Add support for Linear Activation

Signed-off-by: Kainan Cha <kainan.zha@verisilicon.com>
This commit is contained in:
Kainan Cha 2021-06-02 17:10:57 +08:00
parent 94fe57489b
commit 39bd5ddd32
4 changed files with 129 additions and 26 deletions

View File

@ -59,6 +59,8 @@ namespace ops {
*
* Prelu(x) : alpha * x if x <= 0; x if x > 0. alpha is a tensor.
* - axis : describes the axis of the inputs when coerced to 2D.
*
* Linear(x, a, b) : a*x + b.
* ```
*/
@ -97,6 +99,14 @@ class LeakyRelu : public Operation {
float alpha_;
};
class Linear : public Operation {
public:
Linear(Graph* graph, float a, float b=0.0);
protected:
float a_;
float b_;
};
} // namespace ops
} // namespace vx
} // namespace tim

View File

@ -15,7 +15,7 @@ DeConv2d|DECONVOLUTION|Mapped|[tf.nn.conv2d_transpose](https://tensorflow.google
Reshape|RESHAPE|Mapped|[tf.reshape](https://tensorflow.google.cn/api_docs/python/tf/reshape)
Transpose|PERMUTE|Mapped|[tf.transpose](https://tensorflow.google.cn/api_docs/python/tf/transpose)
Prelu|PRELU|Mapped|[tf.keras.layers.PReLU](https://tensorflow.google.cn/api_docs/python/tf/keras/layers/PReLU)
MaxUnpool2d|UPSAMPLE|Mapped| Recover pixel from the outputs of MaxpoolWithArgmax.
MaxUnpool2d|UPSAMPLE|Mapped|[tfa.layers.MaxUnpooling2D](https://tensorflow.google.cn/addons/api_docs/python/tfa/layers/MaxUnpooling2D)
Relu|RELU|Mapped|[tf.nn.relu](https://tensorflow.google.cn/api_docs/python/tf/nn/relu)
Reorg|REORG|Mapped|[darknet.reorg](https://github.com/pjreddie/darknet/blob/master/src/reorg_layer.c)
L2Normalization|L2_NORMALIZE|Mapped|[tf.math.l2_normalize](https://tensorflow.google.cn/api_docs/python/tf/math/l2_normalize)
@ -36,7 +36,7 @@ Resize|RESIZE|Mapped|[tf.image.resize](https://tensorflow.google.cn/api_docs/pyt
Reverse|REVERSE|Mapped|[tf.reverse](https://tensorflow.google.cn/api_docs/python/tf/reverse)
DepthToSpace|DEPTH2SPACE|Mapped|[tf.nn.depth_to_space](https://tensorflow.google.cn/api_docs/python/tf/nn/depth_to_space)
SpaceToDepth|SPACE2DEPTH|Mapped|[tf.nn.space_to_depth](https://tensorflow.google.cn/api_docs/python/tf/nn/space_to_depth)
DataConvert|DATACONVERT|Mapped
DataConvert|DATACONVERT|Mapped|Data Format Conversion
Slice|SLICE|Mapped|[tf.slice](https://tensorflow.google.cn/api_docs/python/tf/slice)
Elu|ELU|Mapped|[tf.nn.elu](https://tensorflow.google.cn/api_docs/python/tf/nn/elu)
Batch2Space|BATCH2SPACE|Mapped|[tf.batch_to_space](https://tensorflow.google.cn/api_docs/python/tf/batch_to_space)
@ -52,7 +52,7 @@ ReduceMean|REDUCE_MEAN|Mapped|[tf.math.reduce_mean](https://tensorflow.google.cn
StridedSlice|STRIDED_SLICE|Mapped|[tf.strided_slice](https://tensorflow.google.cn/api_docs/python/tf/strided_slice)
Abs|ABS|Mapped|[tf.math.abs](https://tensorflow.google.cn/api_docs/python/tf/math/abs)
|Conv1d|CONV1D|Mapped|[tf.nn.conv1d](https://tensorflow.google.cn/api_docs/python/tf/nn/conv1d)
NBG|NBG|Mapped
NBG|NBG|Mapped|Network Binary Graph
LocalResponseNormalization|LRN2|Mapped|[tf.nn.local_response_normalization](https://tensorflow.google.cn/api_docs/python/tf/nn/local_response_normalization)
Greater|RELATIONAL_OPS_GREATER|Mapped|[tf.math.greater](https://tensorflow.google.cn/api_docs/python/tf/math/greater)
GreaterOrEqual|RELATIONAL_OPS_GREATER_EQUAL|Mapped|[tf.math.greater_equal](https://tensorflow.google.cn/api_docs/python/tf/math/greater_equal)
@ -88,37 +88,24 @@ HardSigmoid|HARD_SIGMOID|Mapped|[tf.keras.activations.hard_sigmoid](https://tens
Mish|MISH|Mapped|[tfa.activations.mish](https://tensorflow.google.cn/addons/api_docs/python/tfa/activations/mish)
|DeConv1d|DECONVOLUTION1D|Mapped|[tf.nn.conv1d_transpose](https://tensorflow.google.cn/api_docs/python/tf/nn/conv1d_transpose)
Resize1d|RESIZE_1D|Mapped|[Onnx.resize 1D image](https://github.com/onnx/onnx/blob/master/docs/Operators.md#resize)
||LINEAR|Unmapped|f(x) = a\*x + b
||BATCHNORM_SINGLE|Unmapped|[tf.nn.batch_normalization](https://tensorflow.google.cn/api_docs/python/tf/nn/batch_normalization)
|Linear|LINEAR|Unmapped|[tf.keras.activations.linear](https://www.tensorflow.org/api_docs/python/tf/keras/activations/linear)
||MOMENTS|Unmapped|[tf.moments](https://tensorflow.google.cn/api_docs/python/tf/nn/moments)
||EXPAND_BROADCAST|Unmapped
||SCATTER_ND|Unmapped|[tf.scatter_nd](https://tensorflow.google.cn/api_docs/python/tf/scatter_nd)
||ROI_POOL|Unmapped|[ANEURALNETWORKS_ROI_POOLING](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a6736198af337b2efbdb0b6b64dee7fe4)
||PROPOSAL|Unmapped
||PROPOSAL|Unmapped|[Faster-RCNN Proposal Layer](https://github.com/intel/caffe/blob/master/examples/faster-rcnn/lib/rpn/proposal_layer.py)
||MATRIXMUL|Unmapped|[tf.experimental.numpy.matmul](https://www.tensorflow.org/api_docs/python/tf/experimental/numpy/matmul)
||SIGNAL_FRAME|Unmapped|tf.signal.frame
||SIGNAL_FRAME|Unmapped|[tf.signal.frame](https://tensorflow.google.cn/api_docs/python/tf/signal/frame)
||A_TIMES_B_PLUS_C|Unmapped|[tf.add(tf.mul(A, B), C)](https://github.com/hujie-frank/SENet/blob/master/include/caffe/layers/axpy_layer.hpp)
||UNSTACK|Unmapped|[tf.unstack](https://tensorflow.google.cn/api_docs/python/tf/unstack)
||PRE_PROCESS|Unmapped|Graph Preprocessing (YUV2RGB, Input Normalization, Resizing, etc)
||TILE|Unmapped|[tf.tile](https://tensorflow.google.cn/api_docs/python/tf/tile)
||TOPK|Unmapped|[tf.math.top_k](https://tensorflow.google.cn/api_docs/python/tf/math/top_k)
||ROI_POOL|Unmapped|[ANEURALNETWORKS_ROI_POOLING](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a6736198af337b2efbdb0b6b64dee7fe4)
||SVDF|Unmapped|[ANEURALNETWORKS_SVDF](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a7096de21038c1ce49d354a00cba7b552)
||CONCATSHIFT|Unmapped
||SPATIAL_TRANSFORMER|Unmapped
||SHUFFLECHANNEL|Unmapped|[ANEURALNETWORKS_CHANNEL_SHUFFLE](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a5b993c1211c4b1bc52fb595a3025251d)
||HASHTABLE_LOOKUP|Unmapped|[ANEURALNETWORKS_HASHTABLE_LOOKUP](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0aca92716c8c73c1f0fa7f0757916fee26)
||EMBEDDING_LOOKUP|Unmapped|[ANEURALNETWORKS_EMBEDDING_LOOKUP](developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a8d2ada77adb74357fc0770405bca0e3)
||LSH_PROJECTION|Unmapped|[ANEURALNETWORKS_LSH_PROJECTION](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a800cdcec5d7ba776789cb2d1ef669965)
||UNSTACK|Unmapped|[tf.unstack](https://tensorflow.google.cn/api_docs/python/tf/unstack)
||PRE_PROCESS|Unmapped
||PRE_PROCESS_RGB|Unmapped
||PRE_PROCESS_GRAY|Unmapped
||PRE_PROCESS_YUV444|Unmapped
||PRE_PROCESS_NV12|Unmapped
||PRE_PROCESS_YUV420|Unmapped
||PRE_PROCESS_BGRA|Unmapped
||PRE_PROCESS_TENSOR|Unmapped
||IMAGEPROCESS|Unmapped
||POST_PROCESS|Unmapped
||TILE|Unmapped|[tf.tile](https://tensorflow.google.cn/api_docs/python/tf/tile)
||GROUPED_CONV2D|Unmapped|[ANEURALNETWORKS_GROUPED_CONV_2D](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a847acf8d9f3d2343328c3dbe6d447c50)
||TOPK|Unmapped|[tf.math.top_k](https://tensorflow.google.cn/api_docs/python/tf/math/top_k)
||ROI_ALIGN|Unmapped|[ANEURALNETWORKS_ROI_ALIGN](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a2848b39dd4bfba78f2438fda0d9397a4)
||HEATMAP_MAX_KEYPOINT|Unmapped|[ANEURALNETWORKS_HEATMAP_MAX_KEYPOINT](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a5ffccf92d127766a741225ff7ad6f743)
||AXIS_ALIGNED_BBOX_TRANSFORM|Unmapped|[ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0afd7603dd54060e6a52f5861674448528)
@ -143,8 +130,6 @@ Resize1d|RESIZE_1D|Mapped|[Onnx.resize 1D image](https://github.com/onnx/onnx/bl
||DEPTHWISE_CONV1D|Deprecated
||L2NORMALIZESCALE|Deprecated
||INTERP|Deprecated
||EXTRA_ENDING|InternalOnly
||SYNC_HOST|InternalOnly
||NOOP|Deprecated
||TENSORSTACKCONCAT|Deprecated|
||VARIABLE|InternalOnly|[tf.variable](https://tensorflow.google.cn/api_docs/python/tf/Variable)
@ -157,3 +142,18 @@ Resize1d|RESIZE_1D|Mapped|[Onnx.resize 1D image](https://github.com/onnx/onnx/bl
||QUANTIZED_16BIT_LSTM|InternalOnly
||LSTMUNIT|Deprecated|Driver LSTM Unit
||RELU_KERAS|Deprecated|[tf.keras.layers.ReLU](https://tensorflow.google.cn/api_docs/python/tf/keras/layers/ReLU)
||PRE_PROCESS_RGB|InternalOnly
||PRE_PROCESS_GRAY|InternalOnly
||PRE_PROCESS_YUV444|InternalOnly
||PRE_PROCESS_NV12|InternalOnly
||PRE_PROCESS_YUV420|InternalOnly
||PRE_PROCESS_BGRA|InternalOnly
||PRE_PROCESS_TENSOR|InternalOnly
||IMAGEPROCESS|Deprecated
||POST_PROCESS|InternalOnly
||SPATIAL_TRANSFORMER|InternalOnly|[SpatialTransformer](https://github.com/daerduoCarey/SpatialTransformerLayer)
||EXTRA_ENDING|InternalOnly
||SYNC_HOST|InternalOnly
||BATCHNORM_SINGLE|InternalOnly|[tf.nn.batch_normalization](https://tensorflow.google.cn/api_docs/python/tf/nn/batch_normalization)
||EXPAND_BROADCAST|Deprecated|[tf.tile](https://tensorflow.google.cn/api_docs/python/tf/tile)
||CONCATSHIFT|InternalOnly

View File

@ -65,6 +65,12 @@ LeakyRelu::LeakyRelu(Graph* graph, float alpha)
this->impl()->node()->nn_param.activation.leaky_ratio = alpha_;
}
Linear::Linear(Graph* graph, float a, float b)
: Operation(graph, VSI_NN_OP_LINEAR), a_(a), b_(b) {
this->impl()->node()->nn_param.linear.a = a_;
this->impl()->node()->nn_param.linear.b = b_;
}
} // namespace ops
} // namespace vx
} // namespace tim

View File

@ -0,0 +1,87 @@
/****************************************************************************
*
* Copyright (c) 2021 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/ops/activations.h"
#include "gtest/gtest.h"
TEST(Linear, shape_5_1_fp32) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType io_shape({5, 1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
io_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
io_shape, tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto output_tensor = graph->CreateTensor(output_spec);
std::vector<float> in_data = { -2.5, -0.1, 0, 0.55, std::numeric_limits<float>::infinity() };
std::vector<float> golden = {-0.5, 1.9, 2, 2.55, std::numeric_limits<float>::infinity() };
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4));
auto op = graph->CreateOperation<tim::vx::ops::Linear>(1, 2);
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output(5, 0);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Linear, shape_5_1_fp32_omit_b) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType io_shape({5, 1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
io_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
io_shape, tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto output_tensor = graph->CreateTensor(output_spec);
std::vector<float> in_data = { -2.5, -0.1, 0, 0.55, std::numeric_limits<float>::infinity() };
std::vector<float> golden = {-5.0, -0.2, 0, 1.1, std::numeric_limits<float>::infinity() };
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4));
auto op = graph->CreateOperation<tim::vx::ops::Linear>(2);
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output(5, 0);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}