add uint8 and int8 unit_test for depthwise convolution. modify the api of 'conv2d' constructor

Signed-off-by: Jing.Deng <Jing.Deng@verisilicon.com>
This commit is contained in:
Jing.Deng 2021-06-17 15:37:52 +08:00 committed by Kainan Cha
parent 574c036a69
commit 1672ef99ed
2 changed files with 941 additions and 59 deletions

View File

@ -2,7 +2,6 @@
#include "gtest/gtest.h"
#include "src/tim/vx/test_utils.h"
#include "tim/transform/layout_inference.h"
#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/types.h"
@ -54,13 +53,12 @@ TEST(Conv2d, shape_4_2_1_1_float32_PaddingTest) {
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::SAME;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -124,13 +122,12 @@ TEST(Conv2d, shape_4_2_2_2_float32_PointwiseTest) {
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::SAME;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -196,13 +193,12 @@ TEST(Conv2d, shape_4_2_1_2_float32_SimpleTest) {
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({2, 2});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::SAME;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -263,13 +259,12 @@ TEST(Conv2d, shape_4_2_2_2_float32_SimpleChannelsTest) {
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({2, 2});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::SAME;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -335,13 +330,12 @@ TEST(Conv2d, shape_6_3_1_1_float32_SimpleAnisotropicStridesTest) {
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({3, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -401,13 +395,12 @@ TEST(Conv2d, shape_4_3_1_1_float32_HandCalculatedTest) {
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::SAME;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -467,13 +460,12 @@ TEST(Conv2d, shape_4_3_1_1_float32_HandCalculatedConstFilterTest) {
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::SAME;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -533,13 +525,12 @@ TEST(Conv2d, shape_4_3_1_1_float32_HandCalculatedBiasTest) {
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::SAME;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -598,13 +589,12 @@ TEST(Conv2d, shape_4_3_1_1_float32_HandCalculatedValidTest) {
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -667,13 +657,12 @@ TEST(Conv2d, shape_4_2_2_2_float32_DisabledPointwiseMultifilterTest) {
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -736,13 +725,12 @@ TEST(Conv2d, shape_9_9_1_1_float32_SimpleDilationTest) {
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({3, 3});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -803,13 +791,12 @@ TEST(Conv2d, shape_4_2_1_2_float32_StrideTest) {
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -869,13 +856,12 @@ TEST(Conv2d, shape_4_2_1_2_float32_InputAndFilterSameWidthHeightTest) {
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -974,13 +960,12 @@ TEST(Conv2d, shape_4_2_1_2_uint8_QuantizedTest1) {
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({2, 2});
std::array<uint32_t, 2> dilation({1, 1});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -1080,13 +1065,12 @@ TEST(Conv2d, shape_4_2_1_2_uint8_QuantizedTest2) {
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({2, 2});
std::array<uint32_t, 2> dilation({1, 1});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -1185,13 +1169,12 @@ TEST(Conv2d, shape_6_3_1_1_uint8_AnisotropicStridesQuantizedTest) {
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({3, 1});
std::array<uint32_t, 2> dilation({1, 1});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -1293,13 +1276,12 @@ TEST(Conv2d, shape_9_9_1_1_uint8_DilationQuantizedTest) {
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({3, 3});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -1397,13 +1379,12 @@ TEST(Conv2d, shape_3_2_2_1_int8_QuantizedPerTensorTest) {
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
@ -1500,13 +1481,12 @@ TEST(Conv2d, shape_3_2_2_1_int8_QuantizedPerChannelTest) {
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)

View File

@ -1,4 +1,5 @@
#include "gtest/gtest.h"
#include "src/tim/vx/test_utils.h"
#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/ops/conv2d.h"
@ -70,7 +71,7 @@ TEST(DepthwiseConv, shape_2_3_2_1_float32_SimpleTest) {
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_2_3_2_1_float32_StrideTest) {
TEST(DepthwiseConv, shape_2_3_2_1_float32_StrideValidTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
@ -136,6 +137,138 @@ TEST(DepthwiseConv, shape_2_3_2_1_float32_StrideTest) {
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_2_3_2_1_float32_StrideSameTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2, 3, 2, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{1, 2, weight_shape[2], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12};
// weight data iohw
std::vector<float> weight_data = {1, -9, 5, 13, 2, 10, 6, -14,
3, -11, 7, 15, 4, 12, 8, -16};
// bias data
std::vector<float> bias_data = {1, 2, 3, 4};
// nchw
std::vector<float> golden = {71, -93, -34, 122, 99, -111, -20, 172};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({2, 2});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_2_3_2_1_float32_StrideSameDilationTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2, 3, 2, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{1, 2, weight_shape[2], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12};
// weight data iohw
std::vector<float> weight_data = {1, -9, 5, 13, 2, 10, 6, -14,
3, -11, 7, 15, 4, 12, 8, -16};
// bias data
std::vector<float> bias_data = {1, 2, 3, 4};
// nchw
std::vector<float> golden = {1, 1, 2, 2, 3, 3, 4, 4};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({2, 2});
std::array<uint32_t, 2> dilation({10, 10});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_2_3_2_1_float32_PaddingTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
@ -471,3 +604,772 @@ TEST(DepthwiseConv, shape_2_2_1_4_float32_BatchSameTest) {
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_2_3_2_1_uint8_QuantizedTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2, 3, 2, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{1, 2, weight_shape[2], input_shape[3]}); //whcn
float InputMin = -63.5, InputMax = 64, WeightMin = -63.5, WeightMax = 64,
OutputMin = -127, OutputMax = 128;
std::pair<float, int32_t> scalesAndZp;
scalesAndZp = QuantizationParams<u_int8_t>(InputMin, InputMax);
std::vector<float> scalesInput = {scalesAndZp.first};
std::vector<int32_t> zeroPointsInput = {scalesAndZp.second};
scalesAndZp = QuantizationParams<u_int8_t>(WeightMin, WeightMax);
std::vector<float> scalesWeight = {scalesAndZp.first};
std::vector<int32_t> zeroPointsWeight = {scalesAndZp.second};
std::vector<float> scalesBias = {scalesInput[0] * scalesWeight[0]};
std::vector<int32_t> zeroPointsBias = {0};
scalesAndZp = QuantizationParams<u_int8_t>(OutputMin, OutputMax);
std::vector<float> scalesOutput = {scalesAndZp.first};
std::vector<int32_t> zeroPointsOutput = {scalesAndZp.second};
tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 2,
scalesInput, zeroPointsInput);
tim::vx::Quantization quantWeight(tim::vx::QuantType::ASYMMETRIC, 2,
scalesWeight, zeroPointsWeight);
tim::vx::Quantization quantBias(tim::vx::QuantType::ASYMMETRIC, 2, scalesBias,
zeroPointsBias);
tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 2,
scalesOutput, zeroPointsOutput);
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, input_shape,
tim::vx::TensorAttribute::INPUT, quantInput);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::UINT8, weight_shape,
tim::vx::TensorAttribute::CONSTANT,
quantWeight);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT, quantBias);
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, output_shape,
tim::vx::TensorAttribute::OUTPUT,
quantOutput);
// Input data nchw
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> input_data_float = {1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12};
std::vector<uint8_t> input_data =
Quantize<uint8_t>(input_data_float, scalesInput[0], zeroPointsInput[0]);
// weight data iohw
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> weight_data_float = {1, -9, 5, 13, 2, 10, 6, -14,
3, -11, 7, 15, 4, 12, 8, -16};
std::vector<uint8_t> weight_data =
Quantize<uint8_t>(weight_data_float, scalesWeight[0], zeroPointsInput[0]);
// bias data
// scale:0.25 Zp:0
std::vector<float> bias_data_float = {1, 2, 3, 4};
std::vector<int32_t> bias_data =
Quantize<int32_t>(bias_data_float, scalesBias[0], zeroPointsBias[0]);
// golden
// min:-127 max:128 scale:1 Zp:-1
std::vector<float> golden_float = {71, 91, -34, -26, 99, 127, -20, -4};
std::vector<u_int8_t> golden =
Quantize<uint8_t>(golden_float, scalesOutput[0], zeroPointsOutput[0]);
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<uint8_t> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_9_9_1_1_uint8_QuantizedDilationdValidTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({9, 9, 1, 1}); //whcn
tim::vx::ShapeType weight_shape({3, 3, 1, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{3, 3, weight_shape[2], input_shape[3]}); //whcn
float InputMin = 0, InputMax = 255, WeightMin = 0, WeightMax = 255,
OutputMin = 0, OutputMax = 255;
std::pair<float, int32_t> scalesAndZp;
scalesAndZp = QuantizationParams<u_int8_t>(InputMin, InputMax);
std::vector<float> scalesInput = {scalesAndZp.first};
std::vector<int32_t> zeroPointsInput = {scalesAndZp.second};
scalesAndZp = QuantizationParams<u_int8_t>(WeightMin, WeightMax);
std::vector<float> scalesWeight = {scalesAndZp.first};
std::vector<int32_t> zeroPointsWeight = {scalesAndZp.second};
std::vector<float> scalesBias = {scalesInput[0] * scalesWeight[0]};
std::vector<int32_t> zeroPointsBias = {0};
scalesAndZp = QuantizationParams<u_int8_t>(OutputMin, OutputMax);
std::vector<float> scalesOutput = {scalesAndZp.first};
std::vector<int32_t> zeroPointsOutput = {scalesAndZp.second};
tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 2,
scalesInput, zeroPointsInput);
tim::vx::Quantization quantWeight(tim::vx::QuantType::ASYMMETRIC, 2,
scalesWeight, zeroPointsWeight);
tim::vx::Quantization quantBias(tim::vx::QuantType::ASYMMETRIC, 2, scalesBias,
zeroPointsBias);
tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 2,
scalesOutput, zeroPointsOutput);
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, input_shape,
tim::vx::TensorAttribute::INPUT, quantInput);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::UINT8, weight_shape,
tim::vx::TensorAttribute::CONSTANT,
quantWeight);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT, quantBias);
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, output_shape,
tim::vx::TensorAttribute::OUTPUT,
quantOutput);
// Input data nchw
// min:0 max:255 scale:1 Zp:-128
std::vector<float> input_data_float = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1,
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
std::vector<uint8_t> input_data =
Quantize<uint8_t>(input_data_float, scalesInput[0], zeroPointsInput[0]);
// weight data iohw
// min:0 max:255 scale:1 Zp:-128
std::vector<float> weight_data_float = {1, 2, 3, 4, 5, 6, 7, 8, 9};
std::vector<uint8_t> weight_data =
Quantize<uint8_t>(weight_data_float, scalesWeight[0], zeroPointsInput[0]);
// bias data
// scale:1 Zp:0
std::vector<float> bias_data_float = {0};
std::vector<int32_t> bias_data =
Quantize<int32_t>(bias_data_float, scalesBias[0], zeroPointsBias[0]);
// golden
// min:0 max:255 scale:1 Zp:-128
std::vector<float> golden_float = {5, 5, 5, 5, 5, 5, 5, 5, 5};
std::vector<u_int8_t> golden =
Quantize<uint8_t>(golden_float, scalesOutput[0], zeroPointsOutput[0]);
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({3, 3});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<uint8_t> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_3_3_1_1_uint8_QuantizedDilationdSameTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({3, 3, 1, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 1, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{3, 3, weight_shape[2], input_shape[3]}); //whcn
float InputMin = 0, InputMax = 255, WeightMin = 0, WeightMax = 255,
OutputMin = 0, OutputMax = 255;
std::pair<float, int32_t> scalesAndZp;
scalesAndZp = QuantizationParams<u_int8_t>(InputMin, InputMax);
std::vector<float> scalesInput = {scalesAndZp.first};
std::vector<int32_t> zeroPointsInput = {scalesAndZp.second};
scalesAndZp = QuantizationParams<u_int8_t>(WeightMin, WeightMax);
std::vector<float> scalesWeight = {scalesAndZp.first};
std::vector<int32_t> zeroPointsWeight = {scalesAndZp.second};
std::vector<float> scalesBias = {scalesInput[0] * scalesWeight[0]};
std::vector<int32_t> zeroPointsBias = {0};
scalesAndZp = QuantizationParams<u_int8_t>(OutputMin, OutputMax);
std::vector<float> scalesOutput = {scalesAndZp.first};
std::vector<int32_t> zeroPointsOutput = {scalesAndZp.second};
tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 2,
scalesInput, zeroPointsInput);
tim::vx::Quantization quantWeight(tim::vx::QuantType::ASYMMETRIC, 2,
scalesWeight, zeroPointsWeight);
tim::vx::Quantization quantBias(tim::vx::QuantType::ASYMMETRIC, 2, scalesBias,
zeroPointsBias);
tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 2,
scalesOutput, zeroPointsOutput);
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, input_shape,
tim::vx::TensorAttribute::INPUT, quantInput);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::UINT8, weight_shape,
tim::vx::TensorAttribute::CONSTANT,
quantWeight);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT, quantBias);
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, output_shape,
tim::vx::TensorAttribute::OUTPUT,
quantOutput);
// Input data nchw
// min:0 max:255 scale:1 Zp:-128
std::vector<float> input_data_float = {1, 1, 1, 1, 1, 1, 1, 1, 1};
std::vector<uint8_t> input_data =
Quantize<uint8_t>(input_data_float, scalesInput[0], zeroPointsInput[0]);
// weight data iohw
// min:0 max:255 scale:1 Zp:-128
std::vector<float> weight_data_float = {1, 2, 3, 4};
std::vector<uint8_t> weight_data =
Quantize<uint8_t>(weight_data_float, scalesWeight[0], zeroPointsInput[0]);
// bias data
// scale:1 Zp:0
std::vector<float> bias_data_float = {0};
std::vector<int32_t> bias_data =
Quantize<int32_t>(bias_data_float, scalesBias[0], zeroPointsBias[0]);
// golden
// min:0 max:255 scale:1 Zp:-128
std::vector<float> golden_float = {4, 7, 3, 6, 10, 4, 2, 3, 1};
std::vector<u_int8_t> golden =
Quantize<uint8_t>(golden_float, scalesOutput[0], zeroPointsOutput[0]);
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({2, 2});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<uint8_t> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_3_2_2_1_int8_PerTensorTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({3, 2, 2, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{2, 1, weight_shape[2], input_shape[3]}); //whcn
float InputMin = -63.5, InputMax = 64, OutputMin = -63.5, OutputMax = 64;
std::pair<float, int32_t> scalesAndZp;
scalesAndZp = QuantizationParams<int8_t>(InputMin, InputMax);
std::vector<float> scalesInput = {scalesAndZp.first};
std::vector<int32_t> zeroPointsInput = {scalesAndZp.second};
std::vector<float> scalesWeight = {1};
std::vector<int32_t> zeroPointsWeight = {0};
int32_t sizeofweight = scalesWeight.size();
std::vector<float> scalesBias(sizeofweight);
std::vector<int32_t> zeroPointsBias(sizeofweight);
for (int i = 0; i < sizeofweight; i++) {
scalesBias[i] = scalesInput[0] * scalesWeight[i];
zeroPointsBias[i] = 0;
}
scalesAndZp = QuantizationParams<int8_t>(OutputMin, OutputMax);
std::vector<float> scalesOutput = {scalesAndZp.first};
std::vector<int32_t> zeroPointsOutput = {scalesAndZp.second};
tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 2,
scalesInput, zeroPointsInput);
tim::vx::Quantization quantWeight(tim::vx::QuantType::ASYMMETRIC, 2,
scalesWeight, zeroPointsWeight);
tim::vx::Quantization quantBias(tim::vx::QuantType::ASYMMETRIC, 2, scalesBias,
zeroPointsBias);
tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 2,
scalesOutput, zeroPointsOutput);
tim::vx::TensorSpec input_spec(tim::vx::DataType::INT8, input_shape,
tim::vx::TensorAttribute::INPUT, quantInput);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::INT8, weight_shape,
tim::vx::TensorAttribute::CONSTANT,
quantWeight);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT, quantBias);
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT8, output_shape,
tim::vx::TensorAttribute::OUTPUT,
quantOutput);
// Input data nchw
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> input_data_float = {3, 1, -2, 4, 2, -3,
2, -1, -3, 3, -2, -4};
std::vector<int8_t> input_data =
Quantize<int8_t>(input_data_float, scalesInput[0], zeroPointsInput[0]);
// weight data iohw
std::vector<float> weight_data_float = {1, 3, 7, 3, 2, 4, 8, 4,
3, 5, 5, 1, 4, 6, 6, 2};
std::vector<int8_t> weight_data =
Quantize<int8_t>(weight_data_float, scalesWeight[0], zeroPointsWeight[0]);
// bias data
std::vector<int32_t> bias_data = {6, -4, 8, 12};
// golden
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> golden_float = {43, 3, 48, -4, 18, -28, 22, -36};
std::vector<int8_t> golden =
Quantize<int8_t>(golden_float, scalesOutput[0], zeroPointsOutput[0]);
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<int8_t> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_3_2_2_1_int8_PerAxisTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({3, 2, 2, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{2, 1, weight_shape[2], input_shape[3]}); //whcn
float InputMin = -63.5, InputMax = 64, OutputMin = -63.5, OutputMax = 64;
std::pair<float, int32_t> scalesAndZp;
scalesAndZp = QuantizationParams<int8_t>(InputMin, InputMax);
std::vector<float> scalesInput = {scalesAndZp.first};
std::vector<int32_t> zeroPointsInput = {scalesAndZp.second};
std::vector<float> scalesWeight = {1, 2, 3, 4};
std::vector<int32_t> zeroPointsWeight = {0, 0, 0, 0};
int32_t sizeofweight = scalesWeight.size();
std::vector<float> scalesBias(sizeofweight);
std::vector<int32_t> zeroPointsBias(sizeofweight);
for (int i = 0; i < sizeofweight; i++) {
scalesBias[i] = scalesInput[0] * scalesWeight[i];
zeroPointsBias[i] = 0;
}
scalesAndZp = QuantizationParams<int8_t>(OutputMin, OutputMax);
std::vector<float> scalesOutput = {scalesAndZp.first};
std::vector<int32_t> zeroPointsOutput = {scalesAndZp.second};
tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 2,
scalesInput, zeroPointsInput);
tim::vx::Quantization quantWeight(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL,
2, scalesWeight, zeroPointsWeight);
tim::vx::Quantization quantBias(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL, 0,
scalesBias, zeroPointsBias);
tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 2,
scalesOutput, zeroPointsOutput);
tim::vx::TensorSpec input_spec(tim::vx::DataType::INT8, input_shape,
tim::vx::TensorAttribute::INPUT, quantInput);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::INT8, weight_shape,
tim::vx::TensorAttribute::CONSTANT,
quantWeight);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT, quantBias);
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT8, output_shape,
tim::vx::TensorAttribute::OUTPUT,
quantOutput);
// Input data nchw
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> input_data_float = {3, 1, -2, 4, 2, -3,
2, -1, -3, 3, -2, -4};
std::vector<int8_t> input_data =
Quantize<int8_t>(input_data_float, scalesInput[0], zeroPointsInput[0]);
// weight data iohw
std::vector<int8_t> weight_data = {1, 3, 7, 3, 1, 2, 4, 2,
1, 2, 2, 0, 1, 2, 2, 1};
// bias data
std::vector<int32_t> bias_data = {6, -2, 2, 3};
// golden
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> golden_float = {43, 3, 48, -4, 21, -30, 22, -54};
std::vector<int8_t> golden =
Quantize<int8_t>(golden_float, scalesOutput[0], zeroPointsOutput[0]);
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<int8_t> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_3_3_8_1_int8_PerChannelValidTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({3, 3, 8, 1}); //whcn
tim::vx::ShapeType weight_shape({3, 3, 8, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{1, 1, weight_shape[2], input_shape[3]}); //whcn
float InputMin = -63.5, InputMax = 64, OutputMin = -63.5, OutputMax = 64;
std::pair<float, int32_t> scalesAndZp;
scalesAndZp = QuantizationParams<int8_t>(InputMin, InputMax);
std::vector<float> scalesInput = {scalesAndZp.first};
std::vector<int32_t> zeroPointsInput = {scalesAndZp.second};
std::vector<float> scalesWeight = {0.1, 0.2, 0.3, 0.4, 0.4, 0.3, 0.2, 0.1};
std::vector<int32_t> zeroPointsWeight = {0, 0, 0, 0, 0, 0, 0, 0};
int32_t sizeofweight = scalesWeight.size();
std::vector<float> scalesBias(sizeofweight);
std::vector<int32_t> zeroPointsBias(sizeofweight);
for (int i = 0; i < sizeofweight; i++) {
scalesBias[i] = scalesInput[0] * scalesWeight[i];
zeroPointsBias[i] = 0;
}
scalesAndZp = QuantizationParams<int8_t>(OutputMin, OutputMax);
std::vector<float> scalesOutput = {scalesAndZp.first};
std::vector<int32_t> zeroPointsOutput = {scalesAndZp.second};
tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 2,
scalesInput, zeroPointsInput);
tim::vx::Quantization quantWeight(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL,
2, scalesWeight, zeroPointsWeight);
tim::vx::Quantization quantBias(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL, 0,
scalesBias, zeroPointsBias);
tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 2,
scalesOutput, zeroPointsOutput);
tim::vx::TensorSpec input_spec(tim::vx::DataType::INT8, input_shape,
tim::vx::TensorAttribute::INPUT, quantInput);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::INT8, weight_shape,
tim::vx::TensorAttribute::CONSTANT,
quantWeight);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT, quantBias);
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT8, output_shape,
tim::vx::TensorAttribute::OUTPUT,
quantOutput);
// Input data nchw
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> input_data_float = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
std::vector<int8_t> input_data =
Quantize<int8_t>(input_data_float, scalesInput[0], zeroPointsInput[0]);
// weight data iohw
std::vector<int8_t> weight_data = {
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
13, 13, 13, 13, 13, 13, 13, 13, 13, 20, 20, 20, 20, 20, 20, 20, 20, 20,
35, 35, 35, 35, 35, 35, 35, 35, 35, 80, 80, 80, 80, 80, 80, 80, 80, 80};
// bias data
std::vector<int32_t> bias_data = {0, 0, 0, 0, 0, 0, 0, 0};
// golden
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> golden_float = {9, 18, 0, 0, 47, 54, 0, 0};
std::vector<int8_t> golden =
Quantize<int8_t>(golden_float, scalesOutput[0], zeroPointsOutput[0]);
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<int8_t> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_3_3_8_1_int8_PerChannelSameTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({3, 3, 8, 1}); //whcn
tim::vx::ShapeType weight_shape({3, 3, 8, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{3, 3, weight_shape[2], input_shape[3]}); //whcn
float InputMin = -63.5, InputMax = 64, OutputMin = -63.5, OutputMax = 64;
std::pair<float, int32_t> scalesAndZp;
scalesAndZp = QuantizationParams<int8_t>(InputMin, InputMax);
std::vector<float> scalesInput = {scalesAndZp.first};
std::vector<int32_t> zeroPointsInput = {scalesAndZp.second};
std::vector<float> scalesWeight = {0.1, 0.2, 0.3, 0.4, 0.4, 0.3, 0.2, 0.1};
std::vector<int32_t> zeroPointsWeight = {0, 0, 0, 0, 0, 0, 0, 0};
int32_t sizeofweight = scalesWeight.size();
std::vector<float> scalesBias(sizeofweight);
std::vector<int32_t> zeroPointsBias(sizeofweight);
for (int i = 0; i < sizeofweight; i++) {
scalesBias[i] = scalesInput[0] * scalesWeight[i];
zeroPointsBias[i] = 0;
}
scalesAndZp = QuantizationParams<int8_t>(OutputMin, OutputMax);
std::vector<float> scalesOutput = {scalesAndZp.first};
std::vector<int32_t> zeroPointsOutput = {scalesAndZp.second};
tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 2,
scalesInput, zeroPointsInput);
tim::vx::Quantization quantWeight(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL,
2, scalesWeight, zeroPointsWeight);
tim::vx::Quantization quantBias(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL, 0,
scalesBias, zeroPointsBias);
tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 2,
scalesOutput, zeroPointsOutput);
tim::vx::TensorSpec input_spec(tim::vx::DataType::INT8, input_shape,
tim::vx::TensorAttribute::INPUT, quantInput);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::INT8, weight_shape,
tim::vx::TensorAttribute::CONSTANT,
quantWeight);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT, quantBias);
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT8, output_shape,
tim::vx::TensorAttribute::OUTPUT,
quantOutput);
// Input data nchw
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> input_data_float = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
std::vector<int8_t> input_data =
Quantize<int8_t>(input_data_float, scalesInput[0], zeroPointsInput[0]);
// weight data iohw
std::vector<int8_t> weight_data = {
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
13, 13, 13, 13, 13, 13, 13, 13, 13, 20, 20, 20, 20, 20, 20, 20, 20, 20,
35, 35, 35, 35, 35, 35, 35, 35, 35, 80, 80, 80, 80, 80, 80, 80, 80, 80};
// bias data
std::vector<int32_t> bias_data = {0, 0, 0, 0, 0, 0, 0, 0};
// golden
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> golden_float = {
4, 6, 4, 6, 9, 6, 4, 6, 4, 8, 12, 8, 12, 18, 12, 8, 12, 8,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
21, 31, 21, 31, 47, 31, 21, 31, 21, 24, 36, 24, 36, 54, 36, 24, 36, 24,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
std::vector<int8_t> golden =
Quantize<int8_t>(golden_float, scalesOutput[0], zeroPointsOutput[0]);
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<int8_t> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}