Add map for Matmul
Signed-off-by: zhao.xia <zhao.xia@verisilicon.com>
This commit is contained in:
parent
3fa2bf519a
commit
21ecf5262e
|
|
@ -0,0 +1,59 @@
|
||||||
|
/****************************************************************************
|
||||||
|
*
|
||||||
|
* Copyright (c) 2021 Vivante Corporation
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
* to deal in the Software without restriction, including without limitation
|
||||||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||||||
|
* Software is furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in
|
||||||
|
* all copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||||
|
* DEALINGS IN THE SOFTWARE.
|
||||||
|
*
|
||||||
|
*****************************************************************************/
|
||||||
|
#ifndef TIM_VX_OPS_MATMUL_H_
|
||||||
|
#define TIM_VX_OPS_MATMUL_H_
|
||||||
|
#include "tim/vx/operation.h"
|
||||||
|
|
||||||
|
namespace tim {
|
||||||
|
namespace vx {
|
||||||
|
namespace ops {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* ## Matmul
|
||||||
|
*
|
||||||
|
* Multiplies matrix a by matrix b, producing a * b.
|
||||||
|
*
|
||||||
|
* - transpose_a: If True, a is transposed before multiplication.
|
||||||
|
* - transpose_b: If True, b is transposed before multiplication.
|
||||||
|
* - adjoint_a: If True, a is conjugated and transposed before multiplication.
|
||||||
|
* - adjoint_b: If True, b is conjugated and transposed before multiplication.
|
||||||
|
*/
|
||||||
|
|
||||||
|
class Matmul : public Operation {
|
||||||
|
public:
|
||||||
|
Matmul(Graph* graph, bool transpose_a = false, bool transpose_b = false,
|
||||||
|
bool adjoint_a = false, bool adjoint_b = false);
|
||||||
|
|
||||||
|
protected:
|
||||||
|
bool transpose_a_;
|
||||||
|
bool transpose_b_;
|
||||||
|
bool adjoint_a_;
|
||||||
|
bool adjoint_b_;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace ops
|
||||||
|
} // namespace vx
|
||||||
|
} // namespace tim
|
||||||
|
|
||||||
|
#endif /* TIM_VX_OPS_MATMUL_H_ */
|
||||||
|
|
@ -42,6 +42,7 @@ Elu|ELU|Mapped|[tf.nn.elu](https://tensorflow.google.cn/api_docs/python/tf/nn/el
|
||||||
Batch2Space|BATCH2SPACE|Mapped|[tf.batch_to_space](https://tensorflow.google.cn/api_docs/python/tf/batch_to_space)
|
Batch2Space|BATCH2SPACE|Mapped|[tf.batch_to_space](https://tensorflow.google.cn/api_docs/python/tf/batch_to_space)
|
||||||
Space2Batch|SPACE2BATCH|Mapped|[tf.space_to_batch](https://tensorflow.google.cn/api_docs/python/tf/space_to_batch)
|
Space2Batch|SPACE2BATCH|Mapped|[tf.space_to_batch](https://tensorflow.google.cn/api_docs/python/tf/space_to_batch)
|
||||||
Pad|PAD|Mapped|[tf.pad](https://tensorflow.google.cn/api_docs/python/tf/pad)
|
Pad|PAD|Mapped|[tf.pad](https://tensorflow.google.cn/api_docs/python/tf/pad)
|
||||||
|
Matmul|MATRIXMUL|Mapped|[tf.linalg.matmul](https://www.tensorflow.org/api_docs/python/tf/linalg/matmul)
|
||||||
LayerNormalization|LAYER_NORM|Mapped|[tf.keras.layers.LayerNormalization](https://tensorflow.google.cn/api_docs/python/tf/keras/layers/LayerNormalization)
|
LayerNormalization|LAYER_NORM|Mapped|[tf.keras.layers.LayerNormalization](https://tensorflow.google.cn/api_docs/python/tf/keras/layers/LayerNormalization)
|
||||||
ReduceMin|REDUCE_MIN|Mapped|[tf.math.reduce_min](https://tensorflow.google.cn/api_docs/python/tf/math/reduce_min)
|
ReduceMin|REDUCE_MIN|Mapped|[tf.math.reduce_min](https://tensorflow.google.cn/api_docs/python/tf/math/reduce_min)
|
||||||
ReduceMax|REDUCE_MAX|Mapped|[tf.math.reduce_max](https://tensorflow.google.cn/api_docs/python/tf/math/reduce_max)
|
ReduceMax|REDUCE_MAX|Mapped|[tf.math.reduce_max](https://tensorflow.google.cn/api_docs/python/tf/math/reduce_max)
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,46 @@
|
||||||
|
/****************************************************************************
|
||||||
|
*
|
||||||
|
* Copyright (c) 2021 Vivante Corporation
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
* to deal in the Software without restriction, including without limitation
|
||||||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||||||
|
* Software is furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in
|
||||||
|
* all copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||||
|
* DEALINGS IN THE SOFTWARE.
|
||||||
|
*
|
||||||
|
*****************************************************************************/
|
||||||
|
#include "tim/vx/ops/matmul.h"
|
||||||
|
|
||||||
|
#include "operation_private.h"
|
||||||
|
#include "vsi_nn_pub.h"
|
||||||
|
#include "type_utils.h"
|
||||||
|
|
||||||
|
namespace tim {
|
||||||
|
namespace vx {
|
||||||
|
namespace ops {
|
||||||
|
|
||||||
|
Matmul::Matmul(Graph* graph, bool transpose_a, bool transpose_b,
|
||||||
|
bool adjoint_a, bool adjoint_b)
|
||||||
|
: Operation(graph, VSI_NN_OP_MATRIXMUL), transpose_a_(transpose_a),
|
||||||
|
transpose_b_(transpose_b), adjoint_a_(adjoint_a), adjoint_b_(adjoint_b) {
|
||||||
|
this->impl()->node()->nn_param.matrixmul.transpose[0] = ToVxBool(transpose_a_);
|
||||||
|
this->impl()->node()->nn_param.matrixmul.transpose[1] = ToVxBool(transpose_b_);
|
||||||
|
this->impl()->node()->nn_param.matrixmul.adjoint[0] = ToVxBool(adjoint_a_);
|
||||||
|
this->impl()->node()->nn_param.matrixmul.adjoint[1] = ToVxBool(adjoint_b_);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace ops
|
||||||
|
} // namespace vx
|
||||||
|
} // namespace tim
|
||||||
|
|
@ -0,0 +1,204 @@
|
||||||
|
/****************************************************************************
|
||||||
|
*
|
||||||
|
* Copyright (c) 2021 Vivante Corporation
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
* to deal in the Software without restriction, including without limitation
|
||||||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||||||
|
* Software is furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in
|
||||||
|
* all copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||||
|
* DEALINGS IN THE SOFTWARE.
|
||||||
|
*
|
||||||
|
*****************************************************************************/
|
||||||
|
#include "tim/vx/context.h"
|
||||||
|
#include "tim/vx/graph.h"
|
||||||
|
#include "tim/vx/ops/matmul.h"
|
||||||
|
|
||||||
|
#include "gtest/gtest.h"
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
template<typename T>
|
||||||
|
::testing::AssertionResult ArraysMatch(const std::vector<T>& expected,
|
||||||
|
const std::vector<T>& actual,
|
||||||
|
T abs_error){
|
||||||
|
for (size_t i = 0; i < expected.size(); ++i){
|
||||||
|
EXPECT_NEAR(expected[i], actual[i], abs_error) << "at index:" << i;
|
||||||
|
}
|
||||||
|
|
||||||
|
return ::testing::AssertionSuccess();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Matmul, shape_2_6_shape_6_2_float) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType a_shape({6, 2});
|
||||||
|
tim::vx::ShapeType b_shape({2, 6});
|
||||||
|
tim::vx::ShapeType out_shape({2, 2});
|
||||||
|
tim::vx::TensorSpec a_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
a_shape, tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec b_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
b_shape, tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
auto a_tensor = graph->CreateTensor(a_spec);
|
||||||
|
auto b_tensor = graph->CreateTensor(b_spec);
|
||||||
|
auto out_tensor = graph->CreateTensor(out_spec);
|
||||||
|
|
||||||
|
std::vector<float> a_data = {
|
||||||
|
1, 2, 3, 4, 5, 6,
|
||||||
|
-1, -2, -3, -4, -5, -6
|
||||||
|
};
|
||||||
|
std::vector<float> b_data = {
|
||||||
|
6, 5,
|
||||||
|
4, 3,
|
||||||
|
2, 1,
|
||||||
|
-6, -5,
|
||||||
|
-4, -3,
|
||||||
|
-2, -1
|
||||||
|
};
|
||||||
|
std::vector<float> golden = {
|
||||||
|
-36, -27,
|
||||||
|
36, 27
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(a_tensor->CopyDataToTensor(a_data.data(), a_data.size() * sizeof(float)));
|
||||||
|
EXPECT_TRUE(b_tensor->CopyDataToTensor(b_data.data(), b_data.size() * sizeof(float)));
|
||||||
|
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Matmul>();
|
||||||
|
(*op).BindInputs({a_tensor, b_tensor}).BindOutputs({out_tensor});
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
|
||||||
|
std::vector<float> output(golden.size());
|
||||||
|
EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Matmul, shape_2_3_2_shape_2_3_2_float_transpose_b) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType a_shape({2, 3, 2});
|
||||||
|
tim::vx::ShapeType b_shape({2, 3, 2});
|
||||||
|
tim::vx::ShapeType out_shape({3, 3, 2});
|
||||||
|
tim::vx::TensorSpec a_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
a_shape, tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec b_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
b_shape, tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
auto a_tensor = graph->CreateTensor(a_spec);
|
||||||
|
auto b_tensor = graph->CreateTensor(b_spec);
|
||||||
|
auto out_tensor = graph->CreateTensor(out_spec);
|
||||||
|
|
||||||
|
std::vector<float> a_data = {
|
||||||
|
1, 2,
|
||||||
|
3, 4,
|
||||||
|
5, 6,
|
||||||
|
-1, -2,
|
||||||
|
-3, -4,
|
||||||
|
-5, -6
|
||||||
|
};
|
||||||
|
std::vector<float> b_data = {
|
||||||
|
6, 5,
|
||||||
|
4, 3,
|
||||||
|
2, 1,
|
||||||
|
-6, -5,
|
||||||
|
-4, -3,
|
||||||
|
-2, -1
|
||||||
|
};
|
||||||
|
std::vector<float> golden = {
|
||||||
|
16, 10, 4,
|
||||||
|
38, 24, 10,
|
||||||
|
60, 38, 16,
|
||||||
|
16, 10, 4,
|
||||||
|
38, 24, 10,
|
||||||
|
60, 38, 16,
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(a_tensor->CopyDataToTensor(a_data.data(), a_data.size() * sizeof(float)));
|
||||||
|
EXPECT_TRUE(b_tensor->CopyDataToTensor(b_data.data(), b_data.size() * sizeof(float)));
|
||||||
|
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Matmul>(false, true);
|
||||||
|
(*op).BindInputs({a_tensor, b_tensor}).BindOutputs({out_tensor});
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
|
||||||
|
std::vector<float> output(golden.size() * sizeof(float));
|
||||||
|
EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Matmul, shape_2_3_2_shape_2_3_2_uint8_transpose_a) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType a_shape({2, 3, 2});
|
||||||
|
tim::vx::ShapeType b_shape({2, 3, 2});
|
||||||
|
tim::vx::ShapeType out_shape({2, 2, 2});
|
||||||
|
tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC, 1, 6);
|
||||||
|
tim::vx::Quantization output_quant(tim::vx::QuantType::ASYMMETRIC, 1, 0);
|
||||||
|
tim::vx::TensorSpec a_spec(tim::vx::DataType::UINT8,
|
||||||
|
a_shape, tim::vx::TensorAttribute::INPUT, input_quant);
|
||||||
|
tim::vx::TensorSpec b_spec(tim::vx::DataType::UINT8,
|
||||||
|
b_shape, tim::vx::TensorAttribute::INPUT, input_quant);
|
||||||
|
tim::vx::TensorSpec out_spec(tim::vx::DataType::UINT8,
|
||||||
|
out_shape, tim::vx::TensorAttribute::OUTPUT, output_quant);
|
||||||
|
|
||||||
|
auto a_tensor = graph->CreateTensor(a_spec);
|
||||||
|
auto b_tensor = graph->CreateTensor(b_spec);
|
||||||
|
auto out_tensor = graph->CreateTensor(out_spec);
|
||||||
|
|
||||||
|
std::vector<uint8_t> a_data = {
|
||||||
|
7, 8,
|
||||||
|
9, 10,
|
||||||
|
11, 12,
|
||||||
|
5, 4,
|
||||||
|
3, 2,
|
||||||
|
1, 0,
|
||||||
|
};
|
||||||
|
std::vector<uint8_t> b_data = {
|
||||||
|
12, 11,
|
||||||
|
10, 9,
|
||||||
|
8, 7,
|
||||||
|
0, 1,
|
||||||
|
2, 3,
|
||||||
|
4, 5,
|
||||||
|
};
|
||||||
|
std::vector<uint8_t> golden = {
|
||||||
|
28, 19,
|
||||||
|
40, 28,
|
||||||
|
28, 19,
|
||||||
|
40, 28,
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(a_tensor->CopyDataToTensor(a_data.data(), a_data.size()));
|
||||||
|
EXPECT_TRUE(b_tensor->CopyDataToTensor(b_data.data(), b_data.size()));
|
||||||
|
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Matmul>(true);
|
||||||
|
(*op).BindInputs({a_tensor, b_tensor}).BindOutputs({out_tensor});
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
|
||||||
|
std::vector<uint8_t> output(golden.size());
|
||||||
|
EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_EQ(golden, output);
|
||||||
|
}
|
||||||
Loading…
Reference in New Issue