2022-04-18 15:45:15 +08:00
|
|
|
/****************************************************************************
|
|
|
|
|
*
|
2023-01-20 11:38:21 +08:00
|
|
|
* Copyright (c) 2020-2023 Vivante Corporation
|
2022-04-18 15:45:15 +08:00
|
|
|
*
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
|
*
|
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
|
|
|
* DEALINGS IN THE SOFTWARE.
|
|
|
|
|
*
|
|
|
|
|
*****************************************************************************/
|
|
|
|
|
#include "tim/vx/context.h"
|
|
|
|
|
#include "tim/vx/graph.h"
|
|
|
|
|
#include "tim/vx/ops/broadcast.h"
|
|
|
|
|
#include "tim/transform/layout_inference.h"
|
|
|
|
|
|
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
|
#include "test_utils.h"
|
2022-05-06 09:30:26 +08:00
|
|
|
#include "vsi_nn_pub.h"
|
2022-04-18 15:45:15 +08:00
|
|
|
|
2022-05-06 09:30:26 +08:00
|
|
|
#ifdef VSI_EXPAND_BROADCAST_ENABLE_DIMENSIONS
|
2022-04-18 15:45:15 +08:00
|
|
|
static void CheckResult(std::shared_ptr<tim::vx::Graph>& graph,
|
|
|
|
|
std::vector<float>& golden,
|
|
|
|
|
std::shared_ptr<tim::vx::Tensor>& output_tensor) {
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
|
|
|
|
|
std::vector<float> output(golden.size() * sizeof(float));
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Broadcast, ScalarTo2D_2x3) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({1});
|
|
|
|
|
tim::vx::ShapeType output_shape({3, 2});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
|
|
|
|
tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data = {
|
|
|
|
|
2.25f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<float> golden = {
|
|
|
|
|
2.25f, 2.25f, 2.25f, 2.25f, 2.25f, 2.25f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<int32_t> shape = {3, 2};
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
|
|
|
|
in_data.size() * sizeof(float)));
|
|
|
|
|
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Broadcast>(shape);
|
|
|
|
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
CheckResult(graph, golden, output_tensor);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Broadcast, 1DTo2D) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({3});
|
|
|
|
|
tim::vx::ShapeType output_shape({3, 2});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
|
|
|
|
tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data = {
|
|
|
|
|
1.f, 2.f, 3.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<float> golden = {
|
|
|
|
|
1.f, 2.f, 3.f, 1.f, 2.f, 3.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<int32_t> shape = {3, 2};
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
|
|
|
|
in_data.size() * sizeof(float)));
|
|
|
|
|
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Broadcast>(shape);
|
|
|
|
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
CheckResult(graph, golden, output_tensor);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Broadcast, 1DTo2D_WithDims0) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({2});
|
|
|
|
|
tim::vx::ShapeType output_shape({2, 2});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
|
|
|
|
tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data = {
|
|
|
|
|
1.f, 2.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<float> golden = {
|
|
|
|
|
1.f, 2.f,
|
|
|
|
|
1.f, 2.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<int32_t> shape = {2, 2};
|
|
|
|
|
std::vector<int32_t> dimensions = {0};
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
|
|
|
|
in_data.size() * sizeof(float)));
|
|
|
|
|
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Broadcast>(shape, dimensions);
|
|
|
|
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
CheckResult(graph, golden, output_tensor);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Broadcast, 1DTo2D_WithDims1) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({2});
|
|
|
|
|
tim::vx::ShapeType output_shape({2, 2});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
|
|
|
|
tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data = {
|
|
|
|
|
1.f, 2.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<float> golden = {
|
|
|
|
|
1.f, 1.f,
|
|
|
|
|
2.f, 2.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<int32_t> shape = {2, 2};
|
|
|
|
|
std::vector<int32_t> dimensions = {1};
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
|
|
|
|
in_data.size() * sizeof(float)));
|
|
|
|
|
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Broadcast>(shape, dimensions);
|
|
|
|
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
CheckResult(graph, golden, output_tensor);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Broadcast, 1DTo3D_WithDims0) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({2});
|
|
|
|
|
tim::vx::ShapeType output_shape({2, 2, 2});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
|
|
|
|
tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data = {
|
|
|
|
|
1.f, 2.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<float> golden = {
|
|
|
|
|
1.f, 2.f, 1.f, 2.f, 1.f, 2.f, 1.f, 2.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<int32_t> shape = {2, 2, 2};
|
|
|
|
|
std::vector<int32_t> dimensions = {0};
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
|
|
|
|
in_data.size() * sizeof(float)));
|
|
|
|
|
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Broadcast>(shape, dimensions);
|
|
|
|
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
CheckResult(graph, golden, output_tensor);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Broadcast, 1DTo3D_WithDims1) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({2});
|
|
|
|
|
tim::vx::ShapeType output_shape({2, 2, 2});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
|
|
|
|
tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data = {
|
|
|
|
|
1.f, 2.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<float> golden = {
|
|
|
|
|
1.f, 1.f, 2.f, 2.f, 1.f, 1.f, 2.f, 2.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<int32_t> shape = {2, 2, 2};
|
|
|
|
|
std::vector<int32_t> dimensions = {1};
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
|
|
|
|
in_data.size() * sizeof(float)));
|
|
|
|
|
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Broadcast>(shape, dimensions);
|
|
|
|
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
CheckResult(graph, golden, output_tensor);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Broadcast, 1DTo3D_WithDims2) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({2});
|
|
|
|
|
tim::vx::ShapeType output_shape({2, 2, 2});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
|
|
|
|
tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data = {
|
|
|
|
|
1.f, 2.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<float> golden = {
|
|
|
|
|
1.f, 1.f, 1.f, 1.f, 2.f, 2.f, 2.f, 2.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<int32_t> shape = {2, 2, 2};
|
|
|
|
|
std::vector<int32_t> dimensions = {2};
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
|
|
|
|
in_data.size() * sizeof(float)));
|
|
|
|
|
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Broadcast>(shape, dimensions);
|
|
|
|
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
CheckResult(graph, golden, output_tensor);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Broadcast, 2DTo3D_WithDims02) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({2, 2});
|
|
|
|
|
tim::vx::ShapeType output_shape({2, 2, 2});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
|
|
|
|
tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data = {
|
|
|
|
|
1.f, 5.f, 2.f, 6.f
|
|
|
|
|
};
|
|
|
|
|
std::vector<float> golden = {
|
|
|
|
|
1.f, 5.f, 1.f, 5.f, 2.f, 6.f, 2.f, 6.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<int32_t> shape = {2, 2, 2};
|
|
|
|
|
std::vector<int32_t> dimensions = {0, 2};
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
|
|
|
|
in_data.size() * sizeof(float)));
|
|
|
|
|
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Broadcast>(shape, dimensions);
|
|
|
|
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
CheckResult(graph, golden, output_tensor);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Broadcast, 2DTo3D_WithDims12) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({2, 2});
|
|
|
|
|
tim::vx::ShapeType output_shape({2, 2, 2});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
|
|
|
|
tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data = {
|
|
|
|
|
1.f, 5.f, 2.f, 6.f
|
|
|
|
|
};
|
|
|
|
|
std::vector<float> golden = {
|
|
|
|
|
1.f, 1.f, 5.f, 5.f, 2.f, 2.f, 6.f, 6.f,
|
|
|
|
|
};
|
|
|
|
|
std::vector<int32_t> shape = {2, 2, 2};
|
|
|
|
|
std::vector<int32_t> dimensions = {1, 2};
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
|
|
|
|
in_data.size() * sizeof(float)));
|
|
|
|
|
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Broadcast>(shape, dimensions);
|
|
|
|
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
CheckResult(graph, golden, output_tensor);
|
|
|
|
|
}
|
2022-05-06 09:30:26 +08:00
|
|
|
#endif
|