2021-05-11 23:39:22 +08:00
|
|
|
/****************************************************************************
|
|
|
|
|
*
|
|
|
|
|
* Copyright (c) 2021 Vivante Corporation
|
|
|
|
|
*
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
|
*
|
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
|
|
|
* DEALINGS IN THE SOFTWARE.
|
|
|
|
|
*
|
|
|
|
|
*****************************************************************************/
|
|
|
|
|
#include "tim/vx/context.h"
|
|
|
|
|
#include "tim/vx/graph.h"
|
|
|
|
|
#include "tim/vx/ops/relational_operations.h"
|
|
|
|
|
|
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
|
|
|
|
|
|
TEST(OP, equal_shape_1_uint8) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType io_shape({1});
|
|
|
|
|
tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 1, 0);
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::INPUT, quant);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::BOOL8,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor1 = graph->CreateTensor(input_spec);
|
|
|
|
|
auto input_tensor2 = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> in_data1 = { 255 };
|
|
|
|
|
std::vector<uint8_t> in_data2 = { 0 };
|
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> golden = {0};
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor1->CopyDataToTensor(in_data1.data(), in_data1.size()));
|
|
|
|
|
EXPECT_TRUE(input_tensor2->CopyDataToTensor(in_data2.data(), in_data2.size()));
|
|
|
|
|
|
|
|
|
|
auto add = graph->CreateOperation<tim::vx::ops::Equal>();
|
|
|
|
|
(*add).BindInputs({input_tensor1, input_tensor2}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
|
|
|
|
|
//Not using vector<bool> because it uses a bitfield representation internally
|
|
|
|
|
//and it's cumbersome to copy tensor data to it.
|
|
|
|
|
std::vector<uint8_t> output(1, 0);
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_EQ(golden, output);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(OP, notequal_shape_5_fp32) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType io_shape({5});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::BOOL8,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor1 = graph->CreateTensor(input_spec);
|
|
|
|
|
auto input_tensor2 = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data1 = { -2.5, -0.1, 0, 0.55, std::numeric_limits<float>::infinity() };
|
|
|
|
|
std::vector<float> in_data2 = { -2, -1, 0.2, 0.55, std::numeric_limits<float>::infinity() };
|
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> golden = {1, 1, 1, 0, 0};
|
|
|
|
|
|
2021-05-12 22:59:36 +08:00
|
|
|
EXPECT_TRUE(input_tensor1->CopyDataToTensor(in_data1.data(), in_data1.size()*4));
|
|
|
|
|
EXPECT_TRUE(input_tensor2->CopyDataToTensor(in_data2.data(), in_data2.size()*4));
|
2021-05-11 23:39:22 +08:00
|
|
|
|
|
|
|
|
auto add = graph->CreateOperation<tim::vx::ops::NotEqual>();
|
|
|
|
|
(*add).BindInputs({input_tensor1, input_tensor2}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
|
|
|
|
|
//Not using vector<bool> because it uses a bitfield representation internally
|
|
|
|
|
//and it's cumbersome to copy tensor data to it.
|
|
|
|
|
std::vector<uint8_t> output(5, 0);
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_EQ(golden, output);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(OP, less_shape_5_1_fp32) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType io_shape({1,5});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::BOOL8,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor1 = graph->CreateTensor(input_spec);
|
|
|
|
|
auto input_tensor2 = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data1 = { 0.1, 0.1, 0, 0.55, std::numeric_limits<float>::infinity() };
|
|
|
|
|
std::vector<float> in_data2 = { -1, -1, 0.2, 0.55, std::numeric_limits<float>::infinity() };
|
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> golden = {0, 0, 1, 0, 0};
|
|
|
|
|
|
2021-05-12 22:59:36 +08:00
|
|
|
EXPECT_TRUE(input_tensor1->CopyDataToTensor(in_data1.data(), in_data1.size()*4));
|
|
|
|
|
EXPECT_TRUE(input_tensor2->CopyDataToTensor(in_data2.data(), in_data2.size()*4));
|
2021-05-11 23:39:22 +08:00
|
|
|
|
|
|
|
|
auto add = graph->CreateOperation<tim::vx::ops::Less>();
|
|
|
|
|
(*add).BindInputs({input_tensor1, input_tensor2}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
|
|
|
|
|
//Not using vector<bool> because it uses a bitfield representation internally
|
|
|
|
|
//and it's cumbersome to copy tensor data to it.
|
|
|
|
|
std::vector<uint8_t> output(5, 0);
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_EQ(golden, output);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(OP, greaterorequal_shape_5_2_1_fp32) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType io_shape({5,2,1});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::BOOL8,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor1 = graph->CreateTensor(input_spec);
|
|
|
|
|
auto input_tensor2 = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data1 = {
|
|
|
|
|
-2.5, -0.1, 0, 0.55, std::numeric_limits<float>::infinity(),
|
|
|
|
|
-2.5, -0.1, 0, 0.55, std::numeric_limits<float>::infinity() };
|
|
|
|
|
std::vector<float> in_data2 = {
|
|
|
|
|
-2, -1, 0.2, 0.55, std::numeric_limits<float>::infinity(),
|
|
|
|
|
-2, -1, 0.2, 0.55, std::numeric_limits<float>::infinity() };
|
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> golden = {0, 1, 0, 1, 1, 0, 1, 0, 1, 1};
|
|
|
|
|
|
2021-05-12 22:59:36 +08:00
|
|
|
EXPECT_TRUE(input_tensor1->CopyDataToTensor(in_data1.data(), in_data1.size()*4));
|
|
|
|
|
EXPECT_TRUE(input_tensor2->CopyDataToTensor(in_data2.data(), in_data2.size()*4));
|
2021-05-11 23:39:22 +08:00
|
|
|
|
|
|
|
|
auto add = graph->CreateOperation<tim::vx::ops::GreaterOrEqual>();
|
|
|
|
|
(*add).BindInputs({input_tensor1, input_tensor2}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
|
|
|
|
|
//Not using vector<bool> because it uses a bitfield representation internally
|
|
|
|
|
//and it's cumbersome to copy tensor data to it.
|
|
|
|
|
std::vector<uint8_t> output(10, 0);
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_EQ(golden, output);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(OP, greater_shape_5_2_1_1_fp32) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType io_shape({5,2,1,1});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::BOOL8,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor1 = graph->CreateTensor(input_spec);
|
|
|
|
|
auto input_tensor2 = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data1 = {
|
|
|
|
|
-2.5, -0.1, 0, 0.55, std::numeric_limits<float>::infinity(),
|
|
|
|
|
-2.5, -0.1, 0, 0.55, std::numeric_limits<float>::infinity() };
|
|
|
|
|
std::vector<float> in_data2 = {
|
|
|
|
|
-2, -1, 0.2, 0.55, std::numeric_limits<float>::infinity(),
|
|
|
|
|
-2, -1, 0.2, 0.55, std::numeric_limits<float>::infinity() };
|
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> golden = {0, 1, 0, 0, 0, 0, 1, 0, 0, 0};
|
|
|
|
|
|
2021-05-12 22:59:36 +08:00
|
|
|
EXPECT_TRUE(input_tensor1->CopyDataToTensor(in_data1.data(), in_data1.size()*4));
|
|
|
|
|
EXPECT_TRUE(input_tensor2->CopyDataToTensor(in_data2.data(), in_data2.size()*4));
|
2021-05-11 23:39:22 +08:00
|
|
|
|
|
|
|
|
auto add = graph->CreateOperation<tim::vx::ops::Greater>();
|
|
|
|
|
(*add).BindInputs({input_tensor1, input_tensor2}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
|
|
|
|
|
//Not using vector<bool> because it uses a bitfield representation internally
|
|
|
|
|
//and it's cumbersome to copy tensor data to it.
|
|
|
|
|
std::vector<uint8_t> output(10, 0);
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_EQ(golden, output);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(OP, lessorequal_shape_1_5_2_1_1_fp32) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType io_shape({1,5,2,1,1});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::BOOL8,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor1 = graph->CreateTensor(input_spec);
|
|
|
|
|
auto input_tensor2 = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data1 = {
|
|
|
|
|
-2.5, -0.1, 0, 0.55, std::numeric_limits<float>::infinity(),
|
|
|
|
|
-2.5, -0.1, 0, 0.55, std::numeric_limits<float>::infinity() };
|
|
|
|
|
std::vector<float> in_data2 = {
|
|
|
|
|
-2, -1, 0.2, 0.55, std::numeric_limits<float>::infinity(),
|
|
|
|
|
-2, -1, 0.2, 0.55, std::numeric_limits<float>::infinity() };
|
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> golden = {1, 0, 1, 1, 1, 1, 0, 1, 1, 1};
|
|
|
|
|
|
2021-05-12 22:59:36 +08:00
|
|
|
EXPECT_TRUE(input_tensor1->CopyDataToTensor(in_data1.data(), in_data1.size()*4));
|
|
|
|
|
EXPECT_TRUE(input_tensor2->CopyDataToTensor(in_data2.data(), in_data2.size()*4));
|
2021-05-11 23:39:22 +08:00
|
|
|
|
|
|
|
|
auto add = graph->CreateOperation<tim::vx::ops::LessOrEqual>();
|
|
|
|
|
(*add).BindInputs({input_tensor1, input_tensor2}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
|
|
|
|
|
//Not using vector<bool> because it uses a bitfield representation internally
|
|
|
|
|
//and it's cumbersome to copy tensor data to it.
|
|
|
|
|
std::vector<uint8_t> output(10, 0);
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_EQ(golden, output);
|
|
|
|
|
}
|
|
|
|
|
|