Added unit test for maxpool (#361)
https://github.com/VeriSilicon/TIM-VX/issues/318 Signed-off-by: Chen Xin <jack.chen@verisilicon.com>
This commit is contained in:
parent
12746cb4d7
commit
0dc38eac2e
|
|
@ -42,6 +42,7 @@ namespace ops {
|
|||
*
|
||||
* - type : MAX, AVG, L2 or AVG_ANDROID.
|
||||
* - padding : AUTO, VALID or SAME.
|
||||
* - pad : Specify the number of pad values for left, right, top, and bottom.
|
||||
* - ksize : filter size.
|
||||
* - stride : stride along each spatial axis.
|
||||
* - round_type : CEILING or FLOOR.
|
||||
|
|
@ -65,33 +66,32 @@ namespace ops {
|
|||
|
||||
class Pool2d : public DirectMapOp {
|
||||
public:
|
||||
// for Classic Pool2d
|
||||
/* for Classic Pool2d, pool does not support auto-completion of pad value,
|
||||
you need to specify pad size explicitly, it is recommended to use the second api.*/
|
||||
Pool2d(Graph* graph, PoolType type, PadType padding,
|
||||
const std::array<uint32_t, 2>& ksize,
|
||||
const std::array<uint32_t, 2>& stride,
|
||||
RoundType round_type = RoundType::FLOOR,
|
||||
DataLayout layout = DataLayout::WHCN);
|
||||
Pool2d(Graph* graph, PoolType type,
|
||||
const std::array<uint32_t, 4>& pad,
|
||||
Pool2d(Graph* graph, PoolType type, const std::array<uint32_t, 4>& pad,
|
||||
const std::array<uint32_t, 2>& ksize,
|
||||
const std::array<uint32_t, 2>& stride,
|
||||
RoundType round_type = RoundType::FLOOR,
|
||||
DataLayout layout = DataLayout::WHCN);
|
||||
|
||||
// for Global Pool2d
|
||||
Pool2d(Graph* graph, PoolType type,
|
||||
const std::array<uint32_t, 2>& input_size,
|
||||
Pool2d(Graph* graph, PoolType type, const std::array<uint32_t, 2>& input_size,
|
||||
RoundType round_type = RoundType::FLOOR,
|
||||
DataLayout layout = DataLayout::WHCN);
|
||||
|
||||
// for Adaptive Pool2d
|
||||
Pool2d(Graph* graph, PoolType type,
|
||||
const std::array<uint32_t, 2>& input_size,
|
||||
Pool2d(Graph* graph, PoolType type, const std::array<uint32_t, 2>& input_size,
|
||||
const std::array<uint32_t, 2>& output_size,
|
||||
RoundType round_type = RoundType::FLOOR,
|
||||
DataLayout layout = DataLayout::WHCN);
|
||||
|
||||
std::shared_ptr<Operation> Clone(std::shared_ptr<Graph>& graph) const override;
|
||||
std::shared_ptr<Operation> Clone(
|
||||
std::shared_ptr<Graph>& graph) const override;
|
||||
void Init();
|
||||
|
||||
protected:
|
||||
|
|
|
|||
|
|
@ -0,0 +1,52 @@
|
|||
#include "tim/vx/context.h"
|
||||
#include "tim/vx/graph.h"
|
||||
#include "tim/vx/ops/pool2d.h"
|
||||
#include <iostream>
|
||||
#include "gtest/gtest.h"
|
||||
#include "test_utils.h"
|
||||
|
||||
TEST(MAX, shape_6_6_1_1_fp32_kernel_3_stride_2) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType in_shape({6, 6, 1, 1});
|
||||
tim::vx::ShapeType out_shape({3, 3, 1, 1});
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, in_shape,
|
||||
tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, out_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
std::vector<float> in_data = {
|
||||
-1, -2, -3, -4, -5, -5,
|
||||
-6, -7, -8, -9, -10, -10,
|
||||
-11, -12, -13, -14, -15, -15,
|
||||
-16, -17, -18, -19, -20, -20,
|
||||
-21, -22, -23, -24, -25, -20,
|
||||
-21, -22, -23, -24, -25, -20,
|
||||
};
|
||||
std::vector<float> golden = {
|
||||
-1, -3, -5,
|
||||
-11, -13, -15,
|
||||
-21, -23, -20,
|
||||
};
|
||||
|
||||
EXPECT_TRUE(
|
||||
input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4));
|
||||
std::array<uint32_t, 4> pad = {0, 1, 0, 1};
|
||||
std::array<uint32_t, 2> ksize = {3, 3};
|
||||
std::array<uint32_t, 2> stride = {2, 2};
|
||||
auto round_type = tim::vx::RoundType::CEILING;
|
||||
auto op = graph->CreateOperation<tim::vx::ops::Pool2d>(
|
||||
tim::vx::PoolType::MAX, pad, ksize, stride, round_type);
|
||||
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
std::vector<float> output(golden.size());
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
Loading…
Reference in New Issue