supported int16 dfp quantization & added conv2d unit test
This commit is contained in:
parent
95401036ab
commit
113c3722cb
|
|
@ -47,7 +47,9 @@ class Quantization {
|
|||
channel_dim_(channel_dim),
|
||||
scales_(std::move(scales)),
|
||||
zero_points_(std::move(zero_points)) {}
|
||||
|
||||
Quantization(QuantType type, int8_t fl)
|
||||
: type_(type),
|
||||
fl_(fl){}
|
||||
QuantType& Type() { return type_; }
|
||||
const QuantType& Type() const { return type_; }
|
||||
Quantization& SetType(QuantType type) {
|
||||
|
|
@ -76,11 +78,14 @@ class Quantization {
|
|||
return *this;
|
||||
}
|
||||
|
||||
const std::int8_t& Fl() const{ return this->fl_; }
|
||||
|
||||
protected:
|
||||
QuantType type_{QuantType::NONE};
|
||||
int32_t channel_dim_{-1};
|
||||
std::vector<float> scales_;
|
||||
std::vector<int32_t> zero_points_;
|
||||
int8_t fl_ = 0;
|
||||
};
|
||||
|
||||
struct TensorSpec {
|
||||
|
|
|
|||
|
|
@ -35,12 +35,13 @@ enum class DataType {
|
|||
UINT16,
|
||||
INT32,
|
||||
UINT32,
|
||||
INT64,
|
||||
FLOAT16,
|
||||
FLOAT32,
|
||||
BOOL8
|
||||
};
|
||||
|
||||
enum class QuantType { NONE, ASYMMETRIC, SYMMETRIC_PER_CHANNEL };
|
||||
enum class QuantType { NONE, ASYMMETRIC, SYMMETRIC_PER_CHANNEL, DYNAMIC_FIXED_POINT };
|
||||
|
||||
enum TensorAttribute {
|
||||
CONSTANT = 1 << 0,
|
||||
|
|
|
|||
|
|
@ -1662,3 +1662,187 @@ TEST(Conv2d, shape_w_h_128_1_ksize_1_1_stride_2_int8_QuantizedPerChannelTest) {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Conv2d, shape_4_2_2_2_int16_DFPQuantizedTest){
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
if(ctx->isClOnly()) GTEST_SKIP();
|
||||
auto graph = ctx->CreateGraph();
|
||||
tim::vx::ShapeType input_shape({4, 2, 2, 2}); //whcn
|
||||
tim::vx::ShapeType weight_shape({1, 1, 2, 1}); //whio
|
||||
tim::vx::ShapeType bias_shape({weight_shape[3]});
|
||||
tim::vx::ShapeType output_shape(
|
||||
{4, 2, weight_shape[3], input_shape[3]}); //whcn
|
||||
int8_t fl_input = 9, fl_weight= 8, fl_output = 8;
|
||||
tim::vx::Quantization quant_input(tim::vx::QuantType::DYNAMIC_FIXED_POINT, fl_input);
|
||||
tim::vx::Quantization quant_weight(tim::vx::QuantType::DYNAMIC_FIXED_POINT, fl_weight);
|
||||
tim::vx::Quantization quant_output(tim::vx::QuantType::DYNAMIC_FIXED_POINT, fl_output);
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::INT16, input_shape,
|
||||
tim::vx::TensorAttribute::INPUT,
|
||||
quant_input);
|
||||
tim::vx::TensorSpec weight_spec(tim::vx::DataType::INT16, weight_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT,
|
||||
quant_weight);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT16, output_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT,
|
||||
quant_output);
|
||||
|
||||
// Input data float
|
||||
std::vector<float> input_data_float = {
|
||||
0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1,
|
||||
0.5, 1, 1.5, 2, 0.5, 1, 1.5, 2, 0.5, 1, 1.5, 2, 0.5, 1, 1.5, 2};
|
||||
|
||||
// weight data float
|
||||
std::vector<float> weight_data_float= {
|
||||
1, 2 // first filter
|
||||
};
|
||||
//input data(dfp16)
|
||||
std::vector<int16_t> input_data = {
|
||||
256,256,256,256, 512,512,512,512, 256,256,256,256,512,512,512,512,
|
||||
256,512,768,1024,256,512,768,1024,256,512,768,1024,256,512,768,1024
|
||||
};
|
||||
//weight data(dfp16)
|
||||
std::vector<int16_t> weight_data = {
|
||||
256,512
|
||||
};
|
||||
// bias data
|
||||
std::vector<int64_t> bias_data = {0};
|
||||
//golden
|
||||
std::vector<float> golden = {1.5, 1.5, 1.5, 1.5, 3, 3, 3, 3,
|
||||
1.5, 3, 4.5, 6, 1.5, 3, 4.5, 6};
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec,input_data.data());
|
||||
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
auto padding = tim::vx::PadType::SAME;
|
||||
std::array<uint32_t, 2> stride({1, 1});
|
||||
std::array<uint32_t, 2> dilation({0, 0});
|
||||
|
||||
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
|
||||
padding, stride, dilation);
|
||||
(*conv2d)
|
||||
.BindInput(input_tensor)
|
||||
.BindInput(weight_tensor)
|
||||
.BindOutput(output_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
|
||||
input_tensor->CopyDataToTensor(input_data.data());
|
||||
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
uint32_t output_size = 1;
|
||||
for (auto i : output_tensor->GetShape()) {
|
||||
output_size *= i;
|
||||
}
|
||||
std::vector<int16_t> output(output_size);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
//transform output(int16) to fp
|
||||
std::vector<float> f;
|
||||
for(const auto& q : output){
|
||||
f.push_back( q / (float)((int64_t)1 << fl_output));
|
||||
}
|
||||
EXPECT_EQ(golden, f);
|
||||
}
|
||||
TEST(Conv2d, shape_4_2_1_1_int16_DFPQuantizedTest) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
if(ctx->isClOnly()) GTEST_SKIP();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType input_shape({4, 2, 1, 1}); //whcn
|
||||
tim::vx::ShapeType weight_shape({2, 2, 1, 3}); //whio
|
||||
tim::vx::ShapeType bias_shape({weight_shape[3]});
|
||||
tim::vx::ShapeType output_shape(
|
||||
{4, 2, weight_shape[3], input_shape[3]}); //whcn
|
||||
int8_t fl_input = 9, fl_weight = 8, fl_bias = 17,fl_output = 8;
|
||||
|
||||
tim::vx::Quantization quant_input(tim::vx::QuantType::DYNAMIC_FIXED_POINT, fl_input);
|
||||
tim::vx::Quantization quant_weight(tim::vx::QuantType::DYNAMIC_FIXED_POINT, fl_weight);
|
||||
tim::vx::Quantization quant_bias(tim::vx::QuantType::DYNAMIC_FIXED_POINT, fl_bias);
|
||||
tim::vx::Quantization quant_output(tim::vx::QuantType::DYNAMIC_FIXED_POINT, fl_output);
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::INT16, input_shape,
|
||||
tim::vx::TensorAttribute::INPUT,
|
||||
quant_input);
|
||||
tim::vx::TensorSpec weight_spec(tim::vx::DataType::INT16, weight_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT,
|
||||
quant_weight);
|
||||
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT64, bias_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT,
|
||||
quant_bias);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT16, output_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT,
|
||||
quant_output);
|
||||
// Input data nchw
|
||||
std::vector<float> input_data_float= {
|
||||
1, 1, 1, 1, // row = 1
|
||||
2, 2, 3, 2 // row = 2
|
||||
};
|
||||
|
||||
// weight data oihw
|
||||
std::vector<float> weight_data_float= {
|
||||
1, 2, 3, 4, //first 2x2 filter
|
||||
-1, 1, -1, 1, // second 2x2 filter
|
||||
-1, -1, 1, 1, // third 2x2 filter
|
||||
};
|
||||
|
||||
// bias data
|
||||
std::vector<float> bias_data_float = {1, 2, 3};
|
||||
|
||||
// nchw
|
||||
std::vector<float> golden = {// first channel
|
||||
18, 22, 21, 8, 7, 9, 8, 3,
|
||||
// second channel
|
||||
2, 3, 1, -1, 2, 3, 1, 0,
|
||||
// third channel
|
||||
5, 6, 6, 4, -1, -2, -2, 1};
|
||||
|
||||
std::vector<int16_t> input_data = {
|
||||
512, 512, 512, 512,
|
||||
1024,1024,1536,1024
|
||||
};
|
||||
std::vector<int16_t> weight_data = {
|
||||
256,512,768,1024,
|
||||
-256,256,-256,256,
|
||||
-256,-256,256,256
|
||||
};
|
||||
std::vector<int64_t> bias_data = {
|
||||
1<<fl_bias, 2*(1<<fl_bias),3*(1<<fl_bias)
|
||||
};
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec, input_data.data());
|
||||
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
|
||||
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
|
||||
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
auto padding = tim::vx::PadType::SAME;
|
||||
std::array<uint32_t, 2> stride({1, 1});
|
||||
std::array<uint32_t, 2> dilation({0, 0});
|
||||
|
||||
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
|
||||
padding, stride, dilation);
|
||||
(*conv2d)
|
||||
.BindInput(input_tensor)
|
||||
.BindInput(weight_tensor)
|
||||
.BindInput(bias_tensor)
|
||||
.BindOutput(output_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
|
||||
input_tensor->CopyDataToTensor(input_data.data());
|
||||
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
uint32_t output_size = 1;
|
||||
for (auto i : output_tensor->GetShape()) {
|
||||
output_size *= i;
|
||||
}
|
||||
std::vector<int16_t> output(output_size);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
//transform output(int16) to fp
|
||||
std::vector<float> f;
|
||||
for(const auto& q : output){
|
||||
f.push_back( q / (float)((int64_t)1 << fl_output));
|
||||
}
|
||||
EXPECT_EQ(golden, f);
|
||||
}
|
||||
|
|
@ -66,6 +66,10 @@ void PackTensorDtype(tim::vx::TensorSpec& spec, vsi_nn_dtype_t* dtype) {
|
|||
dtype->channel_dim = spec.quantization_.ChannelDim();
|
||||
break;
|
||||
}
|
||||
|
||||
case tim::vx::QuantType::DYNAMIC_FIXED_POINT:
|
||||
dtype->fl = spec.quantization_.Fl();
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -39,6 +39,8 @@ vsi_nn_type_e TranslateDataType(DataType dtype) {
|
|||
return VSI_NN_TYPE_INT32;
|
||||
case DataType::UINT32:
|
||||
return VSI_NN_TYPE_UINT32;
|
||||
case DataType::INT64:
|
||||
return VSI_NN_TYPE_INT64;
|
||||
case DataType::FLOAT16:
|
||||
return VSI_NN_TYPE_FLOAT16;
|
||||
case DataType::FLOAT32:
|
||||
|
|
@ -59,6 +61,8 @@ vsi_nn_qnt_type_e TranslateQuantType(QuantType qtype) {
|
|||
return VSI_NN_QNT_TYPE_AFFINE_ASYMMETRIC;
|
||||
case QuantType::SYMMETRIC_PER_CHANNEL:
|
||||
return VSI_NN_QNT_TYPE_AFFINE_PERCHANNEL_SYMMETRIC;
|
||||
case QuantType::DYNAMIC_FIXED_POINT:
|
||||
return VSI_NN_QNT_TYPE_DFP;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue