Hazard3/hdl/hazard3_decode.v

423 lines
25 KiB
Verilog

/*****************************************************************************\
| Copyright (C) 2021-2023 Luke Wren |
| SPDX-License-Identifier: Apache-2.0 |
\*****************************************************************************/
`default_nettype none
module hazard3_decode #(
`include "hazard3_config.vh"
,
`include "hazard3_width_const.vh"
) (
input wire clk,
input wire rst_n,
input wire [31:0] fd_cir,
input wire [1:0] fd_cir_err,
input wire [1:0] fd_cir_predbranch,
input wire [1:0] fd_cir_vld,
output wire [1:0] df_cir_use,
output wire df_cir_flush_behind,
output wire [3:0] df_uop_step_next,
output wire [W_ADDR-1:0] d_pc,
input wire debug_mode,
input wire m_mode,
input wire trap_wfi,
input wire [W_ADDR-1:0] debug_dpc_wdata,
input wire debug_dpc_wen,
output wire [W_ADDR-1:0] debug_dpc_rdata,
output wire d_starved,
input wire x_stall,
input wire f_jump_now,
input wire [W_ADDR-1:0] f_jump_target,
input wire x_jump_not_except,
input wire [W_ADDR-1:0] d_btb_target_addr,
output reg [W_DATA-1:0] d_imm,
output reg [W_REGADDR-1:0] d_rs1,
output reg [W_REGADDR-1:0] d_rs2,
output reg [W_REGADDR-1:0] d_rd,
output reg [2:0] d_funct3_32b,
output reg [6:0] d_funct7_32b,
output reg [W_ALUSRC-1:0] d_alusrc_a,
output reg [W_ALUSRC-1:0] d_alusrc_b,
output reg [W_ALUOP-1:0] d_aluop,
output reg [W_MEMOP-1:0] d_memop,
output reg [W_MULOP-1:0] d_mulop,
output reg d_csr_ren,
output reg d_csr_wen,
output reg [1:0] d_csr_wtype,
output reg d_csr_w_imm,
output reg [W_BCOND-1:0] d_branchcond,
output reg [W_ADDR-1:0] d_addr_offs,
output reg d_addr_is_regoffs,
output reg [W_EXCEPT-1:0] d_except,
output reg d_sleep_wfi,
output reg d_sleep_block,
output reg d_sleep_unblock,
output wire d_no_pc_increment,
output wire d_uninterruptible,
output reg d_fence_i
);
`include "rv_opcodes.vh"
`include "hazard3_ops.vh"
localparam HAVE_CSR = CSR_M_MANDATORY || CSR_M_TRAP || CSR_COUNTER;
// ----------------------------------------------------------------------------
// Expand compressed instructions
wire [31:0] d_instr;
wire d_instr_is_32bit;
wire d_invalid_16bit;
reg d_invalid_32bit;
wire d_invalid = d_invalid_16bit || d_invalid_32bit;
wire uop_nonfinal;
wire uop_uninterruptible;
wire uop_stall;
wire uop_clear;
hazard3_instr_decompress #(
`include "hazard3_config_inst.vh"
) decomp (
.clk (clk),
.rst_n (rst_n),
.instr_in (fd_cir),
.instr_is_32bit (d_instr_is_32bit),
.instr_out (d_instr),
.instr_out_uop_nonfinal (uop_nonfinal),
.instr_out_uop_uninterruptible (uop_uninterruptible),
.instr_out_uop_stall (uop_stall),
.instr_out_uop_clear (uop_clear),
.df_uop_step_next (df_uop_step_next),
.invalid (d_invalid_16bit)
);
assign d_uninterruptible = uop_uninterruptible && !d_invalid;
assign d_no_pc_increment = uop_nonfinal && !d_invalid;
assign uop_stall = x_stall || d_starved;
assign uop_clear = f_jump_now;
// Decode various immmediate formats
wire [31:0] d_imm_i = {{21{d_instr[31]}}, d_instr[30:20]};
wire [31:0] d_imm_s = {{21{d_instr[31]}}, d_instr[30:25], d_instr[11:7]};
wire [31:0] d_imm_b = {{20{d_instr[31]}}, d_instr[7], d_instr[30:25], d_instr[11:8], 1'b0};
wire [31:0] d_imm_u = {d_instr[31:12], {12{1'b0}}};
wire [31:0] d_imm_j = {{12{d_instr[31]}}, d_instr[19:12], d_instr[20], d_instr[30:21], 1'b0};
// ----------------------------------------------------------------------------
// PC/CIR control
// Must not flag bus error for a valid 16-bit instruction *followed by* an
// error, because instruction fetch errors are speculative, and can be
// flushed by e.g. a branch instruction. Note the 16 LSBs must be valid for
// us to know an instruction's size.
wire d_except_instr_bus_fault = fd_cir_vld > 2'd0 && fd_cir_err[0] ||
fd_cir_vld > 2'd1 && d_instr_is_32bit && fd_cir_err[1];
assign d_starved = ~|fd_cir_vld || fd_cir_vld[0] && d_instr_is_32bit;
wire d_stall = x_stall || d_starved || uop_nonfinal;
assign df_cir_use =
d_starved || d_stall ? 2'h0 :
d_instr_is_32bit ? 2'h2 : 2'h1;
// CIR Locking is required if we successfully assert a jump request, but
// decode is stalled. It is not possible to gate the jump request if the
// stall depends on bus stall (as this would create a through-path from bus
// stall to bus request) so instead we instruct the frontent to preserve the
// stalled instruction when flushing, and fill in behind it.
//
// Once the stall clears, the stalled instruction can execute its remaining
// side effects e.g. writing a link value to the register file.
wire jump_caused_by_d = f_jump_now && x_jump_not_except;
wire assert_cir_lock = jump_caused_by_d && d_stall;
wire deassert_cir_lock = !d_stall;
reg cir_lock_prev;
wire cir_lock = (cir_lock_prev && !deassert_cir_lock) || assert_cir_lock;
assign df_cir_flush_behind = assert_cir_lock && !cir_lock_prev;
always @ (posedge clk or negedge rst_n) begin
if (!rst_n) begin
cir_lock_prev <= 1'b0;
end else begin
cir_lock_prev <= cir_lock;
end
end
reg [W_ADDR-1:0] pc;
wire [W_ADDR-1:0] pc_seq_next = pc + (
|EXTENSION_ZCMP && uop_nonfinal ? 32'h0 :
d_instr_is_32bit ? 32'h4 : 32'h2
);
assign d_pc = pc;
assign debug_dpc_rdata = pc;
// Frontend should mark the whole instruction, and nothing but the
// instruction, as a predicted branch. This goes wrong when we execute the
// address containing the predicted branch twice with different 16-bit
// alignments (!). We need to issue a branch-to-self to get back on a linear
// path, otherwise PC and CIR will diverge and we will misexecute.
wire partial_predicted_branch = !d_starved &&
|BRANCH_PREDICTOR && d_instr_is_32bit && ^fd_cir_predbranch;
wire predicted_branch = |BRANCH_PREDICTOR && fd_cir_predbranch[0];
always @ (posedge clk or negedge rst_n) begin
if (!rst_n) begin
pc <= RESET_VECTOR;
end else begin
if (debug_dpc_wen) begin
pc <= debug_dpc_wdata;
end else if (debug_mode) begin
pc <= pc;
end else if ((f_jump_now && !assert_cir_lock) || (cir_lock_prev && deassert_cir_lock)) begin
pc <= f_jump_target;
end else if (!d_stall && !cir_lock) begin
// If this instruction is a predicted-taken branch (and has not
// generated a mispredict recovery jump) then set PC to the
// prediction target instead of the sequentially next PC
pc <= predicted_branch ? d_btb_target_addr : pc_seq_next;
end
end
end
wire [W_ADDR-1:0] branch_offs =
!d_instr_is_32bit && fd_cir_predbranch[0] && |BRANCH_PREDICTOR ? 32'h2 :
d_instr_is_32bit && fd_cir_predbranch[1] && |BRANCH_PREDICTOR ? 32'h4 : d_imm_b;
always @ (*) begin
casez ({|EXTENSION_A, |EXTENSION_ZIFENCEI, d_instr[6:2]})
{1'bz, 1'bz, 5'b11011}: d_addr_offs = d_imm_j ; // JAL
{1'bz, 1'bz, 5'b11000}: d_addr_offs = branch_offs ; // Branches
{1'bz, 1'bz, 5'b01000}: d_addr_offs = d_imm_s ; // Store
{1'bz, 1'bz, 5'b11001}: d_addr_offs = d_imm_i ; // JALR
{1'bz, 1'bz, 5'b00000}: d_addr_offs = d_imm_i ; // Loads
{1'b1, 1'bz, 5'b01011}: d_addr_offs = 32'h0000_0000; // Atomics
{1'bz, 1'b1, 5'b00011}: d_addr_offs = 32'h0000_0004; // Zifencei
default: d_addr_offs = 32'hxxxx_xxxx;
endcase
if (partial_predicted_branch) begin
d_addr_offs = 32'h0000_0000;
end
end
// ----------------------------------------------------------------------------
// Decode X controls
localparam X0 = {W_REGADDR{1'b0}};
always @ (*) begin
// Assign some defaults
d_rs1 = d_instr[19:15];
d_rs2 = d_instr[24:20];
d_rd = d_instr[11: 7];
d_imm = d_imm_i;
d_alusrc_a = ALUSRCA_RS1;
d_alusrc_b = ALUSRCB_RS2;
d_aluop = ALUOP_ADD;
d_memop = MEMOP_NONE;
d_mulop = M_OP_MUL;
d_csr_ren = 1'b0;
d_csr_wen = 1'b0;
d_csr_wtype = CSR_WTYPE_W;
d_csr_w_imm = 1'b0;
d_branchcond = BCOND_NEVER;
d_addr_is_regoffs = 1'b0;
d_invalid_32bit = 1'b0;
d_except = EXCEPT_NONE;
d_sleep_wfi = 1'b0;
d_sleep_block = 1'b0;
d_sleep_unblock = 1'b0;
d_fence_i = 1'b0;
// Note this funct3/funct7 are valid only for 32-bit instructions. They
// are useful for clusters of related ALU ops, such as sh*add, clmul.
d_funct3_32b = fd_cir[14:12];
d_funct7_32b = fd_cir[31:25];
casez (d_instr)
`RVOPC_BEQ: begin d_invalid_32bit = DEBUG_SUPPORT && debug_mode; d_rd = X0; d_aluop = ALUOP_SUB; d_branchcond = BCOND_ZERO; end
`RVOPC_BNE: begin d_invalid_32bit = DEBUG_SUPPORT && debug_mode; d_rd = X0; d_aluop = ALUOP_SUB; d_branchcond = BCOND_NZERO; end
`RVOPC_BLT: begin d_invalid_32bit = DEBUG_SUPPORT && debug_mode; d_rd = X0; d_aluop = ALUOP_LT; d_branchcond = BCOND_NZERO; end
`RVOPC_BGE: begin d_invalid_32bit = DEBUG_SUPPORT && debug_mode; d_rd = X0; d_aluop = ALUOP_LT; d_branchcond = BCOND_ZERO; end
`RVOPC_BLTU: begin d_invalid_32bit = DEBUG_SUPPORT && debug_mode; d_rd = X0; d_aluop = ALUOP_LTU; d_branchcond = BCOND_NZERO; end
`RVOPC_BGEU: begin d_invalid_32bit = DEBUG_SUPPORT && debug_mode; d_rd = X0; d_aluop = ALUOP_LTU; d_branchcond = BCOND_ZERO; end
`RVOPC_JALR: begin d_invalid_32bit = DEBUG_SUPPORT && debug_mode; d_branchcond = BCOND_ALWAYS; d_addr_is_regoffs = 1'b1; d_rs2 = X0; d_aluop = ALUOP_ADD; d_alusrc_a = ALUSRCA_PC; d_alusrc_b = ALUSRCB_IMM; d_imm = d_instr_is_32bit ? 32'h4 : 32'h2; end
`RVOPC_JAL: begin d_invalid_32bit = DEBUG_SUPPORT && debug_mode; d_branchcond = BCOND_ALWAYS; d_rs1 = X0; d_rs2 = X0; d_aluop = ALUOP_ADD; d_alusrc_a = ALUSRCA_PC; d_alusrc_b = ALUSRCB_IMM; d_imm = d_instr_is_32bit ? 32'h4 : 32'h2; end
`RVOPC_LUI: begin d_aluop = ALUOP_RS2; d_imm = d_imm_u; d_alusrc_b = ALUSRCB_IMM; d_rs2 = X0; d_rs1 = X0; end
`RVOPC_AUIPC: begin d_invalid_32bit = DEBUG_SUPPORT && debug_mode; d_aluop = ALUOP_ADD; d_imm = d_imm_u; d_alusrc_b = ALUSRCB_IMM; d_rs2 = X0; d_alusrc_a = ALUSRCA_PC; d_rs1 = X0; end
`RVOPC_ADDI: begin d_aluop = ALUOP_ADD; d_imm = d_imm_i; d_alusrc_b = ALUSRCB_IMM; d_rs2 = X0; end
`RVOPC_SLLI: begin d_aluop = ALUOP_SLL; d_imm = d_imm_i; d_alusrc_b = ALUSRCB_IMM; d_rs2 = X0; end
`RVOPC_SLTI: begin d_aluop = ALUOP_LT; d_imm = d_imm_i; d_alusrc_b = ALUSRCB_IMM; d_rs2 = X0; end
`RVOPC_SLTIU: begin d_aluop = ALUOP_LTU; d_imm = d_imm_i; d_alusrc_b = ALUSRCB_IMM; d_rs2 = X0; end
`RVOPC_XORI: begin d_aluop = ALUOP_XOR; d_imm = d_imm_i; d_alusrc_b = ALUSRCB_IMM; d_rs2 = X0; end
`RVOPC_SRLI: begin d_aluop = ALUOP_SRL; d_imm = d_imm_i; d_alusrc_b = ALUSRCB_IMM; d_rs2 = X0; end
`RVOPC_SRAI: begin d_aluop = ALUOP_SRA; d_imm = d_imm_i; d_alusrc_b = ALUSRCB_IMM; d_rs2 = X0; end
`RVOPC_ORI: begin d_aluop = ALUOP_OR; d_imm = d_imm_i; d_alusrc_b = ALUSRCB_IMM; d_rs2 = X0; end
`RVOPC_ANDI: begin d_aluop = ALUOP_AND; d_imm = d_imm_i; d_alusrc_b = ALUSRCB_IMM; d_rs2 = X0; end
`RVOPC_ADD: begin d_aluop = ALUOP_ADD; end
`RVOPC_SUB: begin d_aluop = ALUOP_SUB; end
`RVOPC_SLL: begin d_aluop = ALUOP_SLL; end
`RVOPC_SLTU: begin d_aluop = ALUOP_LTU; end
`RVOPC_XOR: begin d_aluop = ALUOP_XOR; end
`RVOPC_SRL: begin d_aluop = ALUOP_SRL; end
`RVOPC_SRA: begin d_aluop = ALUOP_SRA; end
`RVOPC_OR: begin d_aluop = ALUOP_OR; end
`RVOPC_AND: begin d_aluop = ALUOP_AND; end
`RVOPC_LB: begin d_addr_is_regoffs = 1'b1; d_rs2 = X0; d_memop = MEMOP_LB; end
`RVOPC_LH: begin d_addr_is_regoffs = 1'b1; d_rs2 = X0; d_memop = MEMOP_LH; end
`RVOPC_LW: begin d_addr_is_regoffs = 1'b1; d_rs2 = X0; d_memop = MEMOP_LW; end
`RVOPC_LBU: begin d_addr_is_regoffs = 1'b1; d_rs2 = X0; d_memop = MEMOP_LBU; end
`RVOPC_LHU: begin d_addr_is_regoffs = 1'b1; d_rs2 = X0; d_memop = MEMOP_LHU; end
`RVOPC_SB: begin d_addr_is_regoffs = 1'b1; d_aluop = ALUOP_RS2; d_memop = MEMOP_SB; d_rd = X0; end
`RVOPC_SH: begin d_addr_is_regoffs = 1'b1; d_aluop = ALUOP_RS2; d_memop = MEMOP_SH; d_rd = X0; end
`RVOPC_SW: begin d_addr_is_regoffs = 1'b1; d_aluop = ALUOP_RS2; d_memop = MEMOP_SW; d_rd = X0; end
`RVOPC_SLT: begin
d_aluop = ALUOP_LT;
if (|EXTENSION_XH3POWER && ~|d_rd && ~|d_rs1) begin
if (d_rs2 == 5'h00) begin
// h3.block (power management hint)
d_invalid_32bit = trap_wfi;
d_sleep_block = !trap_wfi;
end else if (d_rs2 == 5'h01) begin
// h3.unblock (power management hint)
d_invalid_32bit = trap_wfi;
d_sleep_unblock = !trap_wfi;
end
end
end
`RVOPC_MUL: if (EXTENSION_M) begin d_aluop = ALUOP_MULDIV; d_mulop = M_OP_MUL; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_MULH: if (EXTENSION_M) begin d_aluop = ALUOP_MULDIV; d_mulop = M_OP_MULH; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_MULHSU: if (EXTENSION_M) begin d_aluop = ALUOP_MULDIV; d_mulop = M_OP_MULHSU; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_MULHU: if (EXTENSION_M) begin d_aluop = ALUOP_MULDIV; d_mulop = M_OP_MULHU; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_DIV: if (EXTENSION_M) begin d_aluop = ALUOP_MULDIV; d_mulop = M_OP_DIV; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_DIVU: if (EXTENSION_M) begin d_aluop = ALUOP_MULDIV; d_mulop = M_OP_DIVU; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_REM: if (EXTENSION_M) begin d_aluop = ALUOP_MULDIV; d_mulop = M_OP_REM; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_REMU: if (EXTENSION_M) begin d_aluop = ALUOP_MULDIV; d_mulop = M_OP_REMU; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_LR_W: if (EXTENSION_A) begin d_addr_is_regoffs = 1'b1; d_memop = MEMOP_LR_W; d_rs2 = X0; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_SC_W: if (EXTENSION_A) begin d_addr_is_regoffs = 1'b1; d_memop = MEMOP_SC_W; d_aluop = ALUOP_RS2; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_AMOSWAP_W: if (EXTENSION_A) begin d_addr_is_regoffs = 1'b1; d_memop = MEMOP_AMO; d_aluop = ALUOP_RS2; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_AMOADD_W: if (EXTENSION_A) begin d_addr_is_regoffs = 1'b1; d_memop = MEMOP_AMO; d_aluop = ALUOP_ADD; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_AMOXOR_W: if (EXTENSION_A) begin d_addr_is_regoffs = 1'b1; d_memop = MEMOP_AMO; d_aluop = ALUOP_XOR; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_AMOAND_W: if (EXTENSION_A) begin d_addr_is_regoffs = 1'b1; d_memop = MEMOP_AMO; d_aluop = ALUOP_AND; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_AMOOR_W: if (EXTENSION_A) begin d_addr_is_regoffs = 1'b1; d_memop = MEMOP_AMO; d_aluop = ALUOP_OR; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_AMOMIN_W: if (EXTENSION_A) begin d_addr_is_regoffs = 1'b1; d_memop = MEMOP_AMO; d_aluop = ALUOP_MIN; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_AMOMAX_W: if (EXTENSION_A) begin d_addr_is_regoffs = 1'b1; d_memop = MEMOP_AMO; d_aluop = ALUOP_MAX; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_AMOMINU_W: if (EXTENSION_A) begin d_addr_is_regoffs = 1'b1; d_memop = MEMOP_AMO; d_aluop = ALUOP_MINU; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_AMOMAXU_W: if (EXTENSION_A) begin d_addr_is_regoffs = 1'b1; d_memop = MEMOP_AMO; d_aluop = ALUOP_MAXU; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_SH1ADD: if (EXTENSION_ZBA) begin d_aluop = ALUOP_SHXADD; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_SH2ADD: if (EXTENSION_ZBA) begin d_aluop = ALUOP_SHXADD; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_SH3ADD: if (EXTENSION_ZBA) begin d_aluop = ALUOP_SHXADD; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_ANDN: if (EXTENSION_ZBB) begin d_aluop = ALUOP_ANDN; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_CLZ: if (EXTENSION_ZBB) begin d_aluop = ALUOP_CLZ; d_rs2 = X0; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_CPOP: if (EXTENSION_ZBB) begin d_aluop = ALUOP_CPOP; d_rs2 = X0; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_CTZ: if (EXTENSION_ZBB) begin d_aluop = ALUOP_CTZ; d_rs2 = X0; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_MAX: if (EXTENSION_ZBB) begin d_aluop = ALUOP_MAX; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_MAXU: if (EXTENSION_ZBB) begin d_aluop = ALUOP_MAXU; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_MIN: if (EXTENSION_ZBB) begin d_aluop = ALUOP_MIN; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_MINU: if (EXTENSION_ZBB) begin d_aluop = ALUOP_MINU; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_ORC_B: if (EXTENSION_ZBB) begin d_aluop = ALUOP_ORC_B; d_rs2 = X0; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_ORN: if (EXTENSION_ZBB) begin d_aluop = ALUOP_ORN; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_REV8: if (EXTENSION_ZBB) begin d_aluop = ALUOP_REV8; d_rs2 = X0; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_ROL: if (EXTENSION_ZBB) begin d_aluop = ALUOP_ROL; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_ROR: if (EXTENSION_ZBB) begin d_aluop = ALUOP_ROR; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_RORI: if (EXTENSION_ZBB) begin d_aluop = ALUOP_ROR; d_rs2 = X0; d_imm = d_imm_i; d_alusrc_b = ALUSRCB_IMM; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_SEXT_B: if (EXTENSION_ZBB) begin d_aluop = ALUOP_SEXT_B; d_rs2 = X0; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_SEXT_H: if (EXTENSION_ZBB) begin d_aluop = ALUOP_SEXT_H; d_rs2 = X0; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_XNOR: if (EXTENSION_ZBB) begin d_aluop = ALUOP_XNOR; end else begin d_invalid_32bit = 1'b1; end
// Note: ZEXT_H is a subset of PACK from Zbkb. This is fine as long as
// this case appears first, since Zbkb implies Zbb on Hazard3.
`RVOPC_ZEXT_H: if (EXTENSION_ZBB) begin d_aluop = ALUOP_ZEXT_H; d_rs2 = X0; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_CLMUL: if (EXTENSION_ZBC) begin d_aluop = ALUOP_CLMUL; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_CLMULH: if (EXTENSION_ZBC) begin d_aluop = ALUOP_CLMUL; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_CLMULR: if (EXTENSION_ZBC) begin d_aluop = ALUOP_CLMUL; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_BCLR: if (EXTENSION_ZBS) begin d_aluop = ALUOP_BCLR; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_BCLRI: if (EXTENSION_ZBS) begin d_aluop = ALUOP_BCLR; d_rs2 = X0; d_imm = d_imm_i; d_alusrc_b = ALUSRCB_IMM; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_BEXT: if (EXTENSION_ZBS) begin d_aluop = ALUOP_BEXT; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_BEXTI: if (EXTENSION_ZBS) begin d_aluop = ALUOP_BEXT; d_rs2 = X0; d_imm = d_imm_i; d_alusrc_b = ALUSRCB_IMM; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_BINV: if (EXTENSION_ZBS) begin d_aluop = ALUOP_BINV; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_BINVI: if (EXTENSION_ZBS) begin d_aluop = ALUOP_BINV; d_rs2 = X0; d_imm = d_imm_i; d_alusrc_b = ALUSRCB_IMM; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_BSET: if (EXTENSION_ZBS) begin d_aluop = ALUOP_BSET; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_BSETI: if (EXTENSION_ZBS) begin d_aluop = ALUOP_BSET; d_rs2 = X0; d_imm = d_imm_i; d_alusrc_b = ALUSRCB_IMM; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_PACK: if (EXTENSION_ZBKB) begin d_aluop = ALUOP_PACK; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_PACKH: if (EXTENSION_ZBKB) begin d_aluop = ALUOP_PACKH; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_BREV8: if (EXTENSION_ZBKB) begin d_aluop = ALUOP_BREV8; d_rs2 = X0; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_UNZIP: if (EXTENSION_ZBKB) begin d_aluop = ALUOP_UNZIP; d_rs2 = X0; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_ZIP: if (EXTENSION_ZBKB) begin d_aluop = ALUOP_ZIP; d_rs2 = X0; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_H3_BEXTM: if (EXTENSION_XH3BEXTM) begin d_aluop = ALUOP_BEXTM; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_H3_BEXTMI: if (EXTENSION_XH3BEXTM) begin d_aluop = ALUOP_BEXTM; d_rs2 = X0; d_imm = d_imm_i; d_alusrc_b = ALUSRCB_IMM; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_FENCE: begin d_rs2 = X0; end // NOP, note rs1/rd are zero in instruction
`RVOPC_FENCE_I: if (EXTENSION_ZIFENCEI) begin d_invalid_32bit = DEBUG_SUPPORT && debug_mode; d_branchcond = BCOND_ALWAYS; d_fence_i = 1'b1; end else begin d_invalid_32bit = 1'b1; end // note rs1/rs2/rd are zero in instruction
`RVOPC_CSRRW: if (HAVE_CSR) begin d_imm = d_imm_i; d_csr_wen = 1'b1 ; d_csr_ren = |d_rd; d_csr_wtype = CSR_WTYPE_W; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_CSRRS: if (HAVE_CSR) begin d_imm = d_imm_i; d_csr_wen = |d_rs1; d_csr_ren = 1'b1 ; d_csr_wtype = CSR_WTYPE_S; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_CSRRC: if (HAVE_CSR) begin d_imm = d_imm_i; d_csr_wen = |d_rs1; d_csr_ren = 1'b1 ; d_csr_wtype = CSR_WTYPE_C; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_CSRRWI: if (HAVE_CSR) begin d_imm = d_imm_i; d_csr_wen = 1'b1 ; d_csr_ren = |d_rd; d_csr_wtype = CSR_WTYPE_W; d_csr_w_imm = 1'b1; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_CSRRSI: if (HAVE_CSR) begin d_imm = d_imm_i; d_csr_wen = |d_rs1; d_csr_ren = 1'b1 ; d_csr_wtype = CSR_WTYPE_S; d_csr_w_imm = 1'b1; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_CSRRCI: if (HAVE_CSR) begin d_imm = d_imm_i; d_csr_wen = |d_rs1; d_csr_ren = 1'b1 ; d_csr_wtype = CSR_WTYPE_C; d_csr_w_imm = 1'b1; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_ECALL: if (HAVE_CSR) begin d_except = m_mode || !U_MODE ? EXCEPT_ECALL_M : EXCEPT_ECALL_U; d_rs2 = X0; d_rs1 = X0; d_rd = X0; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_EBREAK: if (HAVE_CSR) begin d_except = EXCEPT_EBREAK; d_rs2 = X0; d_rs1 = X0; d_rd = X0; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_MRET: if (HAVE_CSR && m_mode) begin d_except = EXCEPT_MRET; d_rs2 = X0; d_rs1 = X0; d_rd = X0; end else begin d_invalid_32bit = 1'b1; end
`RVOPC_WFI: if (HAVE_CSR && !trap_wfi) begin d_sleep_wfi = 1'b1; d_rs2 = X0; d_rs1 = X0; d_rd = X0; end else begin d_invalid_32bit = 1'b1; end
default: begin d_invalid_32bit = 1'b1; end
endcase
if (d_invalid || d_starved || d_except_instr_bus_fault || partial_predicted_branch) begin
d_rs1 = {W_REGADDR{1'b0}};
d_rs2 = {W_REGADDR{1'b0}};
d_rd = {W_REGADDR{1'b0}};
d_memop = MEMOP_NONE;
d_branchcond = BCOND_NEVER;
d_csr_ren = 1'b0;
d_csr_wen = 1'b0;
d_except = EXCEPT_NONE;
d_sleep_wfi = 1'b0;
d_sleep_block = 1'b0;
d_sleep_unblock = 1'b0;
// Ensure address bus is 0 in reset if register file is resettable:
d_addr_is_regoffs = 1'b1;
if (EXTENSION_M)
d_aluop = ALUOP_ADD;
if (d_except_instr_bus_fault)
d_except = EXCEPT_INSTR_FAULT;
else if (d_invalid && !d_starved)
d_except = EXCEPT_INSTR_ILLEGAL;
end
if (partial_predicted_branch) begin
d_addr_is_regoffs = 1'b0;
d_branchcond = BCOND_ALWAYS;
end
if (cir_lock_prev) begin
d_branchcond = BCOND_NEVER;
end
end
endmodule
`ifndef YOSYS
`default_nettype wire
`endif