add unit test for customer use case
Signed-off-by: Jing.Deng <Jing.Deng@verisilicon.com>
This commit is contained in:
parent
47119a569d
commit
3a0bc515a1
|
|
@ -1507,3 +1507,127 @@ TEST(Conv2d, shape_3_2_2_1_int8_QuantizedPerChannelTest) {
|
|||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
||||
TEST(Conv2d, shape_w_h_128_1_ksize_1_1_stride_2_int8_QuantizedPerChannel_customer_Test) {
|
||||
tim::vx::ShapeType input_shape({2, 2, 128, 1}); //whcn
|
||||
tim::vx::ShapeType weight_shape({1, 1, 128, 256}); //whio
|
||||
tim::vx::ShapeType bias_shape({weight_shape[3]});
|
||||
tim::vx::ShapeType output_shape(
|
||||
{1, 1, weight_shape[3], input_shape[3]}); //whcn
|
||||
|
||||
std::vector<float> scalesInput = {0.5};
|
||||
std::vector<int32_t> zeroPointsInput = {-1};
|
||||
std::vector<float> scalesWeight(weight_shape[3]);
|
||||
std::vector<int32_t> zeroPointsWeight(weight_shape[3]);
|
||||
for(unsigned int ii = 0; ii < weight_shape[3]; ii++){
|
||||
|
||||
|
||||
scalesWeight[ii]=1;
|
||||
zeroPointsWeight[ii]=0;
|
||||
}
|
||||
|
||||
int32_t sizeofweight = scalesWeight.size();
|
||||
std::vector<float> scalesBias(sizeofweight);
|
||||
std::vector<int32_t> zeroPointsBias(sizeofweight);
|
||||
for (int i = 0; i < sizeofweight; i++) {
|
||||
scalesBias[i] = scalesInput[0] * scalesWeight[i];
|
||||
zeroPointsBias[i] = 0;
|
||||
}
|
||||
|
||||
std::vector<float> scalesOutput = {0.5};
|
||||
std::vector<int32_t> zeroPointsOutput = {-1};
|
||||
|
||||
tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 2,
|
||||
scalesInput, zeroPointsInput);
|
||||
tim::vx::Quantization quantWeight(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL,
|
||||
3, scalesWeight, zeroPointsWeight);
|
||||
tim::vx::Quantization quantBias(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL, 0,
|
||||
scalesBias, zeroPointsBias);
|
||||
tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 2,
|
||||
scalesOutput, zeroPointsOutput);
|
||||
|
||||
uint32_t weightSize =
|
||||
weight_shape[0] * weight_shape[1] * weight_shape[2] * weight_shape[3];
|
||||
std::vector<float> weight_data_float(weightSize);
|
||||
for (uint32_t ii = 0; ii < weightSize; ii++) {
|
||||
weight_data_float[ii] = 1;
|
||||
}
|
||||
std::vector<int8_t> weight_data = Quantize<int8_t>(weight_data_float, 1, 0);
|
||||
|
||||
// bias_data
|
||||
std::vector<int32_t> bias_data(weight_shape[3]);
|
||||
for (uint32_t ii = 0; ii < weight_shape[3]; ii++) {
|
||||
bias_data[ii] = 2;
|
||||
}
|
||||
|
||||
for (int ww = 32; ww < 97; ww++) {
|
||||
for (int hh = 16; hh < 65; hh++) {
|
||||
input_shape[0] = ww;
|
||||
input_shape[1] = hh;
|
||||
output_shape[0] = (ww + 1) / 2;
|
||||
output_shape[1] = (hh + 1) / 2;
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::INT8, input_shape,
|
||||
tim::vx::TensorAttribute::INPUT,
|
||||
quantInput);
|
||||
tim::vx::TensorSpec weight_spec(tim::vx::DataType::INT8, weight_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT,
|
||||
quantWeight);
|
||||
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT,
|
||||
quantBias);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT8, output_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT,
|
||||
quantOutput);
|
||||
uint32_t inputSize =
|
||||
input_shape[0] * input_shape[1] * input_shape[2] * input_shape[3];
|
||||
std::vector<float> input_data_float(inputSize);
|
||||
for (uint32_t ii = 0; ii < inputSize; ii++) {
|
||||
input_data_float[ii] = 1;
|
||||
}
|
||||
std::vector<int8_t> input_data = Quantize<int8_t>(
|
||||
input_data_float, scalesInput[0], zeroPointsInput[0]);
|
||||
|
||||
uint32_t goldenSize =
|
||||
output_shape[0] * output_shape[1] * output_shape[2] * output_shape[3];
|
||||
std::vector<float> golden_float(goldenSize);
|
||||
for (uint32_t ii = 0; ii < goldenSize; ii++) {
|
||||
golden_float[ii] = 128 + 1;
|
||||
}
|
||||
std::vector<int8_t> golden =
|
||||
Quantize<int8_t>(golden_float, scalesOutput[0], zeroPointsOutput[0]);
|
||||
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
|
||||
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
auto padding = tim::vx::PadType::VALID;
|
||||
std::array<uint32_t, 2> stride({2, 2});
|
||||
std::array<uint32_t, 2> dilation({1, 1});
|
||||
|
||||
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
|
||||
padding, stride, dilation);
|
||||
(*conv2d)
|
||||
.BindInput(input_tensor)
|
||||
.BindInput(weight_tensor)
|
||||
.BindInput(bias_tensor)
|
||||
.BindOutput(output_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
|
||||
input_tensor->CopyDataToTensor(input_data.data());
|
||||
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
uint32_t output_size = 1;
|
||||
for (auto i : output_tensor->GetShape()) {
|
||||
output_size *= i;
|
||||
}
|
||||
std::vector<int8_t> output(output_size);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue