TIM-VX/src/tim/vx/ops/maxpoolwithargmax_test.cc

124 lines
5.2 KiB
C++
Raw Normal View History

/****************************************************************************
*
2023-01-20 11:38:21 +08:00
* Copyright (c) 2020-2023 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/ops/maxpoolwithargmax.h"
#include "gtest/gtest.h"
TEST(MaxpoolWithArgmax, shape_3_3_1_fp32_kernel_2_stride_2) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType in_shape({3, 3, 1});
tim::vx::ShapeType out_shape({2, 2, 1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
in_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::UINT8,
out_shape, tim::vx::TensorAttribute::OUTPUT);
tim::vx::TensorSpec output_spec_values(tim::vx::DataType::FLOAT32,
out_shape, tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto output_tensor_indices = graph->CreateTensor(output_spec_indices);
auto output_tensor_values = graph->CreateTensor(output_spec_values);
std::vector<float> in_data = {
1, 2, 3,
4, 5, 6,
7, 8, 9 };
std::vector<float> values_golden = {
5, 6,
8, 9 };
std::vector<uint8_t> indices_golden = {
3, 2,
1, 0 };
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4));
std::array<uint32_t, 2> ksize = {2, 2};
std::array<uint32_t, 2> stride = {2, 2};
auto op = graph->CreateOperation<tim::vx::ops::MaxpoolWithArgmax>(
tim::vx::PadType::VALID, ksize, stride);
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output_values(4);
std::vector<uint8_t> output_indices(4);
EXPECT_TRUE(output_tensor_values->CopyDataFromTensor(output_values.data()));
EXPECT_TRUE(output_tensor_indices->CopyDataFromTensor(output_indices.data()));
EXPECT_EQ(values_golden, output_values);
EXPECT_EQ(indices_golden, output_indices);
}
TEST(MaxpoolWithArgmax, shape_4_4_1_uint8_kernel_2_stride_2) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType in_shape({4, 4, 1});
tim::vx::ShapeType out_shape({2, 2, 1});
tim::vx::Quantization io_quant(tim::vx::QuantType::ASYMMETRIC, 1, 0);
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8,
in_shape, tim::vx::TensorAttribute::INPUT, io_quant);
tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::UINT8,
out_shape, tim::vx::TensorAttribute::OUTPUT);
tim::vx::TensorSpec output_spec_values(tim::vx::DataType::UINT8,
out_shape, tim::vx::TensorAttribute::OUTPUT, io_quant);
auto input_tensor = graph->CreateTensor(input_spec);
auto output_tensor_indices = graph->CreateTensor(output_spec_indices);
auto output_tensor_values = graph->CreateTensor(output_spec_values);
std::vector<uint8_t> in_data = {
1, 2, 3, 3,
4, 5, 6, 6,
7, 8, 9, 9,
10, 11, 12, 12 };
std::vector<uint8_t> values_golden = {
5, 6,
11, 12};
std::vector<uint8_t> indices_golden = {
3, 2,
3, 2};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()));
std::array<uint32_t, 2> ksize = {2, 2};
std::array<uint32_t, 2> stride = {2, 2};
auto op = graph->CreateOperation<tim::vx::ops::MaxpoolWithArgmax>(
tim::vx::PadType::VALID, ksize, stride);
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<uint8_t> output_values(4);
std::vector<uint8_t> output_indices(4);
EXPECT_TRUE(output_tensor_values->CopyDataFromTensor(output_values.data()));
EXPECT_TRUE(output_tensor_indices->CopyDataFromTensor(output_indices.data()));
EXPECT_EQ(values_golden, output_values);
EXPECT_EQ(indices_golden, output_indices);
}