TIM-VX/src/tim/transform/rnncell_layout_inference_te...

205 lines
9.5 KiB
C++
Raw Normal View History

#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/ops.h"
#include "tim/transform/layout_inference.h"
#include "permute_vector.h"
#include "test_utils.h"
#include <algorithm>
#include "gtest/gtest.h"
TEST(RNNCell, layout_infer_align) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
uint32_t input_size = 3, batch_size = 2, num_units = 4;
tim::vx::ShapeType input_shape({input_size, batch_size});
tim::vx::ShapeType weights_shape({input_size, num_units});
tim::vx::ShapeType recurrent_weights_shape({num_units, num_units});
tim::vx::ShapeType bias_shape({num_units});
tim::vx::ShapeType state_in_shape({num_units, batch_size});
tim::vx::ShapeType output_shape({num_units, batch_size});
tim::vx::ShapeType state_out_shape({num_units, batch_size});
tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 0.0036, 0);
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weights_spec(tim::vx::DataType::FLOAT32, weights_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec recurrent_weights_spec(
tim::vx::DataType::FLOAT32, recurrent_weights_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec state_in_spec(tim::vx::DataType::FLOAT32, state_in_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
tim::vx::TensorSpec state_out_spec(tim::vx::DataType::UINT8, state_out_shape,
tim::vx::TensorAttribute::OUTPUT, quant);
std::vector<float> in_data = {
0.12609188, 0.46347019, 0.89598465, 0.35867718, 0.36897406, 0.73463392,
};
std::vector<float> weights_data = {
0.12609188, 0.46347019, 0.89598465, 0.35867718, 0.36897406, 0.73463392,
0.12609188, 0.46347019, 0.89598465, 0.35867718, 0.36897406, 0.73463392,
};
std::vector<float> recurrent_weights_data = {
-0.31930989, 0.37613347, 0.27901134, 0.36137494, -1.36916667, 0.38031587,
0.21580373, 0.27072677, 1.01580888, 0.14943552, 1.15465137, 0.09784451,
-1.02702999, 1.39296314, 0.15785322, 0.21931258,
};
std::vector<float> bias_data = {
0.01580888,
0.14943552,
0.15465137,
0.09784451,
};
std::vector<float> state_in_data = {0, 0, 0, 0, 0, 0, 0, 0};
std::vector<float> output_golden = {0.781534, 0.771447, 0.830002, 0.749713,
0.711524, 0.74155, 0.77355, 0.717427};
std::vector<uint8_t> state_out_golden = {
217, 214, 231, 208, 198, 206, 215, 199,
};
auto input_tensor = graph->CreateTensor(input_spec);
auto weights_tensor = graph->CreateTensor(weights_spec, weights_data.data());
auto recurrent_weights_tensor = graph->CreateTensor(
recurrent_weights_spec, recurrent_weights_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto state_in_tensor = graph->CreateTensor(state_in_spec);
auto output_tensor = graph->CreateTensor(output_spec);
auto state_out_tensor = graph->CreateTensor(state_out_spec);
auto op = graph->CreateOperation<tim::vx::ops::RNNCell>(
tim::vx::ops::RNNCell::ActivationType::kSIGMOID);
(*op)
.BindInputs({input_tensor, weights_tensor, bias_tensor, state_in_tensor,
recurrent_weights_tensor})
.BindOutputs({output_tensor, state_out_tensor});
auto transform = tim::transform::LayoutInference(graph, ctx);
auto infer_graph = transform.first;
EXPECT_TRUE(infer_graph->Compile());
auto graph_io_map = transform.second;
auto infer_input = graph_io_map[graph->InputsTensor()[0]];
auto infer_input_state = graph_io_map[graph->InputsTensor()[1]];
auto infer_output = graph_io_map[graph->OutputsTensor()[0]];
auto infer_output_state = graph_io_map[graph->OutputsTensor()[1]];
infer_input->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float));
infer_input_state->CopyDataToTensor(state_in_data.data(),
state_in_data.size() * sizeof(float));
EXPECT_TRUE(infer_graph->Run());
std::vector<float> output(output_golden.size());
std::vector<uint8_t> state_out(state_out_golden.size());
EXPECT_TRUE(infer_output->CopyDataFromTensor(output.data()));
EXPECT_TRUE(infer_output_state->CopyDataFromTensor(state_out.data()));
EXPECT_TRUE(ArraysMatch(output_golden, output, 1e-5f));
EXPECT_EQ(state_out_golden, state_out);
}
TEST(RNNCell, layout_infer_notalign) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
uint32_t input_size = 3, batch_size = 2, num_units = 4;
tim::vx::ShapeType input_shape({batch_size, input_size}); //input_pv={1,0}
tim::vx::ShapeType weights_shape({input_size,num_units});
tim::vx::ShapeType recurrent_weights_shape({num_units, num_units});
tim::vx::ShapeType bias_shape({num_units});
tim::vx::ShapeType state_in_shape({num_units, batch_size});
tim::vx::ShapeType output_shape({num_units, batch_size});
tim::vx::ShapeType state_out_shape({num_units, batch_size});
tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 0.0036, 0);
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weights_spec(tim::vx::DataType::FLOAT32, weights_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec recurrent_weights_spec(
tim::vx::DataType::FLOAT32, recurrent_weights_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec state_in_spec(tim::vx::DataType::FLOAT32, state_in_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
tim::vx::TensorSpec state_out_spec(tim::vx::DataType::UINT8, state_out_shape,
tim::vx::TensorAttribute::OUTPUT, quant);
std::vector<float> in_data = {
0.12609188, 0.35867718, 0.46347019, 0.36897406, 0.89598465, 0.73463392,
};
std::vector<float> weights_data = {
0.12609188, 0.46347019, 0.89598465, 0.35867718, 0.36897406, 0.73463392,
0.12609188, 0.46347019, 0.89598465, 0.35867718, 0.36897406, 0.73463392,
};
std::vector<float> recurrent_weights_data = {
-0.31930989, 0.37613347, 0.27901134, 0.36137494, -1.36916667, 0.38031587,
0.21580373, 0.27072677, 1.01580888, 0.14943552, 1.15465137, 0.09784451,
-1.02702999, 1.39296314, 0.15785322, 0.21931258,
};
std::vector<float> bias_data = {
0.01580888,
0.14943552,
0.15465137,
0.09784451,
};
std::vector<float> state_in_data = {0, 0, 0, 0, 0, 0, 0, 0};
std::vector<float> output_golden = {0.781534, 0.771447, 0.830002, 0.749713,
0.711524, 0.74155, 0.77355, 0.717427};
std::vector<uint8_t> state_out_golden = {
217, 214, 231, 208, 198, 206, 215, 199,
};
auto input_tensor = graph->CreateTensor(input_spec);
auto weights_tensor = graph->CreateTensor(weights_spec, weights_data.data());
auto recurrent_weights_tensor = graph->CreateTensor(
recurrent_weights_spec, recurrent_weights_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto state_in_tensor = graph->CreateTensor(state_in_spec);
auto output_tensor = graph->CreateTensor(output_spec);
auto state_out_tensor = graph->CreateTensor(state_out_spec);
std::map<std::shared_ptr<tim::vx::Tensor>,
std::shared_ptr<tim::transform::IPermuteVector>>
tensor_pv_map;
std::shared_ptr<tim::transform::IPermuteVector> pv =
std::make_shared<tim::transform::PermuteVector<2>>(
std::initializer_list<uint32_t>({1U, 0U}));
tensor_pv_map.insert({input_tensor, pv});
auto op = graph->CreateOperation<tim::vx::ops::RNNCell>(
tim::vx::ops::RNNCell::ActivationType::kSIGMOID);
(*op)
.BindInputs({input_tensor, weights_tensor, bias_tensor, state_in_tensor,
recurrent_weights_tensor})
.BindOutputs({output_tensor, state_out_tensor});
auto transform = tim::transform::LayoutInference(graph, ctx, tensor_pv_map);
auto infer_graph = transform.first;
EXPECT_TRUE(infer_graph->Compile());
auto graph_io_map = transform.second;
auto infer_input = graph_io_map[graph->InputsTensor()[0]];
auto infer_input_state = graph_io_map[graph->InputsTensor()[1]];
auto infer_output = graph_io_map[graph->OutputsTensor()[0]];
auto infer_output_state = graph_io_map[graph->OutputsTensor()[1]];
infer_input->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float));
infer_input_state->CopyDataToTensor(state_in_data.data(),
state_in_data.size() * sizeof(float));
EXPECT_TRUE(infer_graph->Run());
std::vector<float> output(output_golden.size());
std::vector<uint8_t> state_out(state_out_golden.size());
EXPECT_TRUE(infer_output->CopyDataFromTensor(output.data()));
EXPECT_TRUE(infer_output_state->CopyDataFromTensor(state_out.data()));
EXPECT_TRUE(ArraysMatch(output_golden, output, 1e-5f));
EXPECT_EQ(state_out_golden, state_out);
}