Mapped bidirectional lstm & unit test

Signed-off-by: Chen Xin <jack.chen@verisilicon.com>
This commit is contained in:
Chen Xin 2022-08-15 16:30:40 +08:00 committed by Sven
parent d4f9d7475f
commit 1c640c6f10
4 changed files with 639 additions and 3 deletions

View File

@ -0,0 +1,67 @@
/****************************************************************************
*
* Copyright (c) 2022 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#ifndef TIM_VX_OPS_BIDIRECTIONAL_SEQUENCE_LSTM_H_
#define TIM_VX_OPS_BIDIRECTIONAL_SEQUENCE_LSTM_H_
#include "tim/vx/operation.h"
namespace tim {
namespace vx {
namespace ops {
class BidirectionalSequenceLstm : public Operation {
public:
enum ActivationType {
kNONE = 0,
kRELU = 1,
kRELU1 = 2,
kRELU6 = 3,
kTANH = 4,
kSIGMOID = 6,
kHARDSIGMOID = 31, /* temporary use 31 */
};
BidirectionalSequenceLstm(
Graph* graph, float cell_clip, float proj_clip,
ActivationType act_type, float forget_bias, bool time_major = false,
ActivationType recurrent_act_type = ActivationType::kSIGMOID,
bool return_sequences = false /*False: only return last state*/
);
std::shared_ptr<Operation> Clone(
std::shared_ptr<Graph>& graph) const override;
protected:
const float cell_clip_;
const float proj_clip_;
const ActivationType act_type_;
const float forget_bias_;
const bool time_major_;
const ActivationType recurrent_act_type_;
const bool return_sequences_;
};
} // namespace ops
} // namespace vx
} // namespace tim
#endif /* TIM_VX_OPS_BIDIRECTIONAL_SEQUENCE_LSTM_H_ */

View File

@ -109,13 +109,13 @@ GroupedConv1d|GROUPED_CONV1D|Mapped|[tf.keras.layers.Conv1D](https://tensorflow.
|BroadCast|EXPAND_BROADCAST|Mapped|[numpy.broadcast_to](https://numpy.org/doc/stable/reference/generated/numpy.broadcast_to.html)
||PROPOSAL| TBD |[Faster-RCNN Proposal Layer](https://github.com/intel/caffe/blob/master/examples/faster-rcnn/lib/rpn/proposal_layer.py)
||ROI_POOL|Planned 22Q4|[ANEURALNETWORKS_ROI_POOLING](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a6736198af337b2efbdb0b6b64dee7fe4)
ROI_Align||ROI_ALIGN|Mapped|[ANEURALNETWORKS_ROI_ALIGN](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a2848b39dd4bfba78f2438fda0d9397a4)
TopK||TOPK|Mapped (limited support)|[tf.math.top_k](https://tensorflow.google.cn/api_docs/python/tf/math/top_k)
|ROI_Align|ROI_ALIGN|Mapped|[ANEURALNETWORKS_ROI_ALIGN](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a2848b39dd4bfba78f2438fda0d9397a4)
|TopK|TOPK|Mapped (limited support)|[tf.math.top_k](https://tensorflow.google.cn/api_docs/python/tf/math/top_k)
|GRUCell|GRUCELL_OVXLIB|Mapped|[tf.keras.layers.GRUCell](https://tensorflow.google.cn/api_docs/python/tf/keras/layers/GRUCell?hl=en)
|UnidirectionalSequenceGRU|GRU_OVXLIB|Planned 22Q3|[tf.keras.layers.GRU](https://tensorflow.google.cn/api_docs/python/tf/keras/layers/GRUCell?hl=en)
|UnidirectionalSequenceRNN|UNIDIRECTIONAL_SEQUENCE_RNN|Planned 22Q3|[ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0ae11aa1d461d2abaa117f6ee2cb503dd8)
|BidirectionalSequenceRNN|BIDIRECTIONAL_SEQUENCE_RNN|Planned 22Q3|[ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_RNN](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a487fc5ae247de828f13e62b99f259f3c)
|BidirectionalSequenceLSTM|BIDIRECTIONAL_SEQUENCE_LSTM|Planned 22Q3|[ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a492a71cb7aa50b9a1a834a3cb269d778)
|BidirectionalSequenceLSTM|BIDIRECTIONAL_SEQUENCE_LSTM|Mapped|[ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a492a71cb7aa50b9a1a834a3cb269d778)
|UnidirectionalSequenceLSTM|LSTM_OVXLIB|Mapped|[ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0aaf30e491ad0b1fc7602cbde695b2c859)
|LSTMCell|LSTMUNIT_OVXLIB|replace with UnidirectionalSequenceLSTM by set n_step = 1 |[ANEURALNETWORKS_LSTM](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0ad0377e8c305e596fb7f64ff896671fc5)
||PRE_PROCESS|TBD |Image Preprocessing (YUV2RGB, Input Normalization, Resizing, etc)

View File

@ -0,0 +1,268 @@
/****************************************************************************
*
* Copyright (c) 2022 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/ops/bidirectional_sequence_lstm.h"
#include "tim/vx/ops/unidirectional_sequence_lstm.h"
#include "vsi_nn_pub.h"
#include "op_impl.h"
#include <array>
namespace tim {
namespace vx {
namespace ops {
class BidirectionalSequenceLstmImpl : public OpImpl {
public:
enum {
BI_LSTM_INPUT_INPUT = 0,
BI_LSTM_FW_INPUT_WEIGHT_I2I = 1,
BI_LSTM_FW_INPUT_WEIGHT_I2F = 2,
BI_LSTM_FW_INPUT_WEIGHT_I2C = 3,
BI_LSTM_FW_INPUT_WEIGHT_I2O = 4,
BI_LSTM_FW_INPUT_WEIGHT_R2I = 5,
BI_LSTM_FW_INPUT_WEIGHT_R2F = 6,
BI_LSTM_FW_INPUT_WEIGHT_R2C = 7,
BI_LSTM_FW_INPUT_WEIGHT_R2O = 8,
BI_LSTM_FW_INPUT_WEIGHT_C2I = 9,
BI_LSTM_FW_INPUT_WEIGHT_C2F = 10,
BI_LSTM_FW_INPUT_WEIGHT_C2O = 11,
BI_LSTM_FW_INPUT_BIAS_I = 12,
BI_LSTM_FW_INPUT_BIAS_F = 13,
BI_LSTM_FW_INPUT_BIAS_C = 14,
BI_LSTM_FW_INPUT_BIAS_O = 15,
BI_LSTM_FW_INPUT_WEIGHT_PROJ = 16,
BI_LSTM_FW_INPUT_BIAS_PROJ = 17,
BI_LSTM_BW_INPUT_WEIGHT_I2I = 18,
BI_LSTM_BW_INPUT_WEIGHT_I2F = 19,
BI_LSTM_BW_INPUT_WEIGHT_I2C = 20,
BI_LSTM_BW_INPUT_WEIGHT_I2O = 21,
BI_LSTM_BW_INPUT_WEIGHT_R2I = 22,
BI_LSTM_BW_INPUT_WEIGHT_R2F = 23,
BI_LSTM_BW_INPUT_WEIGHT_R2C = 24,
BI_LSTM_BW_INPUT_WEIGHT_R2O = 25,
BI_LSTM_BW_INPUT_WEIGHT_C2I = 26,
BI_LSTM_BW_INPUT_WEIGHT_C2F = 27,
BI_LSTM_BW_INPUT_WEIGHT_C2O = 28,
BI_LSTM_BW_INPUT_BIAS_I = 29,
BI_LSTM_BW_INPUT_BIAS_F = 30,
BI_LSTM_BW_INPUT_BIAS_C = 31,
BI_LSTM_BW_INPUT_BIAS_O = 32,
BI_LSTM_BW_INPUT_WEIGHT_PROJ = 33,
BI_LSTM_BW_INPUT_BIAS_PROJ = 34,
BI_LSTM_FW_INPUT_H_STATE = 35,
BI_LSTM_FW_INPUT_C_STATE = 36,
BI_LSTM_BW_INPUT_H_STATE = 37,
BI_LSTM_BW_INPUT_C_STATE = 38,
BI_LSTM_AUX_INPUT = 39,
BI_LSTM_FW_AUX_INPUT_WEIGHT_I2I = 40,
BI_LSTM_FW_AUX_INPUT_WEIGHT_I2F = 41,
BI_LSTM_FW_AUX_INPUT_WEIGHT_I2C = 42,
BI_LSTM_FW_AUX_INPUT_WEIGHT_I2O = 43,
BI_LSTM_BW_AUX_INPUT_WEIGHT_I2I = 44,
BI_LSTM_BW_AUX_INPUT_WEIGHT_I2F = 45,
BI_LSTM_BW_AUX_INPUT_WEIGHT_I2C = 46,
BI_LSTM_BW_AUX_INPUT_WEIGHT_I2O = 47,
BI_LSTM_FW_INPUT_LAYERNORM_I = 48,
BI_LSTM_FW_INPUT_LAYERNORM_F = 49,
BI_LSTM_FW_INPUT_LAYERNORM_C = 50,
BI_LSTM_FW_INPUT_LAYERNORM_O = 51,
BI_LSTM_BW_INPUT_LAYERNORM_I = 52,
BI_LSTM_BW_INPUT_LAYERNORM_F = 53,
BI_LSTM_BW_INPUT_LAYERNORM_C = 54,
BI_LSTM_BW_INPUT_LAYERNORM_O = 55,
INPUT_CNT,
BI_LSTM_FW_OUTPUT_OUTPUT = 0,
BI_LSTM_FW_OUTPUT_H_STATE = 1,
BI_LSTM_FW_OUTPUT_C_STATE = 2,
BI_LSTM_BW_OUTPUT_OUTPUT = 3,
BI_LSTM_BW_OUTPUT_H_STATE = 4,
BI_LSTM_BW_OUTPUT_C_STATE = 5,
OUTPUT_CNT
};
BidirectionalSequenceLstmImpl(Graph* graph, int input_cnt, int output_cnt,
DataLayout layout = DataLayout::ANY)
: OpImpl(graph, -1, input_cnt, output_cnt, layout) {
lstm_forward_ = graph->CreateOperation<UnidirectionalSequenceLstm>(
0.0, 0.0, UnidirectionalSequenceLstm::kTANH, 0.0, false,
UnidirectionalSequenceLstm::kSIGMOID, true);
lstm_backward_ =
graph->CreateOperation<tim::vx::ops::UnidirectionalSequenceLstm>(
0.0, 0.0, UnidirectionalSequenceLstm::kTANH, 0.0, false,
UnidirectionalSequenceLstm::kSIGMOID, true);
}
~BidirectionalSequenceLstmImpl() {}
BidirectionalSequenceLstmImpl& BindInput(
const std::shared_ptr<Tensor>& tensor) override {
in_tensors_[input_tensor_index] = tensor;
if (this->input_tensor_index == INPUT_CNT - 1) {
// Get all input tensor
lstm_forward_->BindInput(in_tensors_[BI_LSTM_INPUT_INPUT]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_H_STATE]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_C_STATE]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_I2I]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_I2F]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_I2C]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_I2O]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_R2I]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_R2F]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_R2C]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_R2O]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_C2I]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_C2F]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_C2O]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_I]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_F]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_C]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_O]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_PROJ]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_PROJ]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_LAYERNORM_I]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_LAYERNORM_F]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_LAYERNORM_C]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_LAYERNORM_O]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_INPUT_INPUT]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_H_STATE]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_C_STATE]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_I2I]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_I2F]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_I2C]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_I2O]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_R2I]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_R2F]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_R2C]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_R2O]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_C2I]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_C2F]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_C2O]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_I]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_F]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_C]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_O]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_PROJ]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_PROJ]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_LAYERNORM_I]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_LAYERNORM_F]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_LAYERNORM_C]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_LAYERNORM_O]);
}
this->input_tensor_index++;
return *this;
}
BidirectionalSequenceLstmImpl& BindOutput(
const std::shared_ptr<Tensor>& tensor) override {
out_tensors_[output_tensor_index] = tensor;
if (this->output_tensor_index == OUTPUT_CNT - 1) {
lstm_forward_->BindOutput(out_tensors_[BI_LSTM_FW_OUTPUT_OUTPUT]);
lstm_forward_->BindOutput(out_tensors_[BI_LSTM_FW_OUTPUT_H_STATE]);
lstm_forward_->BindOutput(out_tensors_[BI_LSTM_FW_OUTPUT_C_STATE]);
lstm_backward_->BindOutput(out_tensors_[BI_LSTM_BW_OUTPUT_OUTPUT]);
lstm_backward_->BindOutput(out_tensors_[BI_LSTM_BW_OUTPUT_H_STATE]);
lstm_backward_->BindOutput(out_tensors_[BI_LSTM_BW_OUTPUT_C_STATE]);
}
this->output_tensor_index++;
return *this;
}
vsi_nn_node_t* node() override { return nullptr; }
std::vector<std::shared_ptr<Tensor>> InputsTensor() override {
return inputs_tensor_;
}
std::vector<std::shared_ptr<Tensor>> OutputsTensor() override {
return outputs_tensor_;
}
private:
std::shared_ptr<tim::vx::Operation> lstm_forward_;
std::shared_ptr<tim::vx::Operation> lstm_backward_;
std::array<std::shared_ptr<tim::vx::Tensor>, INPUT_CNT> in_tensors_;
std::array<std::shared_ptr<tim::vx::Tensor>, OUTPUT_CNT> out_tensors_;
};
BidirectionalSequenceLstm::BidirectionalSequenceLstm(
Graph* graph, float cell_clip, float proj_clip, ActivationType act_type,
float forget_bias, bool time_major, ActivationType recurrent_act_type,
bool return_sequences)
: cell_clip_(cell_clip),
proj_clip_(proj_clip),
act_type_(act_type),
forget_bias_(forget_bias),
time_major_(time_major),
recurrent_act_type_(recurrent_act_type),
return_sequences_(return_sequences) {
impl_ = std::make_unique<BidirectionalSequenceLstmImpl>(graph, 0, 0,
DataLayout::ANY);
}
std::shared_ptr<Operation> BidirectionalSequenceLstm::Clone(
std::shared_ptr<Graph>& graph) const {
return graph->CreateOperation<BidirectionalSequenceLstm>(
this->cell_clip_, this->proj_clip_, this->act_type_, this->forget_bias_,
this->time_major_, this->recurrent_act_type_, this->return_sequences_);
}
} // namespace ops
} // namespace vx
} // namespace tim

View File

@ -0,0 +1,301 @@
/****************************************************************************
*
* Copyright (c) 2022 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/ops/bidirectional_sequence_lstm.h"
#include "gtest/gtest.h"
#include "test_utils.h"
std::shared_ptr<tim::vx::Tensor> make_empty_tensor(
std::shared_ptr<tim::vx::Graph> graph, const tim::vx::ShapeType& shape,
const tim::vx::TensorAttribute& role); //, const float& default_value)
TEST(Bidirectional_LSTM_CELL, shape_in_2_cell_4_out_4_float32) {
// NoCifg_NoPeephole_NoProjection_NoLayerNorm
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
uint32_t n_batch, n_step, n_cell, n_input, n_output;
n_batch = 1, n_step = 3, n_cell = 4, n_input = 2, n_output = 4;
tim::vx::ShapeType input_shape, cell_shape, state_shape;
input_shape = {n_batch, n_step, n_input}; // non-time-major
tim::vx::TensorSpec lstm_input_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_input, n_step, n_batch}), tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec fw_weight_i2i_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_input, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec fw_weight_i2f_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_input, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec fw_weight_i2c_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_input, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec fw_weight_i2o_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_input, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec fw_weight_r2i_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_output, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec fw_weight_r2f_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_output, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec fw_weight_r2c_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_output, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec fw_weight_r2o_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_output, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec fw_bias_i_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec fw_bias_f_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec fw_bias_c_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec fw_bias_o_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bw_weight_i2i_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_input, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bw_weight_i2f_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_input, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bw_weight_i2c_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_input, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bw_weight_i2o_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_input, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bw_weight_r2i_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_output, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bw_weight_r2f_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_output, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bw_weight_r2c_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_output, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bw_weight_r2o_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_output, n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bw_bias_i_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bw_bias_f_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bw_bias_c_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bw_bias_o_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_cell}), tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec fw_output_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_output, n_step, n_batch}), tim::vx::TensorAttribute::OUTPUT);
tim::vx::TensorSpec bw_output_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_output, n_step, n_batch}), tim::vx::TensorAttribute::OUTPUT);
auto lstm_input = graph->CreateTensor(lstm_input_spec);
std::vector<float> lstm_input_data = {2., 3., 3., 4., 1., 1.};
lstm_input->CopyDataToTensor(lstm_input_data.data(), lstm_input_data.size() * 4);
auto fw_output_tensor = graph->CreateTensor(fw_output_spec);
auto bw_output_tensor = graph->CreateTensor(bw_output_spec);
std::vector<float> fw_weight_i2i = {-0.45018822, -0.02338299, -0.0870589,
-0.34550029, 0.04266912, -0.15680569,
-0.34856534, 0.43890524};
std::vector<float> fw_weight_i2f = {0.09701663, 0.20334584, -0.50592935,
-0.31343272, -0.40032279, 0.44781327,
0.01387155, -0.35593212};
std::vector<float> fw_weight_i2c = {-0.50013041, 0.1370284, 0.11810488, 0.2013163,
-0.20583314, 0.44344562, 0.22077113,
-0.29909778};
std::vector<float> fw_weight_i2o = {-0.25065863, -0.28290087, 0.04613829,
0.40525138, 0.44272184, 0.03897077, -0.1556896,
0.19487578};
auto fw_weight_i2i_tensor = graph->CreateTensor(fw_weight_i2i_spec, fw_weight_i2i.data());
auto fw_weight_i2f_tensor = graph->CreateTensor(fw_weight_i2f_spec, fw_weight_i2f.data());
auto fw_weight_i2c_tensor = graph->CreateTensor(fw_weight_i2c_spec, fw_weight_i2c.data());
auto fw_weight_i2o_tensor = graph->CreateTensor(fw_weight_i2o_spec, fw_weight_i2o.data());
std::vector<float> fw_weight_r2i = {
-0.0063535, -0.2042388, 0.31454784, -0.35746509,
0.28902304, 0.08183324, -0.16555229, 0.02286911,
-0.13566875, 0.03034258, 0.48091322, -0.12528998,
0.24077177, -0.51332325, -0.33502164, 0.10629296};
std::vector<float> fw_weight_r2f = {
-0.48684245, -0.06655136, 0.42224967, 0.2112639,
0.27654213, 0.20864892, -0.07646349, 0.45877004,
0.00141793, -0.14609534, 0.36447752, 0.09196436,
0.28053468, 0.01560611, -0.20127171, -0.01140004};
std::vector<float> fw_weight_r2c = {
-0.3407414, 0.24443203, -0.2078532, 0.26320225,
0.05695659, -0.00123841, -0.4744786, -0.35869038,
-0.06418842, -0.13502428, -0.501764, 0.22830659,
-0.46367589, 0.26016325, -0.03894562, -0.16368064};
std::vector<float> fw_weight_r2o = {
0.43385774, -0.17194885, 0.2718237, 0.09215671,
0.24107647, -0.39835793, 0.18212086, 0.01301402,
0.48572797, -0.50656658, 0.20047462, -0.20607421,
-0.51818722, -0.15390486, 0.0468148, 0.39922136};
auto fw_weight_r2i_tensor = graph->CreateTensor(fw_weight_r2i_spec, fw_weight_r2i.data());
auto fw_weight_r2f_tensor = graph->CreateTensor(fw_weight_r2f_spec, fw_weight_r2f.data());
auto fw_weight_r2c_tensor = graph->CreateTensor(fw_weight_r2c_spec, fw_weight_r2c.data());
auto fw_weight_r2o_tensor = graph->CreateTensor(fw_weight_r2o_spec, fw_weight_r2o.data());
std::vector<float> fw_bias_i = {0.0, 0.0, 0.0, 0.0};
std::vector<float> fw_bias_f = {1., 1., 1., 1.};
std::vector<float> fw_bias_c = {0.0, 0.0, 0.0, 0.0};
std::vector<float> fw_bias_o = {0.0, 0.0, 0.0, 0.0};
auto fw_bias_i_tensor = graph->CreateTensor(fw_bias_i_spec, fw_bias_i.data());
auto fw_bias_f_tensor = graph->CreateTensor(fw_bias_f_spec, fw_bias_f.data());
auto fw_bias_c_tensor = graph->CreateTensor(fw_bias_c_spec, fw_bias_c.data());
auto fw_bias_o_tensor = graph->CreateTensor(fw_bias_o_spec, fw_bias_o.data());
std::vector<float> bw_weight_i2i = {-0.45018822, -0.02338299, -0.0870589,
-0.34550029, 0.04266912, -0.15680569,
-0.34856534, 0.43890524};
std::vector<float> bw_weight_i2f = {0.09701663, 0.20334584, -0.50592935,
-0.31343272, -0.40032279, 0.44781327,
0.01387155, -0.35593212};
std::vector<float> bw_weight_i2c = {-0.50013041, 0.1370284, 0.11810488, 0.2013163,
-0.20583314, 0.44344562, 0.22077113,
-0.29909778};
std::vector<float> bw_weight_i2o = {-0.25065863, -0.28290087, 0.04613829,
0.40525138, 0.44272184, 0.03897077, -0.1556896,
0.19487578};
auto bw_weight_i2i_tensor = graph->CreateTensor(bw_weight_i2i_spec, bw_weight_i2i.data());
auto bw_weight_i2f_tensor = graph->CreateTensor(bw_weight_i2f_spec, bw_weight_i2f.data());
auto bw_weight_i2c_tensor = graph->CreateTensor(bw_weight_i2c_spec, bw_weight_i2c.data());
auto bw_weight_i2o_tensor = graph->CreateTensor(bw_weight_i2o_spec, bw_weight_i2o.data());
std::vector<float> bw_weight_r2i = {
-0.0063535, -0.2042388, 0.31454784, -0.35746509,
0.28902304, 0.08183324, -0.16555229, 0.02286911,
-0.13566875, 0.03034258, 0.48091322, -0.12528998,
0.24077177, -0.51332325, -0.33502164, 0.10629296};
std::vector<float> bw_weight_r2f = {
-0.48684245, -0.06655136, 0.42224967, 0.2112639,
0.27654213, 0.20864892, -0.07646349, 0.45877004,
0.00141793, -0.14609534, 0.36447752, 0.09196436,
0.28053468, 0.01560611, -0.20127171, -0.01140004};
std::vector<float> bw_weight_r2c = {
-0.3407414, 0.24443203, -0.2078532, 0.26320225,
0.05695659, -0.00123841, -0.4744786, -0.35869038,
-0.06418842, -0.13502428, -0.501764, 0.22830659,
-0.46367589, 0.26016325, -0.03894562, -0.16368064};
std::vector<float> bw_weight_r2o = {
0.43385774, -0.17194885, 0.2718237, 0.09215671,
0.24107647, -0.39835793, 0.18212086, 0.01301402,
0.48572797, -0.50656658, 0.20047462, -0.20607421,
-0.51818722, -0.15390486, 0.0468148, 0.39922136};
auto bw_weight_r2i_tensor = graph->CreateTensor(bw_weight_r2i_spec, bw_weight_r2i.data());
auto bw_weight_r2f_tensor = graph->CreateTensor(bw_weight_r2f_spec, bw_weight_r2f.data());
auto bw_weight_r2c_tensor = graph->CreateTensor(bw_weight_r2c_spec, bw_weight_r2c.data());
auto bw_weight_r2o_tensor = graph->CreateTensor(bw_weight_r2o_spec, bw_weight_r2o.data());
std::vector<float> bw_bias_i = {0.0, 0.0, 0.0, 0.0};
std::vector<float> bw_bias_f = {1., 1., 1., 1.};
std::vector<float> bw_bias_c = {0.0, 0.0, 0.0, 0.0};
std::vector<float> bw_bias_o = {0.0, 0.0, 0.0, 0.0};
auto bw_bias_i_tensor = graph->CreateTensor(bw_bias_i_spec, bw_bias_i.data());
auto bw_bias_f_tensor = graph->CreateTensor(bw_bias_f_spec, bw_bias_f.data());
auto bw_bias_c_tensor = graph->CreateTensor(bw_bias_c_spec, bw_bias_c.data());
auto bw_bias_o_tensor = graph->CreateTensor(bw_bias_o_spec, fw_bias_o.data());
auto bidirectional_lstm = graph->CreateOperation<tim::vx::ops::BidirectionalSequenceLstm>(
0.0, 0.0, tim::vx::ops::BidirectionalSequenceLstm::ActivationType::kTANH, 0.0, false,
tim::vx::ops::BidirectionalSequenceLstm::kSIGMOID, true);
(*bidirectional_lstm)
.BindInputs({
lstm_input,
fw_weight_i2i_tensor,
fw_weight_i2f_tensor,
fw_weight_i2c_tensor,
fw_weight_i2o_tensor,
fw_weight_r2i_tensor,
fw_weight_r2f_tensor,
fw_weight_r2c_tensor,
fw_weight_r2o_tensor,
graph->CreateTensorPlaceHolder(), /*fw_weight_c2i*/
graph->CreateTensorPlaceHolder(), /*fw_weight_c2f*/
graph->CreateTensorPlaceHolder(), /*fw_weight_c2o*/
fw_bias_i_tensor,
fw_bias_f_tensor,
fw_bias_c_tensor,
fw_bias_o_tensor,
// optional for projection
graph->CreateTensorPlaceHolder(), /*fw_weight_prj*/
graph->CreateTensorPlaceHolder(), /*fw_bias_prj*/
bw_weight_i2i_tensor,
bw_weight_i2f_tensor,
bw_weight_i2c_tensor,
bw_weight_i2o_tensor,
bw_weight_r2i_tensor,
bw_weight_r2f_tensor,
bw_weight_r2c_tensor,
bw_weight_r2o_tensor,
graph->CreateTensorPlaceHolder(), /*bw_weight_c2i*/
graph->CreateTensorPlaceHolder(), /*bw_weight_c2f*/
graph->CreateTensorPlaceHolder(), /*bw_weight_c2o*/
bw_bias_i_tensor,
bw_bias_f_tensor,
bw_bias_c_tensor,
bw_bias_o_tensor,
// optional for projection
graph->CreateTensorPlaceHolder(), /*bw_weight_prj*/
graph->CreateTensorPlaceHolder(), /*bw_bias_prj*/
graph->CreateTensorPlaceHolder(), /*fw_h_state*/
graph->CreateTensorPlaceHolder(), /*fw_c_state*/
graph->CreateTensorPlaceHolder(), /*bw_h_state*/
graph->CreateTensorPlaceHolder(), /*bw_c_state*/
graph->CreateTensorPlaceHolder(),
graph->CreateTensorPlaceHolder(),
graph->CreateTensorPlaceHolder(),
graph->CreateTensorPlaceHolder(),
graph->CreateTensorPlaceHolder(),
graph->CreateTensorPlaceHolder(),
graph->CreateTensorPlaceHolder(),
graph->CreateTensorPlaceHolder(),
graph->CreateTensorPlaceHolder(), // AUX
graph->CreateTensorPlaceHolder(),
graph->CreateTensorPlaceHolder(),
graph->CreateTensorPlaceHolder(),
graph->CreateTensorPlaceHolder(),
graph->CreateTensorPlaceHolder(),
graph->CreateTensorPlaceHolder(),
graph->CreateTensorPlaceHolder(),
graph->CreateTensorPlaceHolder(), // Layer_norm
})
.BindOutputs({
fw_output_tensor,
make_empty_tensor(
graph, tim::vx::ShapeType({n_output, n_batch}), tim::vx::TensorAttribute::OUTPUT), /*fw_h_state*/
make_empty_tensor(
graph, tim::vx::ShapeType({n_cell, n_batch}), tim::vx::TensorAttribute::OUTPUT), /*fw_c_state*/
bw_output_tensor,
make_empty_tensor(
graph, tim::vx::ShapeType({n_output, n_batch}), tim::vx::TensorAttribute::OUTPUT), /*bw_h_state*/
make_empty_tensor(
graph, tim::vx::ShapeType({n_cell, n_batch}), tim::vx::TensorAttribute::OUTPUT), /*bw_c_state*/
});
graph->Compile();
graph->Run();
std::vector<float> lstm_fw_golden_output = {
-0.02973187, 0.1229473, 0.20885126, -0.15358765,
-0.03716109, 0.12507336, 0.41193449, -0.20860538,
-0.15053082, 0.09120187, 0.24278517, -0.12222792};
std::vector<float> lstm_bw_golden_output = {
-0.02973187, 0.1229473, 0.20885126, -0.15358765,
-0.03716109, 0.12507336, 0.41193449, -0.20860538,
-0.15053082, 0.09120187, 0.24278517, -0.12222792};
std::vector<float> fw_output(lstm_fw_golden_output.size());
std::vector<float> bw_output(lstm_bw_golden_output.size());
fw_output_tensor->CopyDataFromTensor(fw_output.data());
bw_output_tensor->CopyDataFromTensor(bw_output.data());
EXPECT_TRUE(ArraysMatch(lstm_fw_golden_output, fw_output, 1e-4f));
EXPECT_TRUE(ArraysMatch(lstm_bw_golden_output, bw_output, 1e-4f));
}