TIM-VX/src/tim/transform/ops/grouped_conv2d_layout_infer...

146 lines
6.2 KiB
C
Raw Normal View History

/****************************************************************************
*
2023-01-20 11:38:21 +08:00
* Copyright (c) 2020-2023 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#ifndef TIM_LAYOUT_INFER_GROUPED_CONV2D_LAYOUT_INFERENCE_H_
#define TIM_LAYOUT_INFER_GROUPED_CONV2D_LAYOUT_INFERENCE_H_
#include "tim/vx/ops/groupedconv2d.h"
#include "builtin_op_impl.h"
#include "permute_vector.h"
#include "ops/op_layout_inference.h"
namespace tim {
namespace transform {
class GroupedConv2dLayoutInfer : public OpLayoutInfer {
public:
GroupedConv2dLayoutInfer(
const std::shared_ptr<vx::Operation> op,
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
: OpLayoutInfer(op, context) {}
void OnInputs(
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
auto src_grouped_conv2d = std::static_pointer_cast<vx::ops::GroupedConv2d>(op_);
vx::DataLayout layout = op_->impl()->layout_;
auto kernel_layout = src_grouped_conv2d->KernelDataLayout();
std::shared_ptr<IPermuteVector> required_pv, weight_required_pv;
switch (layout)
{ // kernel layout must be IWHO in tflite & nnapi
case vx::DataLayout::CWHN:
required_pv = std::make_shared<PermuteVector<4>>(kCWHN2WHCN);
break;
case vx::DataLayout::WHCN:
required_pv = MakeShared(4);
break;
default:
VSILOGE("The layout of input is not support.");
required_pv = MakeShared(4);
break;
}
switch (kernel_layout) {
case vx::DataLayout::OcIcWH: // Support TVM Kernel Layout
weight_required_pv = std::make_shared<PermuteVector<4>>(kOcIcWH2WHIcOc);
break;
case vx::DataLayout::IcOcWH:
weight_required_pv = std::make_shared<PermuteVector<4>>(kIcOcWH2WHIcOc);
break;
case vx::DataLayout::IcWHOc: // Support nnapi & tflite Kernel Layout
weight_required_pv = std::make_shared<PermuteVector<4>>(kIcWHOc2WHIcOc);
break;
default:
weight_required_pv = std::make_shared<PermuteVector<4>>();
break;
}
auto input_tensors = op_->impl()->InputsTensor();
std::shared_ptr<vx::Tensor> infer_input, infer_weight, infer_bias;
// For input
auto input_pv = context_->GetPermuteVector(input_tensors[0]);
auto final_pv = input_pv->Reverse()->Add(required_pv);
if (!final_pv->IsAligned()) {
infer_input =
InsertPermute(context_->GetMappedTensor(input_tensors[0]), final_pv);
context_->SetPermuteVector(input_tensors[0], required_pv);
} else {
infer_input = context_->GetMappedTensor(input_tensors[0]);
context_->SetPermuteVector(input_tensors[0], input_pv);
}
context_->UpdateTensorMap(input_tensors[0], infer_input);
// For weight
if (input_tensors[1]->IsConstTensor()) {
if (!weight_required_pv->IsAligned()) {
infer_weight = PermuteConstTensor(input_tensors[1], weight_required_pv);
} else {
std::vector<uint8_t> dataRef(input_tensors[1]->GetSpec().GetByteSize());
input_tensors[1]->CopyDataFromTensor(dataRef.data());
infer_weight = context_->infer_graph_->CreateTensor(
input_tensors[1]->GetSpec(), (const void*)dataRef.data());
}
context_->SetPermuteVector(input_tensors[1], weight_required_pv);
context_->UpdateTensorMap(input_tensors[1], infer_weight);
} else {
auto weight_pv = context_->GetPermuteVector(input_tensors[1]);
auto final_pv = weight_pv->Reverse()->Add(weight_required_pv);
if (!final_pv->IsAligned()) {
infer_weight =
InsertPermute(context_->GetMappedTensor(input_tensors[1]), final_pv);
context_->SetPermuteVector(input_tensors[1], weight_required_pv);
} else {
infer_weight = context_->GetMappedTensor(input_tensors[1]);
context_->SetPermuteVector(input_tensors[1], weight_pv);
}
context_->UpdateTensorMap(input_tensors[1], infer_weight);
}
// For bias
if (input_tensors.size() == 3) {
if (input_tensors[2]->IsConstTensor()) {
std::vector<uint8_t> dataRef(input_tensors[2]->GetSpec().GetByteSize());
input_tensors[2]->CopyDataFromTensor(dataRef.data());
infer_bias = context_->infer_graph_->CreateTensor(
input_tensors[2]->GetSpec(), (const void*)dataRef.data());
} else {
infer_bias = context_->GetMappedTensor(input_tensors[2]);
}
auto bias_pv = MakeShared(1);
context_->UpdateTensorMap(input_tensors[2], infer_bias);
context_->SetPermuteVector(input_tensors[2], bias_pv);
}
auto grouped_conv2d = op_->Clone(context_->infer_graph_);
auto otensor_infer = CreateOutputsTensor(required_pv);
for (const auto& i_src : input_tensors) {
(*grouped_conv2d).BindInput(context_->GetMappedTensor(i_src));
}
(*grouped_conv2d).BindOutput(otensor_infer[0]);
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], required_pv);
// Add out tensor of src_graph into next_tensor
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
}
};
} // namespace transform
} // namespace tim
#endif