Add softmax unit test (#274)
https://github.com/VeriSilicon/TIM-VX/issues/266 Signed-off-by: Chen Xin <jack.chen@verisilicon.com> Co-authored-by: Chen Xin <jack.chen@verisilicon.com>
This commit is contained in:
parent
a02900d135
commit
32308f62c5
|
|
@ -0,0 +1,279 @@
|
||||||
|
/****************************************************************************
|
||||||
|
*
|
||||||
|
* Copyright (c) 2022 Vivante Corporation
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
* to deal in the Software without restriction, including without limitation
|
||||||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||||||
|
* Software is furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in
|
||||||
|
* all copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||||
|
* DEALINGS IN THE SOFTWARE.
|
||||||
|
*
|
||||||
|
*****************************************************************************/
|
||||||
|
#include "tim/vx/context.h"
|
||||||
|
#include "tim/vx/graph.h"
|
||||||
|
#include "tim/vx/ops/softmax.h"
|
||||||
|
#include "test_utils.h"
|
||||||
|
#include "gtest/gtest.h"
|
||||||
|
|
||||||
|
TEST(Softmax, shape_3_1_float_axis_0) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType io_shape({3, 1});
|
||||||
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
io_shape, tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||||||
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||||||
|
|
||||||
|
std::vector<float> in_data = {
|
||||||
|
-1, 0, 1,
|
||||||
|
};
|
||||||
|
std::vector<float> golden = {
|
||||||
|
0.09003057, 0.24472848, 0.66524094
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||||
|
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Softmax>(1,0);
|
||||||
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
|
||||||
|
std::vector<float> output(golden.size());
|
||||||
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Softmax, shape_3_4_float_axis_0) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType io_shape({3, 4});
|
||||||
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
io_shape, tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||||||
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||||||
|
|
||||||
|
std::vector<float> in_data = {
|
||||||
|
1, 2, 3,
|
||||||
|
1, 2, 3,
|
||||||
|
1, 2, 3,
|
||||||
|
1, 2, 3,
|
||||||
|
};
|
||||||
|
std::vector<float> golden = {
|
||||||
|
0.09003057, 0.24472848, 0.66524094,
|
||||||
|
0.09003057, 0.24472848, 0.66524094,
|
||||||
|
0.09003057, 0.24472848, 0.66524094,
|
||||||
|
0.09003057, 0.24472848, 0.66524094,
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||||
|
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Softmax>(1,0);
|
||||||
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
|
||||||
|
std::vector<float> output(golden.size());
|
||||||
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_EQ(golden, output);
|
||||||
|
// EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Softmax, shape_3_4_float_axis_1) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType io_shape({3, 4});
|
||||||
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
io_shape, tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||||||
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||||||
|
|
||||||
|
std::vector<float> in_data = {
|
||||||
|
1, 2, 3,
|
||||||
|
1, 2, 3,
|
||||||
|
1, 2, 3,
|
||||||
|
1, 2, 3,
|
||||||
|
};
|
||||||
|
std::vector<float> golden = {
|
||||||
|
0.25, 0.25, 0.25,
|
||||||
|
0.25, 0.25, 0.25,
|
||||||
|
0.25, 0.25, 0.25,
|
||||||
|
0.25, 0.25, 0.25,
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||||
|
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Softmax>(1,1);
|
||||||
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
|
||||||
|
std::vector<float> output(golden.size());
|
||||||
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_EQ(golden, output);
|
||||||
|
// EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Softmax, shape_3_3_2_float_axis_0) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType io_shape({3, 3, 2});
|
||||||
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
io_shape, tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||||||
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||||||
|
|
||||||
|
std::vector<float> in_data = {
|
||||||
|
1, 2, 3,
|
||||||
|
1, 2, 3,
|
||||||
|
1, 2, 3,
|
||||||
|
|
||||||
|
2, 3, 5,
|
||||||
|
2, 3, 5,
|
||||||
|
2, 3, 5,
|
||||||
|
};
|
||||||
|
std::vector<float> golden = {
|
||||||
|
0.09003057, 0.24472848, 0.66524094,
|
||||||
|
0.09003057, 0.24472848, 0.66524094,
|
||||||
|
0.09003057, 0.24472848, 0.66524094,
|
||||||
|
|
||||||
|
0.04201007, 0.11419519, 0.8437947,
|
||||||
|
0.04201007, 0.11419519, 0.8437947,
|
||||||
|
0.04201007, 0.11419519, 0.8437947,
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||||
|
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Softmax>(1,0);
|
||||||
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
|
||||||
|
std::vector<float> output(golden.size());
|
||||||
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_EQ(golden, output);
|
||||||
|
// EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Softmax, shape_3_3_2_float_axis_1) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType io_shape({3, 3, 2});
|
||||||
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
io_shape, tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||||||
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||||||
|
|
||||||
|
std::vector<float> in_data = {
|
||||||
|
1, 2, 3,
|
||||||
|
1, 2, 3,
|
||||||
|
1, 2, 3,
|
||||||
|
|
||||||
|
2, 3, 5,
|
||||||
|
2, 3, 5,
|
||||||
|
2, 3, 5,
|
||||||
|
};
|
||||||
|
std::vector<float> golden = {
|
||||||
|
0.33333334, 0.33333334, 0.33333334,
|
||||||
|
0.33333334, 0.33333334, 0.33333334,
|
||||||
|
0.33333334, 0.33333334, 0.33333334,
|
||||||
|
|
||||||
|
0.33333334, 0.33333334, 0.33333334,
|
||||||
|
0.33333334, 0.33333334, 0.33333334,
|
||||||
|
0.33333334, 0.33333334, 0.33333334,
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||||
|
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Softmax>(1,1);
|
||||||
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
|
||||||
|
std::vector<float> output(golden.size());
|
||||||
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_EQ(golden, output);
|
||||||
|
// EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Softmax, shape_3_3_2_float_axis_2) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType io_shape({3, 3, 2});
|
||||||
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
io_shape, tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||||||
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||||||
|
|
||||||
|
std::vector<float> in_data = {
|
||||||
|
1, 2, 3,
|
||||||
|
1, 2, 3,
|
||||||
|
1, 2, 3,
|
||||||
|
|
||||||
|
2, 3, 5,
|
||||||
|
2, 3, 5,
|
||||||
|
2, 3, 5,
|
||||||
|
};
|
||||||
|
std::vector<float> golden = {
|
||||||
|
0.26894143, 0.26894143, 0.11920291,
|
||||||
|
0.26894143, 0.26894143, 0.11920291,
|
||||||
|
0.26894143, 0.26894143, 0.11920291,
|
||||||
|
|
||||||
|
0.7310586 , 0.7310586 , 0.880797,
|
||||||
|
0.7310586 , 0.7310586 , 0.880797,
|
||||||
|
0.7310586 , 0.7310586 , 0.880797,
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||||
|
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Softmax>(1,2);
|
||||||
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
|
||||||
|
std::vector<float> output(golden.size());
|
||||||
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_EQ(golden, output);
|
||||||
|
// EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
|
}
|
||||||
Loading…
Reference in New Issue