TIM-VX/src/tim/transform/stack_layout_inference_test.cc

231 lines
9.9 KiB
C++
Raw Normal View History

#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/ops.h"
#include "tim/transform/layout_inference.h"
#include "gtest/gtest.h"
TEST(Stack, DISABLED_LayoutinferernceTest_1) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2, 3, 4, 1}); //cwhn
tim::vx::ShapeType kernel_shape({2, 3, 3, 3}); //iwho
// tim::vx::ShapeType conv2dout_shape({3, 1, 2, 1}); //cwhn
tim::vx::ShapeType output_shape({2, 3, 1, 2, 1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec kernel_spec(tim::vx::DataType::FLOAT32, kernel_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec conv2dout_spec(tim::vx::DataType::FLOAT32,
{0,0,0,0},
tim::vx::TensorAttribute::TRANSIENT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto conv2dout_tensor = graph->CreateTensor(conv2dout_spec);
auto output_tensor = graph->CreateTensor(output_spec);
std::vector<float> in_data = {
1, 1, 1, 1, 2, 0, 5, 3, 6, 3, 1, 1,
1, 4, 2, 5, 7, 6, 3, 1, 1, 0, 2, 5,
};
std::vector<float> kernel_data = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1,
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1,
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 2, 3, 1, 1, 2, 1, 1, 1,
};
std::vector<float> golden = {
64, 64, 49, 49, 81, 81, 77, 77, 44, 44, 97, 97
};
auto kernel_tensor = graph->CreateTensor(kernel_spec, kernel_data.data());
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
auto op1 = graph->CreateOperation<tim::vx::ops::Conv2d>(
tim::vx::PadType::VALID, stride, dilation, 0, tim::vx::DataLayout::CWHN,
tim::vx::DataLayout::IcWHOc);
(*op1)
.BindInputs({input_tensor, kernel_tensor})
.BindOutputs({conv2dout_tensor});
auto op2 = graph->CreateOperation<tim::vx::ops::Stack>(0, 2);
(*op2).BindInputs({conv2dout_tensor, conv2dout_tensor}).BindOutputs({output_tensor});
auto transform = tim::transform::LayoutInference(graph, ctx);
auto infer_graph = transform.first;
auto graph_io_map = transform.second;
auto infer_input = graph_io_map[graph->InputsTensor()[0]];
auto infer_output = graph_io_map[graph->OutputsTensor()[0]];
infer_input->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float));
EXPECT_TRUE(infer_graph->Compile());
EXPECT_TRUE(infer_graph->Run());
std::vector<float> output(golden.size());
EXPECT_TRUE(infer_output->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Stack, LayoutinferernceTest_2) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2, 3, 4, 1}); //cwhn
tim::vx::ShapeType kernel_shape({2, 2, 3, 3}); //iwho
tim::vx::ShapeType conv2dout_shape({3, 2, 2, 1}); //cwhn
// tim::vx::ShapeType output_shape({2, 1, 2, 1});
tim::vx::ShapeType output_shape({2, 3, 2});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec kernel_spec(tim::vx::DataType::FLOAT32, kernel_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec conv2dout_spec(tim::vx::DataType::FLOAT32,
conv2dout_shape,
tim::vx::TensorAttribute::OUTPUT);
tim::vx::TensorSpec reduceout_spec(tim::vx::DataType::FLOAT32,
{0,0,0},
tim::vx::TensorAttribute::TRANSIENT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto conv2dout_tensor = graph->CreateTensor(conv2dout_spec);
auto reduceout_tensor = graph->CreateTensor(reduceout_spec);
auto output_tensor = graph->CreateTensor(output_spec);
std::vector<float> in_data = {
1, 1, 1, 1, 2, 0, 5, 3, 6, 3, 1, 1,
1, 4, 2, 5, 7, 6, 3, 1, 1, 0, 2, 5,
};
std::vector<float> kernel_data = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
};
std::vector<float> golden = {
33, 33, 37, 35, 35, 43, 34, 34, 58, 39, 39, 43,
};
auto kernel_tensor = graph->CreateTensor(kernel_spec, kernel_data.data());
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
auto op1 = graph->CreateOperation<tim::vx::ops::Conv2d>(
tim::vx::PadType::VALID, stride, dilation, 0, tim::vx::DataLayout::CWHN,
tim::vx::DataLayout::IcWHOc);
(*op1)
.BindInputs({input_tensor, kernel_tensor})
.BindOutputs({conv2dout_tensor});
std::vector<int32_t> axis = {2,3};
auto op2 = graph->CreateOperation<tim::vx::ops::ReduceMax>(axis, false);
(*op2).BindInputs({conv2dout_tensor}).BindOutputs({reduceout_tensor});
auto op3 = graph->CreateOperation<tim::vx::ops::Stack>(0, 2);
(*op3).BindInputs({reduceout_tensor, reduceout_tensor}).BindOutputs({output_tensor});
auto transform = tim::transform::LayoutInference(graph, ctx);
auto infer_graph = transform.first;
auto graph_io_map = transform.second;
auto infer_input = graph_io_map[graph->InputsTensor()[0]];
auto infer_output = graph_io_map[graph->OutputsTensor()[0]];
infer_input->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float));
EXPECT_TRUE(infer_graph->Compile());
EXPECT_TRUE(infer_graph->Run());
std::vector<float> output(golden.size());
EXPECT_TRUE(infer_output->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Stack, LayoutinferernceTest_3) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2, 3, 4, 1}); //cwhn
tim::vx::ShapeType kernel_shape({2, 2, 3, 3}); //iwho
tim::vx::ShapeType conv2dout_shape({3, 2, 2, 1}); //cwhn
tim::vx::ShapeType output_shape({2, 3, 2, 1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec kernel_spec(tim::vx::DataType::FLOAT32, kernel_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec conv2dout_spec(tim::vx::DataType::FLOAT32,
{0,0,0,0},
tim::vx::TensorAttribute::TRANSIENT);
tim::vx::TensorSpec reduceout_spec(tim::vx::DataType::FLOAT32,
{0,0,0},
tim::vx::TensorAttribute::TRANSIENT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto input2_tensor = graph->CreateTensor(input_spec);
auto conv2dout_tensor = graph->CreateTensor(conv2dout_spec);
auto conv2dout2_tensor = graph->CreateTensor(conv2dout_spec);
auto reduceout_tensor = graph->CreateTensor(reduceout_spec);
auto reduceout2_tensor = graph->CreateTensor(reduceout_spec);
auto output_tensor = graph->CreateTensor(output_spec);
std::vector<float> in_data = {
1, 1, 1, 1, 2, 0, 5, 3, 6, 3, 1, 1,
1, 4, 2, 5, 7, 6, 3, 1, 1, 0, 2, 5,
};
std::vector<float> kernel_data = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1,
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1,
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 2, 3, 1, 1, 2, 1, 1, 1,
};
std::vector<float> golden = {
55, 49, 21, 28, 37, 40, 39, 55, 28, 24, 41, 41,
};
auto kernel_tensor = graph->CreateTensor(kernel_spec, kernel_data.data());
auto kernel2_tensor = graph->CreateTensor(kernel_spec, kernel_data.data());
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
auto op1 = graph->CreateOperation<tim::vx::ops::Conv2d>(
tim::vx::PadType::VALID, stride, dilation, 0, tim::vx::DataLayout::CWHN,
tim::vx::DataLayout::IcWHOc);
(*op1)
.BindInputs({input_tensor, kernel_tensor})
.BindOutputs({conv2dout_tensor});
auto op11 = graph->CreateOperation<tim::vx::ops::Conv2d>(
tim::vx::PadType::VALID, stride, dilation, 0, tim::vx::DataLayout::CWHN,
tim::vx::DataLayout::IcWHOc);
(*op11)
.BindInputs({input2_tensor, kernel2_tensor})
.BindOutputs({conv2dout2_tensor});
std::vector<int32_t> axis = {1};
auto op2 = graph->CreateOperation<tim::vx::ops::ReduceMax>(axis, false);
(*op2).BindInputs({conv2dout_tensor}).BindOutputs({reduceout_tensor});
axis = {2};
auto op22 = graph->CreateOperation<tim::vx::ops::ReduceMax>(axis, false);
(*op22).BindInputs({conv2dout2_tensor}).BindOutputs({reduceout2_tensor});
auto op3 = graph->CreateOperation<tim::vx::ops::Stack>(0, 2);
(*op3).BindInputs({reduceout_tensor, reduceout2_tensor}).BindOutputs({output_tensor});
auto transform = tim::transform::LayoutInference(graph, ctx);
auto infer_graph = transform.first;
auto graph_io_map = transform.second;
auto infer_input = graph_io_map[graph->InputsTensor()[0]];
auto infer_input2 = graph_io_map[graph->InputsTensor()[1]];
auto infer_output = graph_io_map[graph->OutputsTensor()[0]];
infer_input->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float));
infer_input2->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float));
EXPECT_TRUE(infer_graph->Compile());
EXPECT_TRUE(infer_graph->Run());
std::vector<float> output(golden.size());
EXPECT_TRUE(infer_output->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}