133 lines
5.8 KiB
C++
133 lines
5.8 KiB
C++
|
|
/****************************************************************************
|
||
|
|
*
|
||
|
|
* Copyright (c) 2021 Vivante Corporation
|
||
|
|
*
|
||
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
|
|
* copy of this software and associated documentation files (the "Software"),
|
||
|
|
* to deal in the Software without restriction, including without limitation
|
||
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||
|
|
* Software is furnished to do so, subject to the following conditions:
|
||
|
|
*
|
||
|
|
* The above copyright notice and this permission notice shall be included in
|
||
|
|
* all copies or substantial portions of the Software.
|
||
|
|
*
|
||
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||
|
|
* DEALINGS IN THE SOFTWARE.
|
||
|
|
*
|
||
|
|
*****************************************************************************/
|
||
|
|
#include "tim/vx/context.h"
|
||
|
|
#include "tim/vx/graph.h"
|
||
|
|
#include "tim/vx/ops/elementwise.h"
|
||
|
|
|
||
|
|
#include "gtest/gtest.h"
|
||
|
|
|
||
|
|
TEST(FloorDiv, shape_1_fp32) {
|
||
|
|
auto ctx = tim::vx::Context::Create();
|
||
|
|
auto graph = ctx->CreateGraph();
|
||
|
|
|
||
|
|
tim::vx::ShapeType io_shape({1});
|
||
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||
|
|
io_shape, tim::vx::TensorAttribute::INPUT);
|
||
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||
|
|
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
||
|
|
|
||
|
|
auto input_tensor_x = graph->CreateTensor(input_spec);
|
||
|
|
auto input_tensor_y = graph->CreateTensor(input_spec);
|
||
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||
|
|
|
||
|
|
std::vector<float> in_data_x = { 1 };
|
||
|
|
std::vector<float> in_data_y = { 0 };
|
||
|
|
std::vector<float> golden = { std::numeric_limits<float>::infinity() };
|
||
|
|
|
||
|
|
EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()*4));
|
||
|
|
EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()*4));
|
||
|
|
auto op = graph->CreateOperation<tim::vx::ops::FloorDiv>();
|
||
|
|
(*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor});
|
||
|
|
|
||
|
|
EXPECT_TRUE(graph->Compile());
|
||
|
|
EXPECT_TRUE(graph->Run());
|
||
|
|
std::vector<float> output(1);
|
||
|
|
|
||
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||
|
|
EXPECT_EQ(golden, output);
|
||
|
|
}
|
||
|
|
|
||
|
|
TEST(FloorDiv, shape_5_1_broadcast_float32) {
|
||
|
|
auto ctx = tim::vx::Context::Create();
|
||
|
|
auto graph = ctx->CreateGraph();
|
||
|
|
|
||
|
|
tim::vx::ShapeType in_shape_x({5, 1});
|
||
|
|
tim::vx::ShapeType in_shape_y({1});
|
||
|
|
tim::vx::ShapeType out_shape({5, 1});
|
||
|
|
tim::vx::TensorSpec input_spec_x(tim::vx::DataType::FLOAT32,
|
||
|
|
in_shape_x, tim::vx::TensorAttribute::INPUT);
|
||
|
|
tim::vx::TensorSpec input_spec_y(tim::vx::DataType::FLOAT32,
|
||
|
|
in_shape_y, tim::vx::TensorAttribute::INPUT);
|
||
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||
|
|
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||
|
|
|
||
|
|
auto input_tensor_x = graph->CreateTensor(input_spec_x);
|
||
|
|
auto input_tensor_y = graph->CreateTensor(input_spec_y);
|
||
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||
|
|
|
||
|
|
std::vector<float> in_data_x = { 1, 3, -2, 0, 99 };
|
||
|
|
std::vector<float> in_data_y = { 2 };
|
||
|
|
std::vector<float> golden = { 0, 1, -1, 0, 49 };
|
||
|
|
|
||
|
|
EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()*4));
|
||
|
|
EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()*4));
|
||
|
|
auto op = graph->CreateOperation<tim::vx::ops::FloorDiv>();
|
||
|
|
(*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor});
|
||
|
|
|
||
|
|
EXPECT_TRUE(graph->Compile());
|
||
|
|
EXPECT_TRUE(graph->Run());
|
||
|
|
std::vector<float> output(5);
|
||
|
|
|
||
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||
|
|
EXPECT_EQ(golden, output);
|
||
|
|
}
|
||
|
|
|
||
|
|
|
||
|
|
TEST(FloorDiv, shape_5_1_broadcast_uint8) {
|
||
|
|
auto ctx = tim::vx::Context::Create();
|
||
|
|
auto graph = ctx->CreateGraph();
|
||
|
|
|
||
|
|
tim::vx::ShapeType in_shape_x({1});
|
||
|
|
tim::vx::ShapeType in_shape_y({5, 1});
|
||
|
|
tim::vx::ShapeType out_shape({5, 1});
|
||
|
|
tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 1, 0);
|
||
|
|
tim::vx::Quantization quant_out(tim::vx::QuantType::ASYMMETRIC, 0.5, 0);
|
||
|
|
tim::vx::TensorSpec input_spec_x(tim::vx::DataType::UINT8,
|
||
|
|
in_shape_x, tim::vx::TensorAttribute::INPUT, quant);
|
||
|
|
tim::vx::TensorSpec input_spec_y(tim::vx::DataType::UINT8,
|
||
|
|
in_shape_y, tim::vx::TensorAttribute::INPUT, quant);
|
||
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8,
|
||
|
|
out_shape, tim::vx::TensorAttribute::OUTPUT, quant_out);
|
||
|
|
|
||
|
|
auto input_tensor_x = graph->CreateTensor(input_spec_x);
|
||
|
|
auto input_tensor_y = graph->CreateTensor(input_spec_y);
|
||
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||
|
|
|
||
|
|
std::vector<uint8_t> in_data_x = { 255 };
|
||
|
|
std::vector<uint8_t> in_data_y = { 1, 3, 2, 0, 255 };
|
||
|
|
std::vector<uint8_t> golden = { 255, 170, 254, 255, 2 };
|
||
|
|
|
||
|
|
EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()));
|
||
|
|
EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()));
|
||
|
|
auto op = graph->CreateOperation<tim::vx::ops::FloorDiv>();
|
||
|
|
(*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor});
|
||
|
|
|
||
|
|
EXPECT_TRUE(graph->Compile());
|
||
|
|
EXPECT_TRUE(graph->Run());
|
||
|
|
std::vector<uint8_t> output(5);
|
||
|
|
|
||
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||
|
|
EXPECT_EQ(golden, output);
|
||
|
|
}
|