add float unit_test for conv2d

Signed-off-by: jing.deng <Jing.Deng@verisilicon.com>
This commit is contained in:
Jing.Deng 2021-05-20 11:04:59 +08:00 committed by Kainan Cha
parent be0a566042
commit 3f6d697cb8
1 changed files with 942 additions and 0 deletions

View File

@ -0,0 +1,942 @@
#include "tim/vx/ops/conv2d.h"
#include "tim/transform/layout_inference.h"
#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "gtest/gtest.h"
TEST(Conv2d, shape_4_2_1_1_float32_PaddingTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({4, 2, 1, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 1, 3}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{4, 2, weight_shape[3], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {
1, 1, 1, 1, // row = 1
2, 2, 3, 2 // row = 2
};
// weight data oihw
std::vector<float> weight_data = {
1, 2, 3, 4, //first 2x2 filter
-1, 1, -1, 1, // second 2x2 filter
-1, -1, 1, 1, // third 2x2 filter
};
// bias data
std::vector<float> bias_data = {1, 2, 3};
// nchw
std::vector<float> golden = {// first channel
18, 22, 21, 8, 7, 9, 8, 3, 2, 3, 1, -1,
// second channel
2, 3, 1, 0, 5, 6, 6, 4, -1, -2, -2, 1};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::SAME;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Conv2d, shape_4_2_2_2_float32_PointwiseTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({4, 2, 2, 2}); //whcn
tim::vx::ShapeType weight_shape({1, 1, 2, 1}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{4, 2, weight_shape[3], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {
0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1,
0.5, 1, 1.5, 2, 0.5, 1, 1.5, 2, 0.5, 1, 1.5, 2, 0.5, 1, 1.5, 2
};
// weight data oihw
std::vector<float> weight_data = {
1, 2 // first filter
};
// bias data
std::vector<float> bias_data = {0};
// nchw
std::vector<float> golden = {
1.5, 1.5, 1.5, 1.5, 3, 3, 3, 3,
1.5, 3, 4.5, 6, 1.5, 3, 4.5, 6
};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::SAME;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Conv2d, shape_4_2_1_2_float32_SimpleTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({4, 2, 1, 2}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 1, 3}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{2, 1, weight_shape[3], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {
// First batch
1, 1, 1, 1, // row = 1
2, 2, 2, 2, // row = 2
// Second batch
1, 2, 3, 4, // row = 1
1, 2, 3, 4, // row = 2
};
// weight data oihw
std::vector<float> weight_data = {
1, 2, 3, 4, -1, 1, -1, 1, -1, -1, 1, 1
};
// bias data
std::vector<float> bias_data = {1, 2, 3};
// nchw
std::vector<float> golden = {18, 18, 2, 2, 5, 5, 17, 37, 4, 4, 3, 3};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
std::array<uint32_t, 2> stride({2, 2});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::SAME;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Conv2d, shape_4_2_2_2_float32_SimpleChannelsTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({4, 2, 2, 2}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 2, 3}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{2, 1, weight_shape[3], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data
std::vector<float> input_data = {
0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1,
0.5, 1, 1.5, 2, 0.5, 1, 1.5, 2, 0.5, 1, 1.5, 2, 0.5, 1, 1.5, 2};
// weight data
std::vector<float> weight_data = {1, 2, 3, 4, 1, 2, 3, 4, -1, 1, -1, 1,
-1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1};
// bias data
std::vector<float> bias_data = {1, 2, 3};
std::vector<float> golden = {18, 18, 2, 2, 5, 5, 17, 37, 4, 4, 3, 3};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
std::array<uint32_t, 2> stride({2, 2});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::SAME;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Conv2d, shape_6_3_1_1_float32_SimpleAnisotropicStridesTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({6, 3, 1, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 1, 1}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{2, 2, weight_shape[3], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {
3, 2, 1, -1, -2, -3, 4, 3, 2, -2, -3, -4, 5, 4, 3, -3, -4, -5
};
// weight data oihw
std::vector<float> weight_data = {
1, 2, //
3, 4, //
};
// bias data
std::vector<float> bias_data = {-1};
// nchw
std::vector<float> golden = {
30, -24, //
40, -34, //
};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
std::array<uint32_t, 2> stride({3, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Conv2d, shape_4_3_1_1_float32_HandCalculatedTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({4, 3, 1, 1}); //whcn
tim::vx::ShapeType weight_shape({3, 3, 1, 1}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{4, 3, weight_shape[3], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
};
// weight data oihw
std::vector<float> weight_data = {
1, 4, 7, 2, 5, 8, 3, 6, 9
};
// bias data
std::vector<float> bias_data = {0};
// nchw
std::vector<float> golden = {
105, 150, 183, 95, 235, 312,
357, 178, 187, 234, 261, 121
};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::SAME;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Conv2d, shape_4_3_1_1_float32_HandCalculatedConstFilterTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({4, 3, 1, 1}); //whcn
tim::vx::ShapeType weight_shape({3, 3, 1, 1}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{4, 3, weight_shape[3], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
};
// weight data oihw
std::vector<float> weight_data = {
1, 4, 7, 2, 5, 8, 3, 6, 9
};
// bias data
std::vector<float> bias_data = {0};
// nchw
std::vector<float> golden = {
105, 150, 183, 95, 235, 312,
357, 178, 187, 234, 261, 121
};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::SAME;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Conv2d, shape_4_3_1_1_float32_HandCalculatedBiasTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({4, 3, 1, 1}); //whcn
tim::vx::ShapeType weight_shape({3, 3, 1, 1}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{4, 3, weight_shape[3], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
};
// weight data oihw
std::vector<float> weight_data = {
1, 4, 7, 2, 5, 8, 3, 6, 9
};
// bias data
std::vector<float> bias_data = {10};
// nchw
std::vector<float> golden = {
115, 160, 193, 105, 245, 322, 367, 188, 197, 244, 271, 131
};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::SAME;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Conv2d, shape_4_3_1_1_float32_HandCalculatedValidTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({4, 3, 1, 1}); //whcn
tim::vx::ShapeType weight_shape({3, 3, 1, 1}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{2, 1, weight_shape[3], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
};
// weight data oihw
std::vector<float> weight_data = {
1, 4, 7, 2, 5, 8, 3, 6, 9
};
// bias data
std::vector<float> bias_data = {0};
// nchw
std::vector<float> golden = {
312, 357
};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Conv2d, shape_4_2_2_2_float32_DisabledPointwiseMultifilterTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({4, 2, 2, 2}); //whcn
tim::vx::ShapeType weight_shape({1, 1, 2, 2}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{4, 2, weight_shape[3], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {
0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1,
0.5, 1, 1.5, 2, 0.5, 1, 1.5, 2, 0.5, 1, 1.5, 2, 0.5, 1, 1.5, 2
};
// weight data oihw
std::vector<float> weight_data = {
1, 2, 2, 3
};
// bias data
std::vector<float> bias_data = {0};
// nchw
std::vector<float> golden = {
1.5, 1.5, 1.5, 1.5, 3, 3, 3, 3, 2.5, 2.5, 2.5, 2.5, 5, 5, 5, 5,
1.5, 3, 4.5, 6, 1.5, 3, 4.5, 6, 2.5, 5, 7.5, 10, 2.5, 5, 7.5, 10
};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Conv2d, shape_9_9_1_1_float32_SimpleDilationTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({9, 9, 1, 1}); //whcn
tim::vx::ShapeType weight_shape({3, 3, 1, 1}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{3, 3, weight_shape[3], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1,
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
// weight data oihw
std::vector<float> weight_data = {
1, 2, 3, 4, 5, 6, 7, 8, 9
};
// bias data
std::vector<float> bias_data = {0};
// nchw
std::vector<float> golden = {5, 5, 5, 5, 5, 5, 5, 5, 5};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({3, 3});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Conv2d, shape_4_2_1_2_float32_StrideTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({4, 2, 1, 2}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 1, 3}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{3, 1, weight_shape[3], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {
1, 1, 1, 1, 2, 2, 3, 2, 1, 2, 3, 4, 1, 2, 4, 4
};
// weight data oihw
std::vector<float> weight_data = {
1, 2, 3, 4, -1, 1, -1, 1, -1, -1, 1, 1
};
// bias data
std::vector<float> bias_data = {1, 2, 3};
// nchw
std::vector<float> golden = {
18, 22, 21, 2, 3, 1, 5, 6, 6, 17, 31, 40, 4, 5, 3, 3, 4, 4
};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Conv2d, shape_4_2_1_2_float32_InputAndFilterSameWidthHeightTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({4, 2, 1, 2}); //whcn
tim::vx::ShapeType weight_shape({4, 2, 1, 1}); //whio
tim::vx::ShapeType bias_shape({weight_shape[3]});
tim::vx::ShapeType output_shape(
{1, 1, weight_shape[3], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {
1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 3, 4, 1, 2, 3, 4
};
// weight data oihw
std::vector<float> weight_data = {
1, 2, 3, 4, -1, -1, 1, 1
};
// bias data
std::vector<float> bias_data = {0};
// nchw
std::vector<float> golden = {
10, 34
};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({0, 0});
auto padding = tim::vx::PadType::VALID;
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
weight_shape[3], padding, ksize, stride, dilation);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}