Enable float16 bias convolution model runs on NN (#612)

Convert float16 bias tensor to float32 to meet condition of NN
convolution in driver

Caution: Clang version requires minimum 15.0

Type: Code Improvement
Issue: bugzilla id:32785 | jira id VIVD-744

Signed-off-by: Feiyue Chen <Feiyue.Chen@verisilicon.com>
This commit is contained in:
Chen Feiyue 2023-06-30 09:41:28 +08:00 committed by GitHub
parent 34812fe40e
commit 33f3a4f176
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 141 additions and 11 deletions

View File

@ -5,7 +5,7 @@ on:
branches: [ main ] branches: [ main ]
workflow_dispatch: workflow_dispatch:
branches: [ main ] branches: [ main ]
env: env:
# Customize the CMake build type here (Release, Debug, RelWithDebInfo, etc.) # Customize the CMake build type here (Release, Debug, RelWithDebInfo, etc.)
BUILD_TYPE: Release BUILD_TYPE: Release

View File

@ -80,13 +80,14 @@ class Graph {
virtual const std::vector<std::shared_ptr<Tensor>> InputsTensor() const = 0; virtual const std::vector<std::shared_ptr<Tensor>> InputsTensor() const = 0;
virtual const std::vector<std::shared_ptr<Tensor>> OutputsTensor() const = 0; virtual const std::vector<std::shared_ptr<Tensor>> OutputsTensor() const = 0;
virtual void UpdateTensorConsumersMap( virtual void UpdateTensorConsumersMap(const std::shared_ptr<Tensor>& tensor,
const std::shared_ptr<Tensor>& tensor, const Operation* op) = 0;
const Operation* op) = 0; virtual void RenewTensorConsumersMap(
const std::shared_ptr<Tensor>& org_tensor,
const std::shared_ptr<Tensor>& dst_tensor, const Operation* op) = 0;
virtual void UpdateTensorProducerMap( virtual void UpdateTensorProducerMap(const std::shared_ptr<Tensor>& tensor,
const std::shared_ptr<Tensor>& tensor, const Operation* op) = 0;
const Operation* op) = 0;
virtual const std::vector<std::shared_ptr<Operation>> GetConsumersOp( virtual const std::vector<std::shared_ptr<Operation>> GetConsumersOp(
std::shared_ptr<Tensor> tensor) const = 0; std::shared_ptr<Tensor> tensor) const = 0;

View File

@ -49,16 +49,16 @@ class Operation {
std::unique_ptr<OpImpl>& impl(); std::unique_ptr<OpImpl>& impl();
const std::unique_ptr<OpImpl>& impl() const; const std::unique_ptr<OpImpl>& impl() const;
virtual const std::vector<std::shared_ptr<Tensor>> ConstantInputsTensor() const; virtual const std::vector<std::shared_ptr<Tensor>> ConstantInputsTensor() const;
protected: protected:
bool IsAllInputsConst() const; bool IsAllInputsConst() const;
std::unique_ptr<OpImpl> impl_; std::unique_ptr<OpImpl> impl_;
private: private:
// Post processing at the final step on BindInput func // Post processing at the final step on BindInput func
// - tensor : input tensor // - tensor : input tensor
// - input_idx: the index of input tensor // - input_idx: the index of input tensor
virtual void OnBindInputPostProc(const std::shared_ptr<Tensor>& tensor, int32_t input_idx); virtual void OnBindInputPostProc(const std::shared_ptr<Tensor>& tensor, int32_t input_idx);
}; };
} // namespace vx } // namespace vx

View File

@ -37,7 +37,7 @@ namespace ops {
* *
* Performs a 2-D convolution operation, include classic Conv2D / * Performs a 2-D convolution operation, include classic Conv2D /
* Depthwise Conv2D / Group Conv2D / Dilation Conv2D. * Depthwise Conv2D / Group Conv2D / Dilation Conv2D.
* *
* Input: * Input:
* - input [WHCN or CWHN]. * - input [WHCN or CWHN].
* - kernel [ WHIcOc ] (Ic: Input Channels. Oc: Output Channels). * - kernel [ WHIcOc ] (Ic: Input Channels. Oc: Output Channels).
@ -95,6 +95,13 @@ class Conv2d : public BuiltinOp {
const std::array<uint32_t, 4> pad_; const std::array<uint32_t, 4> pad_;
const int32_t multiplier_; const int32_t multiplier_;
const DataLayout kernel_layout_; const DataLayout kernel_layout_;
#if defined(__clang__) && (__clang_major__ >= 15)
#define TIM_VX_OPS_CONV2D_WITH_F16BIAS 1
private:
void OnBindInputPostProc(const std::shared_ptr<Tensor>& tensor,
int32_t input_idx) override;
#endif
}; };
} // namespace ops } // namespace ops

View File

@ -195,6 +195,22 @@ void GraphImpl::UpdateTensorConsumersMap(const std::shared_ptr<Tensor>& tensor,
} }
} }
void GraphImpl::RenewTensorConsumersMap(
const std::shared_ptr<Tensor>& org_tensor,
const std::shared_ptr<Tensor>& dst_tensor, const Operation* op) {
auto exist_op = std::find_if(
op_vector_.begin(), op_vector_.end(),
[op](std::shared_ptr<Operation> oper) { return oper.get() == op; });
if (exist_op == op_vector_.end()) {
return; //given op cannot be found
} else {
auto consumer_to_remove = tensor_consumers_.find(org_tensor);
if (consumer_to_remove != tensor_consumers_.end())
tensor_consumers_.erase(consumer_to_remove);
tensor_consumers_[dst_tensor].push_back(*exist_op);
}
}
void GraphImpl::UpdateTensorProducerMap(const std::shared_ptr<Tensor>& tensor, void GraphImpl::UpdateTensorProducerMap(const std::shared_ptr<Tensor>& tensor,
const Operation* op) { const Operation* op) {
for (const auto& added_op : op_vector_) { for (const auto& added_op : op_vector_) {

View File

@ -62,6 +62,9 @@ class GraphImpl : public Graph {
void UpdateTensorConsumersMap(const std::shared_ptr<Tensor>& tensor, void UpdateTensorConsumersMap(const std::shared_ptr<Tensor>& tensor,
const Operation* op) override; const Operation* op) override;
void RenewTensorConsumersMap(const std::shared_ptr<Tensor>& org_tensor,
const std::shared_ptr<Tensor>& dst_tensor,
const Operation* op) override;
void UpdateTensorProducerMap(const std::shared_ptr<Tensor>& tensor, void UpdateTensorProducerMap(const std::shared_ptr<Tensor>& tensor,
const Operation* op) override; const Operation* op) override;
const std::vector<std::shared_ptr<Operation>> GetConsumersOp( const std::vector<std::shared_ptr<Operation>> GetConsumersOp(

View File

@ -96,6 +96,34 @@ const std::vector<std::shared_ptr<Tensor>> Conv2d::ConstantInputsTensor() const
} }
} }
// Handle float16 bias if clang compiler is no less than 15.0.0 version
#ifdef TIM_VX_OPS_CONV2D_WITH_F16BIAS
void Conv2d::OnBindInputPostProc(const std::shared_ptr<Tensor>& tensor,
int32_t input_idx) {
if (tensor->GetDataType() == vx::DataType::FLOAT16 &&
tensor->IsConstTensor() && impl_->inputs_tensor_.size() == 3) {
uint32_t bias_size = 1;
for (auto i : tensor->GetShape()) {
bias_size *= i;
}
std::vector<_Float16> in(bias_size);
tensor->CopyDataFromTensor(in.data());
std::vector<float> out(bias_size);
for (uint i = 0; i < bias_size; i++) {
out[i] = static_cast<float>(in[i]);
}
TensorSpec fp32bias_spec(tim::vx::DataType::FLOAT32, tensor->GetShape(),
tim::vx::TensorAttribute::CONSTANT);
auto out_tensor = impl_->graph_->CreateTensor(fp32bias_spec, out.data());
impl_->inputs_tensor_[2] = out_tensor;
impl_->node()->input.tensors[input_idx] = out_tensor->GetId();
impl_->graph_->RenewTensorConsumersMap(tensor, out_tensor, this);
}
}
#endif
} // namespace ops } // namespace ops
} // namespace vx } // namespace vx
} // namespace tim } // namespace tim

View File

@ -29,6 +29,81 @@
#include "tim/vx/graph.h" #include "tim/vx/graph.h"
#include "tim/vx/types.h" #include "tim/vx/types.h"
#ifdef TIM_VX_OPS_CONV2D_WITH_F16BIAS
TEST(Conv2d, shape_4_2_1_1_float16_PaddingTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({4, 2, 1, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 1, 3}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{4, 2, weight_shape[3], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT16, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT16, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT16, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT16, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<_Float16> input_data = {
1, 1, 1, 1, // row = 1
2, 2, 3, 2 // row = 2
};
// weight data oihw
std::vector<_Float16> weight_data = {
1, 2, 3, 4, //first 2x2 filter
-1, 1, -1, 1, // second 2x2 filter
-1, -1, 1, 1, // third 2x2 filter
};
// bias data
std::vector<_Float16> bias_data = {1, 2, 3};
// nchw
std::vector<_Float16> golden = {// first channel
18, 22, 21, 8, 7, 9, 8, 3, 2, 3, 1, -1,
// second channel
2, 3, 1, 0, 5, 6, 6, 4, -1, -2, -2, 1};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<_Float16> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_TRUE(ArraysMatch(golden, output, (_Float16)0.1));
}
#endif
TEST(Conv2d, shape_4_2_1_1_float32_PaddingTest) { TEST(Conv2d, shape_4_2_1_1_float32_PaddingTest) {
auto ctx = tim::vx::Context::Create(); auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph(); auto graph = ctx->CreateGraph();