201 lines
7.4 KiB
C++
201 lines
7.4 KiB
C++
|
|
/****************************************************************************
|
||
|
|
*
|
||
|
|
* Copyright (c) 2021 Vivante Corporation
|
||
|
|
*
|
||
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
|
|
* copy of this software and associated documentation files (the "Software"),
|
||
|
|
* to deal in the Software without restriction, including without limitation
|
||
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||
|
|
* Software is furnished to do so, subject to the following conditions:
|
||
|
|
*
|
||
|
|
* The above copyright notice and this permission notice shall be included in
|
||
|
|
* all copies or substantial portions of the Software.
|
||
|
|
*
|
||
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||
|
|
* DEALINGS IN THE SOFTWARE.
|
||
|
|
*
|
||
|
|
*****************************************************************************/
|
||
|
|
#include <string>
|
||
|
|
#include "tim/vx/context.h"
|
||
|
|
#include "tim/vx/graph.h"
|
||
|
|
#include "tim/vx/ops/moments.h"
|
||
|
|
|
||
|
|
#include "gtest/gtest.h"
|
||
|
|
|
||
|
|
namespace {
|
||
|
|
template<typename T>
|
||
|
|
::testing::AssertionResult ArraysMatch(const std::vector<T>& expected,
|
||
|
|
const std::vector<T>& actual,
|
||
|
|
T abs_error,
|
||
|
|
const std::string& msg){
|
||
|
|
for (size_t i = 0; i < expected.size(); ++i){
|
||
|
|
EXPECT_NEAR(expected[i], actual[i], abs_error) << msg << " at index:" << i;
|
||
|
|
}
|
||
|
|
|
||
|
|
return ::testing::AssertionSuccess();
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
TEST(Moments, shape_6_3_1_float_axes_0_1) {
|
||
|
|
auto ctx = tim::vx::Context::Create();
|
||
|
|
auto graph = ctx->CreateGraph();
|
||
|
|
|
||
|
|
tim::vx::ShapeType input_shape({6, 3, 1});
|
||
|
|
tim::vx::ShapeType output_shape({1});
|
||
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||
|
|
input_shape, tim::vx::TensorAttribute::INPUT);
|
||
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||
|
|
output_shape, tim::vx::TensorAttribute::OUTPUT);
|
||
|
|
|
||
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||
|
|
auto mean = graph->CreateTensor(output_spec);
|
||
|
|
auto variance = graph->CreateTensor(output_spec);
|
||
|
|
|
||
|
|
std::vector<float> in_data = {
|
||
|
|
-2, 0, 2,
|
||
|
|
-3, 0, 3,
|
||
|
|
-4, 0, 4,
|
||
|
|
-5, 0, 5,
|
||
|
|
-6, 0, 6,
|
||
|
|
-7, 0, 7 };
|
||
|
|
|
||
|
|
std::vector<float> mean_golden = {
|
||
|
|
0
|
||
|
|
};
|
||
|
|
|
||
|
|
std::vector<float> variance_golden = {
|
||
|
|
15.444444
|
||
|
|
};
|
||
|
|
|
||
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||
|
|
|
||
|
|
std::vector<int32_t> axes = { 0, 1 };
|
||
|
|
auto op = graph->CreateOperation<tim::vx::ops::Moments>(axes);
|
||
|
|
(*op).BindInputs({input_tensor}).BindOutputs({mean, variance});
|
||
|
|
|
||
|
|
EXPECT_TRUE(graph->Compile());
|
||
|
|
EXPECT_TRUE(graph->Run());
|
||
|
|
|
||
|
|
std::vector<float> mean_output(mean_golden);
|
||
|
|
std::vector<float> variance_output(variance_golden);
|
||
|
|
EXPECT_TRUE(mean->CopyDataFromTensor(mean_output.data()));
|
||
|
|
EXPECT_TRUE(variance->CopyDataFromTensor(variance_output.data()));
|
||
|
|
EXPECT_TRUE(ArraysMatch(mean_golden, mean_output, 1e-5f, "mean output"));
|
||
|
|
EXPECT_TRUE(ArraysMatch(variance_golden, variance_output, 1e-5f, "variance output"));
|
||
|
|
}
|
||
|
|
|
||
|
|
TEST(Moments, shape_3_6_1_float_axes_1_keepdims) {
|
||
|
|
auto ctx = tim::vx::Context::Create();
|
||
|
|
auto graph = ctx->CreateGraph();
|
||
|
|
|
||
|
|
tim::vx::ShapeType input_shape({3, 6, 1});
|
||
|
|
tim::vx::ShapeType output_shape({3,1,1});
|
||
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||
|
|
input_shape, tim::vx::TensorAttribute::INPUT);
|
||
|
|
tim::vx::TensorSpec mean_spec(tim::vx::DataType::FLOAT32,
|
||
|
|
output_shape, tim::vx::TensorAttribute::OUTPUT);
|
||
|
|
tim::vx::TensorSpec variance_spec(tim::vx::DataType::FLOAT32,
|
||
|
|
output_shape, tim::vx::TensorAttribute::OUTPUT);
|
||
|
|
|
||
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||
|
|
auto mean = graph->CreateTensor(mean_spec);
|
||
|
|
auto variance = graph->CreateTensor(variance_spec);
|
||
|
|
|
||
|
|
std::vector<float> in_data = {
|
||
|
|
-2, 0, 2,
|
||
|
|
-3, 0, 3,
|
||
|
|
-4, 0, 4,
|
||
|
|
-5, 0, 5,
|
||
|
|
-6, 0, 6,
|
||
|
|
-7, 0, 7
|
||
|
|
};
|
||
|
|
|
||
|
|
std::vector<float> mean_golden = {
|
||
|
|
-4.5, 0, 4.5
|
||
|
|
};
|
||
|
|
|
||
|
|
std::vector<float> variance_golden = {
|
||
|
|
2.916666, 0, 2.916666
|
||
|
|
};
|
||
|
|
|
||
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(
|
||
|
|
in_data.data(), in_data.size() * sizeof(float)));
|
||
|
|
|
||
|
|
std::vector<int32_t> axes = { 1 };
|
||
|
|
auto op = graph->CreateOperation<tim::vx::ops::Moments>(axes, true);
|
||
|
|
(*op).BindInputs({input_tensor}).BindOutputs({mean, variance});
|
||
|
|
|
||
|
|
EXPECT_TRUE(graph->Compile());
|
||
|
|
EXPECT_TRUE(graph->Run());
|
||
|
|
|
||
|
|
std::vector<float> mean_output(mean_golden);
|
||
|
|
std::vector<float> variance_output(variance_golden);
|
||
|
|
EXPECT_TRUE(mean->CopyDataFromTensor(mean_output.data()));
|
||
|
|
EXPECT_TRUE(variance->CopyDataFromTensor(variance_output.data()));
|
||
|
|
EXPECT_TRUE(ArraysMatch(mean_golden, mean_output, 1e-5f, "mean output"));
|
||
|
|
EXPECT_TRUE(ArraysMatch(variance_golden, variance_output, 1e-5f, "variance output"));
|
||
|
|
}
|
||
|
|
|
||
|
|
#if 0
|
||
|
|
// TODO: Support uint8
|
||
|
|
TEST(Moments, shape_3_6_1_uint8_axes_1_keepdims) {
|
||
|
|
auto ctx = tim::vx::Context::Create();
|
||
|
|
auto graph = ctx->CreateGraph();
|
||
|
|
|
||
|
|
tim::vx::ShapeType input_shape({3, 6, 1});
|
||
|
|
tim::vx::ShapeType output_shape({3,1,1});
|
||
|
|
tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC, 1, 7);
|
||
|
|
tim::vx::Quantization mean_quant(tim::vx::QuantType::ASYMMETRIC, 0.5, 9);
|
||
|
|
tim::vx::Quantization variance_quant(tim::vx::QuantType::ASYMMETRIC, 2.916666, 0);
|
||
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8,
|
||
|
|
input_shape, tim::vx::TensorAttribute::INPUT, input_quant);
|
||
|
|
tim::vx::TensorSpec mean_spec(tim::vx::DataType::UINT8,
|
||
|
|
output_shape, tim::vx::TensorAttribute::OUTPUT, mean_quant);
|
||
|
|
tim::vx::TensorSpec variance_spec(tim::vx::DataType::UINT8,
|
||
|
|
output_shape, tim::vx::TensorAttribute::OUTPUT, variance_quant);
|
||
|
|
|
||
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||
|
|
auto mean = graph->CreateTensor(mean_spec);
|
||
|
|
auto variance = graph->CreateTensor(variance_spec);
|
||
|
|
|
||
|
|
std::vector<uint8_t> in_data = {
|
||
|
|
5, 7, 9,
|
||
|
|
4, 7, 10,
|
||
|
|
3, 7, 11,
|
||
|
|
2, 7, 12,
|
||
|
|
1, 7, 13,
|
||
|
|
0, 7, 14,
|
||
|
|
};
|
||
|
|
|
||
|
|
std::vector<uint8_t> mean_golden = {
|
||
|
|
0, 9, 18
|
||
|
|
};
|
||
|
|
|
||
|
|
std::vector<uint8_t> variance_golden = {
|
||
|
|
1, 0, 1
|
||
|
|
};
|
||
|
|
|
||
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()));
|
||
|
|
|
||
|
|
std::vector<int32_t> axes = { 1 };
|
||
|
|
auto op = graph->CreateOperation<tim::vx::ops::Moments>(axes, true);
|
||
|
|
(*op).BindInputs({input_tensor}).BindOutputs({mean, variance});
|
||
|
|
|
||
|
|
EXPECT_TRUE(graph->Compile());
|
||
|
|
EXPECT_TRUE(graph->Run());
|
||
|
|
|
||
|
|
std::vector<uint8_t> mean_output(mean_golden);
|
||
|
|
std::vector<uint8_t> variance_output(variance_golden);
|
||
|
|
EXPECT_TRUE(mean->CopyDataFromTensor(mean_output.data()));
|
||
|
|
EXPECT_TRUE(variance->CopyDataFromTensor(variance_output.data()));
|
||
|
|
EXPECT_EQ(mean_golden, mean_output);
|
||
|
|
EXPECT_EQ(variance_golden, variance_output);
|
||
|
|
}
|
||
|
|
#endif
|