2021-05-25 10:27:23 +08:00
|
|
|
/****************************************************************************
|
|
|
|
|
*
|
|
|
|
|
* Copyright (c) 2021 Vivante Corporation
|
|
|
|
|
*
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
|
*
|
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
|
|
|
* DEALINGS IN THE SOFTWARE.
|
|
|
|
|
*
|
|
|
|
|
*****************************************************************************/
|
|
|
|
|
#include "tim/vx/context.h"
|
|
|
|
|
#include "tim/vx/graph.h"
|
|
|
|
|
#include "tim/vx/ops/resize1d.h"
|
|
|
|
|
|
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
template<typename T>
|
|
|
|
|
::testing::AssertionResult ArraysMatch(const std::vector<T>& expected,
|
|
|
|
|
const std::vector<T>& actual,
|
|
|
|
|
T abs_error){
|
|
|
|
|
for (size_t i = 0; i < expected.size(); ++i){
|
|
|
|
|
EXPECT_NEAR(expected[i], actual[i], abs_error) << "at index:" << i;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return ::testing::AssertionSuccess();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Resize1d, shape_4_2_1_float_nearest_whcn) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({4, 2, 1});
|
|
|
|
|
tim::vx::ShapeType output_shape({2, 2, 1});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
|
|
|
|
input_shape, tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
|
|
|
|
output_shape, tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data = {
|
|
|
|
|
1.f, 2.f, 3.f, 4.f,
|
|
|
|
|
5.f, 6.f, 7.f, 8.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<float> golden = {
|
|
|
|
|
1.f, 3.f,
|
|
|
|
|
5.f, 7.f,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
|
|
|
|
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Resize1d>(
|
|
|
|
|
tim::vx::ResizeType::NEAREST_NEIGHBOR, 0.6, false, false, 0);
|
|
|
|
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
|
|
|
|
|
std::vector<float> output(golden.size() * sizeof(float));
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
|
|
|
|
}
|
|
|
|
|
|
2021-05-25 13:33:14 +08:00
|
|
|
TEST(Resize1d, shape_4_2_1_uint8_nearest_whcn) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({4, 2, 1});
|
|
|
|
|
tim::vx::ShapeType output_shape({2, 2, 1});
|
|
|
|
|
tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC, 1, 0);
|
|
|
|
|
tim::vx::Quantization output_quant(tim::vx::QuantType::ASYMMETRIC, 1, 0);
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8,
|
|
|
|
|
input_shape, tim::vx::TensorAttribute::INPUT, input_quant);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8,
|
|
|
|
|
output_shape, tim::vx::TensorAttribute::OUTPUT, output_quant);
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> in_data = {
|
|
|
|
|
1, 2, 3, 4,
|
|
|
|
|
5, 6, 7, 8,
|
|
|
|
|
};
|
|
|
|
|
std::vector<uint8_t> golden = {
|
|
|
|
|
1, 3,
|
|
|
|
|
5, 7,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()));
|
|
|
|
|
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Resize1d>(
|
|
|
|
|
tim::vx::ResizeType::NEAREST_NEIGHBOR, 0.6, false, false, 0);
|
|
|
|
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> output(golden.size());
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_EQ(golden, output);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Resize1d, shape_5_1_1_float_bilinear_align_corners_whcn) {
|
2021-05-25 10:27:23 +08:00
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({5, 1, 1});
|
|
|
|
|
tim::vx::ShapeType output_shape({7, 1, 1});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
|
|
|
|
input_shape, tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
|
|
|
|
output_shape, tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data = {
|
|
|
|
|
1.f, 2.f, 3.f, 4.f, 5.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<float> golden = {
|
|
|
|
|
1.f, 1.66666f, 2.33333f, 3.f,
|
|
|
|
|
3.66666, 4.33333f, 5.f
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
|
|
|
|
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Resize1d>(
|
|
|
|
|
tim::vx::ResizeType::BILINEAR, 0, true, false, 7);
|
|
|
|
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
|
|
|
|
|
std::vector<float> output(golden.size() * sizeof(float));
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
|
|
|
|
}
|