add unit test for conv2d (#681)
conv2d unit test: kernel 1x1, stride 2x2, dtype=fp16 Type: Unit Test Signed-off-by: Tang Jing <jing.tang@verisilicon.com>
This commit is contained in:
parent
b4b4f00f47
commit
3b74cf01fb
|
|
@ -1975,4 +1975,152 @@ TEST(Conv2d, kernel_bigger_than_input_SAME) {
|
|||
std::vector<float> output(output_size);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Conv2d, float16_kernel11_stride22) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
using namespace half_float::literal;
|
||||
|
||||
tim::vx::ShapeType input_shape({1, 1, 8, 1}); //whcn
|
||||
tim::vx::ShapeType weight_shape({1, 1, 8, 2}); //whio
|
||||
tim::vx::ShapeType bias_shape({weight_shape[3]});
|
||||
tim::vx::ShapeType output_shape(
|
||||
{1, 1, weight_shape[3], input_shape[3]}); //whcn
|
||||
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT16, input_shape,
|
||||
tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT16, weight_shape,
|
||||
tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT16, bias_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT16, output_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
// Input data nchw
|
||||
|
||||
std::vector<half_float::half> input_data = {
|
||||
// 0.0461, 0.4024, -1.0115, 0.2167, -0.6123, 0.5036, 0.2310, 0.6931
|
||||
0.0461_h, 0.4024_h, -1.0115_h, 0.2167_h, -0.6123_h, 0.5036_h, 0.2310_h, 0.6931_h
|
||||
};
|
||||
|
||||
// weight data oihw
|
||||
std::vector<half_float::half> weight_data = {
|
||||
-0.1530_h, 0.1108_h, -0.1847_h, 0.1636_h, 0.0716_h, -0.1383_h, -0.1735_h, 0.0915_h,
|
||||
0.3298_h, 0.1697_h, -0.0341_h, -0.0172_h, 0.2009_h, -0.2457_h, 0.1176_h, -0.1171_h
|
||||
};
|
||||
|
||||
// bias data
|
||||
std::vector<half_float::half> bias_data = {0.0_h, 0.0_h, 0.0_h};
|
||||
|
||||
std::vector<half_float::half> golden = {
|
||||
// first channel
|
||||
0.1697_h, -0.1865_h};
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
|
||||
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
auto padding = tim::vx::PadType::AUTO;
|
||||
std::array<uint32_t, 2> stride({2, 2});
|
||||
std::array<uint32_t, 2> dilation({1, 1});
|
||||
std::array<uint32_t, 2> ksize({1,1});
|
||||
std::array<uint32_t, 4> conv_pad = {0, 0, 0, 0};
|
||||
|
||||
auto conv2d =
|
||||
graph->CreateOperation<tim::vx::ops::Conv2d>(2, padding, ksize, stride, dilation, conv_pad);
|
||||
(*conv2d)
|
||||
.BindInput(input_tensor)
|
||||
.BindInput(weight_tensor)
|
||||
// .BindInput(bias_tensor)
|
||||
.BindOutput(output_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
|
||||
input_tensor->CopyDataToTensor(input_data.data());
|
||||
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
uint32_t output_size = 1;
|
||||
for (auto i : output_tensor->GetShape()) {
|
||||
output_size *= i;
|
||||
}
|
||||
std::vector<half_float::half> output(output_size);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_TRUE(ArraysMatch(golden, output, (half_float::half)0.1));
|
||||
}
|
||||
|
||||
TEST(Conv2d, float16_kernel11_stride22_2) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
using namespace half_float::literal;
|
||||
|
||||
tim::vx::ShapeType input_shape({4, 4, 1, 1}); //whcn
|
||||
tim::vx::ShapeType weight_shape({1, 1, 1, 1}); //whio
|
||||
tim::vx::ShapeType bias_shape({weight_shape[3]});
|
||||
tim::vx::ShapeType output_shape(
|
||||
{2, 2, weight_shape[3], input_shape[3]}); //whcn
|
||||
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT16, input_shape,
|
||||
tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT16, weight_shape,
|
||||
tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT16, bias_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT16, output_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
// Input data nchw
|
||||
|
||||
std::vector<half_float::half> input_data = {
|
||||
0.0461_h, 0.4024_h, -0.0115_h, 0.2167_h,
|
||||
-0.6123_h, 0.5036_h, 0.2310_h, 0.6931_h,
|
||||
1.0461_h, 1.4024_h, -1.0115_h, 1.2167_h,
|
||||
-1.6123_h, 1.5036_h, 1.2310_h, 1.6931_h
|
||||
};
|
||||
|
||||
// weight data oihw
|
||||
std::vector<half_float::half> weight_data = {-1.0_h};
|
||||
|
||||
// bias data
|
||||
std::vector<half_float::half> bias_data = {0.0_h};
|
||||
|
||||
std::vector<half_float::half> golden = {
|
||||
-0.0461_h, 0.0115_h,
|
||||
-1.0461_h, 1.0115_h,
|
||||
};
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
|
||||
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
auto padding = tim::vx::PadType::AUTO;
|
||||
std::array<uint32_t, 2> stride({2, 2});
|
||||
std::array<uint32_t, 2> dilation({1, 1});
|
||||
std::array<uint32_t, 2> ksize({1,1});
|
||||
std::array<uint32_t, 4> conv_pad = {0, 0, 0, 0};
|
||||
|
||||
auto conv2d =
|
||||
graph->CreateOperation<tim::vx::ops::Conv2d>(1, padding, ksize, stride, dilation, conv_pad);
|
||||
(*conv2d)
|
||||
.BindInput(input_tensor)
|
||||
.BindInput(weight_tensor)
|
||||
// .BindInput(bias_tensor)
|
||||
.BindOutput(output_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
|
||||
input_tensor->CopyDataToTensor(input_data.data());
|
||||
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
uint32_t output_size = 1;
|
||||
for (auto i : output_tensor->GetShape()) {
|
||||
output_size *= i;
|
||||
}
|
||||
std::vector<half_float::half> output(output_size);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_TRUE(ArraysMatch(golden, output, (half_float::half)0.1));
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue