2022-05-30 19:57:50 +08:00
|
|
|
/****************************************************************************
|
|
|
|
|
*
|
|
|
|
|
* Copyright (c) 2022 Vivante Corporation
|
|
|
|
|
*
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
|
*
|
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
|
|
|
* DEALINGS IN THE SOFTWARE.
|
|
|
|
|
*
|
|
|
|
|
*****************************************************************************/
|
|
|
|
|
#include "tim/vx/ops/roi_pool.h"
|
|
|
|
|
|
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
|
#include "test_utils.h"
|
|
|
|
|
#include "tim/vx/context.h"
|
|
|
|
|
#include "tim/vx/graph.h"
|
|
|
|
|
#include "tim/vx/types.h"
|
|
|
|
|
|
2022-07-29 11:10:25 +08:00
|
|
|
TEST(RoiPool, shape_4_2_1_1_float32) {
|
2022-05-30 19:57:50 +08:00
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
uint32_t height = 4;
|
|
|
|
|
uint32_t width = 4;
|
|
|
|
|
uint32_t channels = 1;
|
|
|
|
|
uint32_t batch = 1;
|
|
|
|
|
uint32_t num_rois = 4;
|
|
|
|
|
uint32_t depth = channels;
|
|
|
|
|
|
|
|
|
|
int32_t out_height = 2;
|
|
|
|
|
int32_t out_width = 2;
|
|
|
|
|
float scale = 0.5f;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({width, height, channels, batch}); //whcn
|
|
|
|
|
tim::vx::ShapeType regions_shape({5, num_rois});
|
|
|
|
|
tim::vx::ShapeType output_shape(
|
|
|
|
|
{(uint32_t)out_width, (uint32_t)out_height, depth, num_rois});
|
|
|
|
|
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec regions_spec(tim::vx::DataType::FLOAT32, regions_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
|
|
|
|
tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
std::vector<float> input_data = {-10.0f, -1.0f, 4.0f, -5.0f,
|
|
|
|
|
-8.0f, -2.0f, 9.0f, 1.0f,
|
|
|
|
|
7.0f, -2.0f, 3.0f, -7.0f,
|
|
|
|
|
-2.0f, 10.0f, -3.0f, 5.0f};
|
|
|
|
|
|
|
|
|
|
std::vector<float> regions_data = {0.0f, 2.0f, 2.0f, 4.0f, 4.0f,
|
|
|
|
|
0.0f, 0.0f, 0.0f, 8.0f, 8.0f,
|
|
|
|
|
0.0f, 2.0f, 0.0f, 4.0f, 8.0f,
|
|
|
|
|
0.0f, 0.0f, 2.0f, 8.0f, 4.0f};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<float> golden = {
|
|
|
|
|
-2, 9, -2, 3,
|
|
|
|
|
9, 9, 10, 5,
|
|
|
|
|
-1, 9, 10, 3,
|
|
|
|
|
9, 9, 7, 3};
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto regions_tensor = graph->CreateTensor(regions_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::array<uint32_t, 2> size;
|
|
|
|
|
size[0] = out_height;
|
|
|
|
|
size[1] = out_width;
|
2022-07-29 11:10:25 +08:00
|
|
|
auto roi_pool = graph->CreateOperation<tim::vx::ops::RoiPool>(tim::vx::PoolType::MAX, scale, size);
|
2022-05-30 19:57:50 +08:00
|
|
|
(*roi_pool)
|
|
|
|
|
.BindInput(input_tensor)
|
|
|
|
|
.BindInput(regions_tensor)
|
|
|
|
|
.BindOutput(output_tensor);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(input_data.data(), input_data.size()*sizeof(float)));
|
|
|
|
|
EXPECT_TRUE(regions_tensor->CopyDataToTensor(regions_data.data(), regions_data.size()*sizeof(float)));
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
|
|
|
|
|
std::vector<float> output(num_rois * out_height * out_width * depth);
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_EQ(golden, output);
|
|
|
|
|
}
|