001) {
if (funct3 < 0b100) {
sdx_t mul_op_a = rs1;
sdx_t mul_op_b = rs2;
if (funct3 != 0b011)
mul_op_a -= (mul_op_a & (1 << XLEN - 1)) << 1;
if (funct3 < 0b010)
mul_op_b -= (mul_op_b & (1 << XLEN - 1)) << 1;
sdx_t mul_result = mul_op_a * mul_op_b;
if (funct3 == 0b000)
rd_wdata = mul_result;
else
rd_wdata = mul_result >> XLEN;
}
else {
asm volatile("" : : : "memory");
if (funct3 == 0b100) {
if (rs2 == 0)
rd_wdata = -1;
else if (rs2 == ~0u)
rd_wdata = -rs1;
else
rd_wdata = (sx_t)rs1 / (sx_t)rs2;
}
else if (funct3 == 0b101) {
rd_wdata = rs2 ? rs1 / rs2 : ~0ul;
}
else if (funct3 == 0b110) {
if (rs2 == 0)
rd_wdata = rs1;
else if (rs2 == ~0u) // potential overflow of division
rd_wdata = 0;
else
rd_wdata = (sx_t)rs1 % (sx_t)rs2;
}
else if (funct3 == 0b111) {
rd_wdata = rs2 ? rs1 % rs2 : rs1;
}
}
}
else {
instr_invalid = true;
}
break;
}
case OPC_OP_IMM: {
ux_t imm = imm_i(instr);
if (funct3 == 0b000)
rd_wdata = rs1 + imm;
else if (funct3 == 0b010)
rd_wdata = !!((sx_t)rs1 < (sx_t)imm);
else if (funct3 == 0b011)
rd_wdata = !!(rs1 < imm);
else if (funct3 == 0b100)
rd_wdata = rs1 ^ imm;
else if (funct3 == 0b110)
rd_wdata = rs1 | imm;
else if (funct3 == 0b111)
rd_wdata = rs1 & imm;
else if (funct3 == 0b001 || funct3 == 0b101) {
// shamt is regnum_rs2
if (funct7 == 0b00'00000 && funct3 == 0b001) {
rd_wdata = rs1 << regnum_rs2;
}
else if (funct7 == 0b00'00000 && funct3 == 0b101) {
rd_wdata = rs1 >> regnum_rs2;
}
else if (funct7 == 0b01'00000 && funct3 == 0b101) {
rd_wdata = (sx_t)rs1 >> regnum_rs2;
}
else {
instr_invalid = true;
}
}
else {
instr_invalid = true;
}
break;
}
case OPC_BRANCH: {
ux_t target = pc + imm_b(instr);
bool taken = false;
if ((funct3 & 0b110) == 0b000)
taken = rs1 == rs2;
else if ((funct3 & 0b110) == 0b100)
taken = (sx_t)rs1 < (sx_t) rs2;
else if ((funct3 & 0b110) == 0b110)
taken = rs1 < rs2;
else
instr_invalid = true;
if (!instr_invalid && funct3 & 0b001)
taken = !taken;
if (taken)
pc_wdata = target;
break;
}
case OPC_LOAD: {
ux_t load_addr = rs1 + imm_i(instr);
if (funct3 == 0b000)
rd_wdata = sext(mem.r8(load_addr), 7);
else if (funct3 == 0b001)
rd_wdata = sext(mem.r16(load_addr), 15);
else if (funct3 == 0b010)
rd_wdata = mem.r32(load_addr);
else if (funct3 == 0b100)
rd_wdata = mem.r8(load_addr);
else if (funct3 == 0b101)
rd_wdata = mem.r16(load_addr);
else
instr_invalid = true;
break;
}
case OPC_STORE: {
ux_t store_addr = rs1 + imm_s(instr);
if (funct3 == 0b000)
mem.w8(store_addr, rs2 & 0xffu);
else if (funct3 == 0b001)
mem.w16(store_addr, rs2 & 0xffffu);
else if (funct3 == 0b010)
mem.w32(store_addr, rs2);
else
instr_invalid = true;
break;
}
case OPC_JAL:
rd_wdata = pc + 4;
pc_wdata = pc + imm_j(instr);
break;
case OPC_JALR:
rd_wdata = pc + 4;
pc_wdata = (rs1 + imm_i(instr)) & -2u;
break;
case OPC_LUI:
rd_wdata = imm_u(instr);
break;
case OPC_AUIPC:
rd_wdata = pc + imm_u(instr);
break;
case OPC_SYSTEM: {
uint16_t csr_addr = instr >> 20;
if (funct3 >= 0b001 && funct3 <= 0b011) {
// csrrw, csrrs, csrrc
uint write_op = funct3 - 0b001;
if (write_op != RVCSR::WRITE || regnum_rd != 0)
rd_wdata = csr.read(csr_addr);
if (write_op == RVCSR::WRITE || regnum_rs1 != 0)
csr.write(csr_addr, rs1, write_op);
}
else if (funct3 >= 0b101 && funct3 <= 0b111) {
// csrrwi, csrrsi, csrrci
uint write_op = funct3 - 0b101;
if (write_op != RVCSR::WRITE || regnum_rd != 0)
rd_wdata = csr.read(csr_addr);
if (write_op == RVCSR::WRITE || regnum_rs1 != 0)
csr.write(csr_addr, regnum_rs1, write_op);
}
else {
instr_invalid = true;
}
break;
}
default:
instr_invalid = true;
break;
}
if (instr_invalid)
printf("Invalid instr %08x at %08x\n", instr, pc);
if (pc_wdata)
pc = *pc_wdata;
else
pc = pc + 4;
if (rd_wdata && regnum_rd != 0)
regs[regnum_rd] = *rd_wdata;
csr.step();
}
};
const char *help_str =
"Usage: tb binfile [--dump start end] [--cycles n]\n"
" binfile : Binary to load into start of memory\n"
" --dump start end : Print out memory contents between start and end (exclusive)\n"
" after execution finishes. Can be passed multiple times.\n"
" --cycles n : Maximum number of cycles to run before exiting.\n"
" --memsize n : Memory size in units of 1024 bytes, default is 16 MB\n"
;
void exit_help(std::string errtext = "") {
std::cerr << errtext << help_str;
exit(-1);
}
int main(int argc, char **argv) {
if (argc < 2)
exit_help();
std::vector<std::tuple<uint32_t, uint32_t>> dump_ranges;
int64_t max_cycles = 100000;
uint32_t ramsize = 16 * (1 << 20);
for (int i = 2; i < argc; ++i) {
std::string s(argv[i]);
if (s == "--dump") {
if (argc - i < 3)
exit_help("Option --dump requires 2 arguments\n");
dump_ranges.push_back(std::make_tuple(
std::stoul(argv[i + 1], 0, 0),
std::stoul(argv[i + 2], 0, 0)
));
i += 2;
}
else if (s == "--cycles") {
if (argc - i < 2)
exit_help("Option --cycles requires an argument\n");
max_cycles = std::stol(argv[i + 1], 0, 0);
i += 1;
}
else if (s == "--memsize") {
if (argc - i < 2)
exit_help("Option --memsize requires an argument\n");
ramsize = 1024 * std::stol(argv[i + 1], 0, 0);
i += 1;
}
else {
std::cerr << "Unrecognised argument " << s << "\n";
exit_help("");
}
}
FlatMem32 ram(ramsize);
TBMemIO io;
MemMap32 mem;
mem.add(0, ramsize, &ram);
mem.add(0x80000000u, 12, &io);
std::ifstream fd(argv[1], std::ios::binary | std::ios::ate);
std::streamsize bin_size = fd.tellg();
if (bin_size > ramsize) {
std::cerr << "Binary file (" << bin_size << " bytes) is larger than memory (" << ramsize << " bytes)\n";
return -1;
}
fd.seekg(0, std::ios::beg);
fd.read((char*)ram.mem, bin_size);
RVCore core;
int64_t cyc;
try {
for (cyc = 0; cyc < max_cycles; ++cyc)
core.step(mem);
}
catch (TBExitException e) {
printf("CPU requested halt. Exit code %d\n", e.exitcode);
printf("Ran for %ld cycles\n", cyc + 1);
}
for (auto [start, end] : dump_ranges) {
printf("Dumping memory from %08x to %08x:\n", start, end);
for (uint32_t i = 0; i < end - start; ++i)
printf("%02x%c", mem.r8(start + i), i % 16 == 15 ? '\n' : ' ');
printf("\n");
}
return 0;
}