2022-05-27 16:34:48 +08:00
|
|
|
/****************************************************************************
|
|
|
|
|
*
|
|
|
|
|
* Copyright (c) 2022 Vivante Corporation
|
|
|
|
|
*
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
|
*
|
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
|
|
|
* DEALINGS IN THE SOFTWARE.
|
|
|
|
|
*
|
|
|
|
|
*****************************************************************************/
|
|
|
|
|
#include "tim/vx/ops/roi_align.h"
|
|
|
|
|
|
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
|
#include "test_utils.h"
|
|
|
|
|
#include "tim/vx/context.h"
|
|
|
|
|
#include "tim/vx/graph.h"
|
|
|
|
|
#include "tim/vx/types.h"
|
|
|
|
|
|
|
|
|
|
TEST(ROI_Align, shape_4_2_1_1_float32) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
uint32_t height = 4;
|
|
|
|
|
uint32_t width = 4;
|
|
|
|
|
uint32_t channels = 1;
|
|
|
|
|
uint32_t batch = 1;
|
|
|
|
|
uint32_t num_rois = 4;
|
|
|
|
|
uint32_t depth = channels;
|
|
|
|
|
|
|
|
|
|
int32_t out_height = 2;
|
|
|
|
|
int32_t out_width = 2;
|
|
|
|
|
float height_ratio = 2.0f;
|
|
|
|
|
float width_ratio = 2.0f;
|
|
|
|
|
int32_t height_sample_num = 4;
|
|
|
|
|
int32_t width_sample_num = 4;
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({width, height, channels, batch}); //whcn
|
2022-05-30 19:57:50 +08:00
|
|
|
tim::vx::ShapeType regions_shape({4, num_rois});
|
2022-05-27 16:34:48 +08:00
|
|
|
tim::vx::ShapeType batch_index_shape({num_rois});
|
|
|
|
|
tim::vx::ShapeType output_shape(
|
|
|
|
|
{(uint32_t)out_width, (uint32_t)out_height, depth, num_rois});
|
|
|
|
|
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec regions_spec(tim::vx::DataType::FLOAT32, regions_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec batch_index_spec(tim::vx::DataType::INT32,
|
|
|
|
|
batch_index_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
|
|
|
|
tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
std::vector<float> input_data = {-10.0f, -1.0f, 4.0f, -5.0f, -8.0f, -2.0f,
|
|
|
|
|
9.0f, 1.0f, 7.0f, -2.0f, 3.0f, -7.0f,
|
|
|
|
|
-2.0f, 10.0f, -3.0f, 5.0f};
|
|
|
|
|
|
|
|
|
|
std::vector<float> regions_data = {2.0f, 2.0f, 4.0f, 4.0f, 0.0f, 0.0f,
|
|
|
|
|
8.0f, 8.0f, 2.0f, 0.0f, 4.0f, 8.0f,
|
|
|
|
|
0.0f, 2.0f, 8.0f, 4.0f};
|
|
|
|
|
|
|
|
|
|
std::vector<int32_t> batch_index_data = {0, 0, 0, 0};
|
|
|
|
|
|
|
|
|
|
std::vector<float> golden = {
|
|
|
|
|
0.375f, 5.125f, -0.375f, 2.875f, -0.5f, -0.3125f, 3.1875f, 1.125f,
|
|
|
|
|
0.25f, 4.25f, 4.875f, 0.625f, -0.1875f, 1.125f, 0.9375f, -2.625f};
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto regions_tensor = graph->CreateTensor(regions_spec, regions_data.data());
|
|
|
|
|
auto batch_index_tensor =
|
|
|
|
|
graph->CreateTensor(batch_index_spec, batch_index_data.data());
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
auto roi_align = graph->CreateOperation<tim::vx::ops::ROI_Align>(
|
|
|
|
|
out_height, out_width, height_ratio, width_ratio, height_sample_num,
|
|
|
|
|
width_sample_num);
|
|
|
|
|
(*roi_align)
|
|
|
|
|
.BindInput(input_tensor)
|
|
|
|
|
.BindInput(regions_tensor)
|
|
|
|
|
.BindInput(batch_index_tensor)
|
|
|
|
|
.BindOutput(output_tensor);
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
|
|
|
|
|
input_tensor->CopyDataToTensor(input_data.data());
|
|
|
|
|
regions_tensor->CopyDataToTensor(regions_data.data());
|
|
|
|
|
batch_index_tensor->CopyDataToTensor(batch_index_data.data());
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
|
|
|
|
|
std::vector<float> output(num_rois * out_height * out_width * depth);
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_EQ(golden, output);
|
|
|
|
|
}
|