TIM-VX/src/tim/transform/ops/pool2d_layout_inference.h

84 lines
3.6 KiB
C
Raw Normal View History

/****************************************************************************
*
* Copyright (c) 2020 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#ifndef TIM_LAYOUT_INFER_POOL2D_LAYOUT_INFERENCE_H_
#define TIM_LAYOUT_INFER_POOL2D_LAYOUT_INFERENCE_H_
#include "ops/op_layout_inference.h"
#include "permute_vector.h"
#include "direct_map_op_impl.h"
#include "tim/vx/ops/pool2d.h"
namespace tim {
namespace transform {
class Pool2dLayoutInfer : public OpLayoutInfer {
public:
Pool2dLayoutInfer(
const std::shared_ptr<vx::Operation> op,
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
: OpLayoutInfer(op, context) {}
void OnInputs(
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
vx::DataLayout layout = op_->impl()->layout_;
auto required_pv = MakeShared(4);
if (layout == vx::DataLayout::CWHN) {
required_pv = std::make_shared<PermuteVector<4>>(kCWHN2WHCN);
}
auto input_tensors = op_->impl()->InputsTensor();
auto pv = context_->GetPermuteVector(input_tensors[0]);
auto final_pv = pv->Reverse()->Add(required_pv);
if (!final_pv->IsAligned()) {
auto perm_out =
InsertPermute(context_->GetMapedTensor(input_tensors[0]), final_pv);
context_->UpdateTensorMap(input_tensors[0], perm_out);
context_->SetPermuteVector(input_tensors[0], required_pv);
}
auto pool_type = TranslatePoolType(op_->impl()->node()->nn_param.pool.type);
auto round_type =
TranslateRoundType(op_->impl()->node()->nn_param.pool.round_type);
auto pad_type =
TranslatePadType(op_->impl()->node()->nn_param.pool.pad_type);
std::array<uint32_t, 2> ksize = {
op_->impl()->node()->nn_param.pool.ksize[0],
op_->impl()->node()->nn_param.pool.ksize[1]};
std::array<uint32_t, 2> stride = {
op_->impl()->node()->nn_param.pool.stride[0],
op_->impl()->node()->nn_param.pool.stride[1]};
auto pool2d = context_->infer_graph_->CreateOperation<vx::ops::Pool2d>(
pool_type, pad_type, ksize, stride, round_type, vx::DataLayout::WHCN);
auto otensor_infer = CreateOutputsTensor(required_pv);
(*pool2d).BindInput(context_->GetMapedTensor(input_tensors[0]));
(*pool2d).BindOutput(otensor_infer[0]);
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], required_pv);
// Add out tensor of src_graph into next_tensor
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
}
};
} // namespace transform
} // namespace tim
#endif