lstm layout inference & Added unidirectional lstm layout inference (#392)
Signed-off-by: Chen Xin <jack.chen@verisilicon.com> Co-authored-by: Chen Xin <jack.chen@verisilicon.com>
This commit is contained in:
parent
6d0c6b01b5
commit
44cc6f9f09
|
|
@ -47,7 +47,7 @@ namespace ops {
|
||||||
UnidirectionalSequenceLstm(
|
UnidirectionalSequenceLstm(
|
||||||
Graph* graph, float cell_clip, float proj_clip,
|
Graph* graph, float cell_clip, float proj_clip,
|
||||||
ActivationType act_type, float forget_bias, bool time_major = false,
|
ActivationType act_type, float forget_bias, bool time_major = false,
|
||||||
ActivationType recurrent_act_type = ActivationType::kNONE,
|
ActivationType recurrent_act_type = ActivationType::kSIGMOID,
|
||||||
bool return_sequences = false /*False: only return last state*/
|
bool return_sequences = false /*False: only return last state*/
|
||||||
);
|
);
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -61,6 +61,7 @@
|
||||||
#include "ops/conv3d_layout_inference.h"
|
#include "ops/conv3d_layout_inference.h"
|
||||||
#include "ops/default_layout_inference.h"
|
#include "ops/default_layout_inference.h"
|
||||||
#include "ops/transpose_layout_inference.h"
|
#include "ops/transpose_layout_inference.h"
|
||||||
|
#include "ops/unidirectional_lstm_layout_inference.h"
|
||||||
|
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <deque>
|
#include <deque>
|
||||||
|
|
@ -120,7 +121,7 @@ bool LayoutInferContext::IsVisited(const std::shared_ptr<vx::Operation>& op) con
|
||||||
bool LayoutInferContext::IsReadyForInfer(
|
bool LayoutInferContext::IsReadyForInfer(
|
||||||
const std::shared_ptr<vx::Operation>& op) const {
|
const std::shared_ptr<vx::Operation>& op) const {
|
||||||
for (const auto& tensor : op->impl()->InputsTensor()) {
|
for (const auto& tensor : op->impl()->InputsTensor()) {
|
||||||
if (!tensor->IsConstTensor() &&
|
if (!tensor->IsConstTensor() && tensor->GetId() != (uint32_t)-1 &&
|
||||||
(tensor_pv_.end() == tensor_pv_.find(tensor))) {
|
(tensor_pv_.end() == tensor_pv_.find(tensor))) {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
@ -261,6 +262,7 @@ std::vector<std::shared_ptr<vx::Tensor>> HandleLayoutInfer(
|
||||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_BATCH_NORM, BatchNorm);
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_BATCH_NORM, BatchNorm);
|
||||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_PERMUTE, Transpose);
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_PERMUTE, Transpose);
|
||||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_CONV3D, Conv3d);
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_CONV3D, Conv3d);
|
||||||
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_LSTM_OVXLIB, UnidirectionalLstm);
|
||||||
REGIST_LOGICAL_LAYOUT_INFERENCE(VSI_NN_OP_LOGICAL_OPS);
|
REGIST_LOGICAL_LAYOUT_INFERENCE(VSI_NN_OP_LOGICAL_OPS);
|
||||||
REGIST_REDUCE_LAYOUT_INFERENCE(VSI_NN_OP_REDUCE);
|
REGIST_REDUCE_LAYOUT_INFERENCE(VSI_NN_OP_REDUCE);
|
||||||
// use default layout inference
|
// use default layout inference
|
||||||
|
|
|
||||||
|
|
@ -78,19 +78,20 @@ std::shared_ptr<vx::Tensor> OpLayoutInfer::InsertPermute(
|
||||||
MapAxis(perm->AsStdVec(), out_spec.quantization_.ChannelDim()));
|
MapAxis(perm->AsStdVec(), out_spec.quantization_.ChannelDim()));
|
||||||
}
|
}
|
||||||
auto out_tensor = context_->infer_graph_->CreateTensor(out_spec);
|
auto out_tensor = context_->infer_graph_->CreateTensor(out_spec);
|
||||||
auto perm_op =
|
auto perm_op = context_->infer_graph_->CreateOperation<vx::ops::Transpose>(
|
||||||
context_->infer_graph_->CreateOperation<vx::ops::Transpose>(perm->AsStdVec());
|
perm->AsStdVec());
|
||||||
(*perm_op).BindInput(input).BindOutput(out_tensor);
|
(*perm_op).BindInput(input).BindOutput(out_tensor);
|
||||||
return out_tensor;
|
return out_tensor;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<std::shared_ptr<vx::Tensor>> OpLayoutInfer::CreateOutputsTensor(
|
std::vector<std::shared_ptr<vx::Tensor>> OpLayoutInfer::CreateOutputsTensor(
|
||||||
std::shared_ptr<IPermuteVector> required_pv) {
|
std::shared_ptr<IPermuteVector> required_pv) {
|
||||||
std::vector<std::shared_ptr<vx::Tensor>> outputs_tensor;
|
std::vector<std::shared_ptr<vx::Tensor>> outputs_tensor;
|
||||||
|
|
||||||
if (op_->impl()->OutputsTensor().size() > 1) {
|
if (op_->impl()->OutputsTensor().size() > 1) {
|
||||||
// todo(sven): potential bug here if node have multi-output and require layout inference
|
// todo(sven): potential bug here if node have multi-output and require layout inference
|
||||||
std::cout <<"warning at "<< __FUNCTION__ << ", #" << __LINE__ << std::endl;
|
std::cout << "warning at " << __FUNCTION__ << ", #" << __LINE__
|
||||||
|
<< std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t i = 0;
|
uint32_t i = 0;
|
||||||
|
|
@ -206,8 +207,8 @@ OpLayoutInfer::AlignPermuteVectorForMutilInputs() {
|
||||||
std::shared_ptr<vx::Tensor> perm_out;
|
std::shared_ptr<vx::Tensor> perm_out;
|
||||||
if (i_src->IsConstTensor()) {
|
if (i_src->IsConstTensor()) {
|
||||||
required_pv->IsAligned()
|
required_pv->IsAligned()
|
||||||
? perm_out = context_->infer_graph_->CreateTensor(i_src->GetSpec(),
|
? perm_out = context_->infer_graph_->CreateTensor(
|
||||||
i_src->GetDataRef())
|
i_src->GetSpec(), i_src->GetDataRef())
|
||||||
: perm_out = PermuteConstTensor(i_src, required_pv);
|
: perm_out = PermuteConstTensor(i_src, required_pv);
|
||||||
} else {
|
} else {
|
||||||
auto final_pv =
|
auto final_pv =
|
||||||
|
|
@ -265,25 +266,25 @@ OpLayoutInfer::AlignPermuteVectorForElementWise() {
|
||||||
return required_pv;
|
return required_pv;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
void OpLayoutInfer::ReverseInputsPermuteVector() {
|
void OpLayoutInfer::ReverseInputsPermuteVector() {
|
||||||
for (const auto& i_src : op_->impl()->InputsTensor()) {
|
for (const auto& i_src : op_->impl()->InputsTensor()) {
|
||||||
std::shared_ptr<vx::Tensor> perm_out;
|
std::shared_ptr<vx::Tensor> perm_out;
|
||||||
std::shared_ptr<IPermuteVector> input_pv;
|
std::shared_ptr<IPermuteVector> input_pv;
|
||||||
if (i_src->IsConstTensor()) {
|
if (i_src->GetId() != (uint32_t)-1) {
|
||||||
perm_out = context_->infer_graph_->CreateTensor(i_src->GetSpec(),
|
if (i_src->IsConstTensor()) {
|
||||||
i_src->GetDataRef());
|
perm_out = context_->infer_graph_->CreateTensor(i_src->GetSpec(),
|
||||||
input_pv = MakeShared(i_src->GetShape().size());
|
i_src->GetDataRef());
|
||||||
} else {
|
input_pv = MakeShared(i_src->GetShape().size());
|
||||||
perm_out = context_->GetMapedTensor(i_src);
|
} else {
|
||||||
input_pv = context_->GetPermuteVector(i_src);
|
perm_out = context_->GetMapedTensor(i_src);
|
||||||
if (!input_pv->IsAligned()) {
|
input_pv = context_->GetPermuteVector(i_src);
|
||||||
perm_out =
|
if (!input_pv->IsAligned()) {
|
||||||
InsertPermute(perm_out, input_pv->Reverse());
|
perm_out = InsertPermute(perm_out, input_pv->Reverse());
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
context_->UpdateTensorMap(i_src, perm_out);
|
||||||
|
context_->SetPermuteVector(i_src, MakeShared(input_pv->Rank()));
|
||||||
}
|
}
|
||||||
context_->UpdateTensorMap(i_src, perm_out);
|
|
||||||
context_->SetPermuteVector(i_src, MakeShared(input_pv->Rank()));
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,94 @@
|
||||||
|
/****************************************************************************
|
||||||
|
*
|
||||||
|
* Copyright (c) 2022 Vivante Corporation
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
* to deal in the Software without restriction, including without limitation
|
||||||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||||||
|
* Software is furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in
|
||||||
|
* all copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||||
|
* DEALINGS IN THE SOFTWARE.
|
||||||
|
*
|
||||||
|
*****************************************************************************/
|
||||||
|
#ifndef TIM_LAYOUT_INFER_UNIDIRECTIONAL_LSTM_LAYOUT_INFERENCE_H_
|
||||||
|
#define TIM_LAYOUT_INFER_UNIDIRECTIONAL_LSTM_LAYOUT_INFERENCE_H_
|
||||||
|
|
||||||
|
#include "tim/vx/ops/reshape.h"
|
||||||
|
#include "tim/vx/ops/nbg.h"
|
||||||
|
#include "tim/vx/ops/transpose.h"
|
||||||
|
#include "tim/vx/ops/batchnorm.h"
|
||||||
|
#include "tim/vx/ops/clip.h"
|
||||||
|
|
||||||
|
#include "ops/op_layout_inference.h"
|
||||||
|
#include "permute_vector.h"
|
||||||
|
#include "direct_map_op_impl.h"
|
||||||
|
|
||||||
|
namespace tim {
|
||||||
|
namespace transform {
|
||||||
|
|
||||||
|
class UnidirectionalLstmLayoutInfer : public OpLayoutInfer {
|
||||||
|
public:
|
||||||
|
UnidirectionalLstmLayoutInfer(
|
||||||
|
const std::shared_ptr<vx::Operation> op,
|
||||||
|
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
|
||||||
|
: OpLayoutInfer(op, context) {}
|
||||||
|
|
||||||
|
// reverse any applied permute on it's input tensor
|
||||||
|
void OnInputs(
|
||||||
|
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
|
||||||
|
ReverseInputsPermuteVector();
|
||||||
|
|
||||||
|
auto cloned_op = op_->Clone(context_->infer_graph_);
|
||||||
|
|
||||||
|
for (const auto& i_src : op_->impl()->InputsTensor()) {
|
||||||
|
std::shared_ptr<vx::Tensor> infer_tensor;
|
||||||
|
std::shared_ptr<IPermuteVector> required_pv;
|
||||||
|
if ((i_src->IsConstTensor() &&
|
||||||
|
!(i_src->GetSpec().attr_ & vx::TensorAttribute::INPUT))) {
|
||||||
|
infer_tensor = context_->infer_graph_->CreateTensor(
|
||||||
|
i_src->GetSpec(), i_src->GetDataRef());
|
||||||
|
context_->UpdateTensorMap(i_src, infer_tensor);
|
||||||
|
}
|
||||||
|
if (i_src->GetId() == (uint32_t)-1) {
|
||||||
|
infer_tensor = context_->infer_graph_->CreateTensorPlaceHolder();
|
||||||
|
context_->UpdateTensorMap(i_src, infer_tensor);
|
||||||
|
}
|
||||||
|
required_pv = MakeShared(i_src->GetShape().size());
|
||||||
|
context_->SetPermuteVector(i_src, required_pv);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
for (const auto& i_src : op_->impl()->InputsTensor()) {
|
||||||
|
(*cloned_op).BindInput(context_->GetMapedTensor(i_src));
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::shared_ptr<IPermuteVector>> required_pv_lst;
|
||||||
|
for (auto out_tensor : op_->impl()->OutputsTensor()) {
|
||||||
|
required_pv_lst.push_back(MakeShared(out_tensor->GetShape().size()));
|
||||||
|
}
|
||||||
|
auto out_infer = CreateOutputsTensor(required_pv_lst);
|
||||||
|
|
||||||
|
(*cloned_op).BindOutputs(out_infer);
|
||||||
|
uint32_t i = 0;
|
||||||
|
for (auto out_tensor : op_->impl()->OutputsTensor()) {
|
||||||
|
context_->SetPermuteVector(out_tensor, required_pv_lst[i++]);
|
||||||
|
next_tensors.push_back(out_tensor);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace transform
|
||||||
|
} // namespace tim
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
@ -144,7 +144,7 @@ TEST(LSTM_CELL, shape_in_2_cell_4_out_4_float32) {
|
||||||
|
|
||||||
auto lstm_cell_op = g->CreateOperation<tim::vx::ops::UnidirectionalSequenceLstm>(
|
auto lstm_cell_op = g->CreateOperation<tim::vx::ops::UnidirectionalSequenceLstm>(
|
||||||
0.0, 0.0, tim::vx::ops::UnidirectionalSequenceLstm::ActivationType::kTANH, 0.0, false,
|
0.0, 0.0, tim::vx::ops::UnidirectionalSequenceLstm::ActivationType::kTANH, 0.0, false,
|
||||||
tim::vx::ops::UnidirectionalSequenceLstm::kNONE, true);
|
tim::vx::ops::UnidirectionalSequenceLstm::kSIGMOID, true);
|
||||||
|
|
||||||
(*lstm_cell_op)
|
(*lstm_cell_op)
|
||||||
.BindInputs({
|
.BindInputs({
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue