TIM-VX/src/tim/vx/ops/groupedconv2d.cc

87 lines
4.1 KiB
C++
Raw Normal View History

/****************************************************************************
*
2023-01-20 11:38:21 +08:00
* Copyright (c) 2020-2023 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/ops/groupedconv2d.h"
#include "builtin_op_impl.h"
#include "type_utils.h"
#include "vsi_nn_pub.h"
namespace tim {
namespace vx {
namespace ops {
GroupedConv2d::GroupedConv2d(Graph* graph,
PadType padding,
const std::array<uint32_t, 2>& strides,
const std::array<uint32_t, 2>& dilation,
int32_t group_number,
DataLayout input_layout, DataLayout kernel_layout)
: BuiltinOp(graph, VSI_NN_OP_GROUPED_CONV2D, 3, 1, input_layout),
padding_(padding), strides_(strides), dilation_(dilation),
pad_({0,0,0,0}), group_number_(group_number),
kernel_layout_(kernel_layout) {
this->impl()->node()->nn_param.grouped_conv2d.stride[0] = strides_[0];
this->impl()->node()->nn_param.grouped_conv2d.stride[1] = strides_[1];
this->impl()->node()->nn_param.grouped_conv2d.pad_type = TranslatePadType(padding_);
this->impl()->node()->nn_param.grouped_conv2d.group = group_number_;
this->impl()->node()->nn_param.grouped_conv2d.dilation[0] = dilation_[0];
this->impl()->node()->nn_param.grouped_conv2d.dilation[1] = dilation_[1];
}
GroupedConv2d::GroupedConv2d(Graph* graph,
const std::array<uint32_t, 4>& pad,
const std::array<uint32_t, 2>& strides,
const std::array<uint32_t, 2>& dilation,
int32_t group_number,
DataLayout input_layout, DataLayout kernel_layout)
: BuiltinOp(graph, VSI_NN_OP_GROUPED_CONV2D, 3, 1, input_layout),
padding_(PadType::AUTO), strides_(strides), dilation_(dilation), pad_(pad),
group_number_(group_number), kernel_layout_(kernel_layout) {
this->impl()->node()->nn_param.grouped_conv2d.stride[0] = strides_[0];
this->impl()->node()->nn_param.grouped_conv2d.stride[1] = strides_[1];
this->impl()->node()->nn_param.grouped_conv2d.group = group_number_;
this->impl()->node()->nn_param.grouped_conv2d.dilation[0] = dilation_[0];
this->impl()->node()->nn_param.grouped_conv2d.dilation[1] = dilation_[1];
this->impl()->node()->nn_param.grouped_conv2d.pad[0] = pad_[0];
this->impl()->node()->nn_param.grouped_conv2d.pad[1] = pad_[1];
this->impl()->node()->nn_param.grouped_conv2d.pad[2] = pad_[2];
this->impl()->node()->nn_param.grouped_conv2d.pad[3] = pad_[3];
}
std::shared_ptr<Operation> GroupedConv2d::Clone(
std::shared_ptr<Graph>& graph) const {
if(this->padding_ == PadType::AUTO){
return graph->CreateOperation<GroupedConv2d>(
this->pad_, this->strides_, this->dilation_, this->group_number_,
this->impl_->layout_, this->kernel_layout_);
} else {
return graph->CreateOperation<GroupedConv2d>(
this->padding_, this->strides_, this->dilation_, this->group_number_,
this->impl_->layout_, this->kernel_layout_);
}
}
} // namespace ops
} // namespace vx
} // namespace tim