2021-05-26 00:20:39 +08:00
|
|
|
/****************************************************************************
|
|
|
|
|
*
|
2023-01-20 11:38:21 +08:00
|
|
|
* Copyright (c) 2020-2023 Vivante Corporation
|
2021-05-26 00:20:39 +08:00
|
|
|
*
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
|
*
|
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
|
|
|
* DEALINGS IN THE SOFTWARE.
|
|
|
|
|
*
|
|
|
|
|
*****************************************************************************/
|
|
|
|
|
#include "tim/vx/context.h"
|
|
|
|
|
#include "tim/vx/graph.h"
|
|
|
|
|
#include "tim/vx/ops/maxpoolwithargmax.h"
|
|
|
|
|
|
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
|
|
|
|
|
|
TEST(MaxpoolWithArgmax, shape_3_3_1_fp32_kernel_2_stride_2) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType in_shape({3, 3, 1});
|
|
|
|
|
tim::vx::ShapeType out_shape({2, 2, 1});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
|
|
|
|
in_shape, tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::UINT8,
|
|
|
|
|
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec_values(tim::vx::DataType::FLOAT32,
|
|
|
|
|
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor_indices = graph->CreateTensor(output_spec_indices);
|
|
|
|
|
auto output_tensor_values = graph->CreateTensor(output_spec_values);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data = {
|
|
|
|
|
1, 2, 3,
|
|
|
|
|
4, 5, 6,
|
|
|
|
|
7, 8, 9 };
|
|
|
|
|
std::vector<float> values_golden = {
|
|
|
|
|
5, 6,
|
|
|
|
|
8, 9 };
|
|
|
|
|
std::vector<uint8_t> indices_golden = {
|
|
|
|
|
3, 2,
|
|
|
|
|
1, 0 };
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4));
|
|
|
|
|
std::array<uint32_t, 2> ksize = {2, 2};
|
|
|
|
|
std::array<uint32_t, 2> stride = {2, 2};
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::MaxpoolWithArgmax>(
|
|
|
|
|
tim::vx::PadType::VALID, ksize, stride);
|
|
|
|
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
std::vector<float> output_values(4);
|
|
|
|
|
std::vector<uint8_t> output_indices(4);
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(output_tensor_values->CopyDataFromTensor(output_values.data()));
|
|
|
|
|
EXPECT_TRUE(output_tensor_indices->CopyDataFromTensor(output_indices.data()));
|
|
|
|
|
EXPECT_EQ(values_golden, output_values);
|
|
|
|
|
EXPECT_EQ(indices_golden, output_indices);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(MaxpoolWithArgmax, shape_4_4_1_uint8_kernel_2_stride_2) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType in_shape({4, 4, 1});
|
|
|
|
|
tim::vx::ShapeType out_shape({2, 2, 1});
|
|
|
|
|
tim::vx::Quantization io_quant(tim::vx::QuantType::ASYMMETRIC, 1, 0);
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8,
|
|
|
|
|
in_shape, tim::vx::TensorAttribute::INPUT, io_quant);
|
|
|
|
|
tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::UINT8,
|
|
|
|
|
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec_values(tim::vx::DataType::UINT8,
|
|
|
|
|
out_shape, tim::vx::TensorAttribute::OUTPUT, io_quant);
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor_indices = graph->CreateTensor(output_spec_indices);
|
|
|
|
|
auto output_tensor_values = graph->CreateTensor(output_spec_values);
|
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> in_data = {
|
|
|
|
|
1, 2, 3, 3,
|
|
|
|
|
4, 5, 6, 6,
|
|
|
|
|
7, 8, 9, 9,
|
|
|
|
|
10, 11, 12, 12 };
|
|
|
|
|
std::vector<uint8_t> values_golden = {
|
|
|
|
|
5, 6,
|
|
|
|
|
11, 12};
|
|
|
|
|
std::vector<uint8_t> indices_golden = {
|
|
|
|
|
3, 2,
|
|
|
|
|
3, 2};
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()));
|
|
|
|
|
std::array<uint32_t, 2> ksize = {2, 2};
|
|
|
|
|
std::array<uint32_t, 2> stride = {2, 2};
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::MaxpoolWithArgmax>(
|
|
|
|
|
tim::vx::PadType::VALID, ksize, stride);
|
|
|
|
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
std::vector<uint8_t> output_values(4);
|
|
|
|
|
std::vector<uint8_t> output_indices(4);
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(output_tensor_values->CopyDataFromTensor(output_values.data()));
|
|
|
|
|
EXPECT_TRUE(output_tensor_indices->CopyDataFromTensor(output_indices.data()));
|
|
|
|
|
EXPECT_EQ(values_golden, output_values);
|
|
|
|
|
EXPECT_EQ(indices_golden, output_indices);
|
|
|
|
|
}
|
|
|
|
|
|