diff --git a/samples/CMakeLists.txt b/samples/CMakeLists.txt index 375b7aa..cba6031 100644 --- a/samples/CMakeLists.txt +++ b/samples/CMakeLists.txt @@ -18,4 +18,5 @@ endif() if(TIM_VX_ENABLE_PLATFORM) add_subdirectory("lenet_multi_device") + add_subdirectory("multi_device") endif() diff --git a/samples/multi_device/CMakeLists.txt b/samples/multi_device/CMakeLists.txt new file mode 100644 index 0000000..a0af36e --- /dev/null +++ b/samples/multi_device/CMakeLists.txt @@ -0,0 +1,14 @@ +message("samples/multi_device") + +set(TARGET_NAME "multi_device") + +find_package(Threads REQUIRED) + +aux_source_directory(. ${TARGET_NAME}_SRCS) +add_executable(${TARGET_NAME} ${${TARGET_NAME}_SRCS}) + +target_link_libraries(${TARGET_NAME} PRIVATE tim-vx Threads::Threads) +target_include_directories(${TARGET_NAME} PRIVATE + ${CMAKE_CURRENT_SOURCE_DIR} + ${PROJECT_SOURCE_DIR}/include +) diff --git a/samples/multi_device/README b/samples/multi_device/README new file mode 100644 index 0000000..557e20d --- /dev/null +++ b/samples/multi_device/README @@ -0,0 +1,16 @@ +## brief +The multi_device demo uses some acuity exported tim-vx networks, and running on 4 devices of NPU using platform api. + +## environment + export VSIMULATOR_CONFIG=VIP9400O_PID0XD9 + export VIV_MGPU_AFFINITY="1:0" + export VIV_OVX_USE_MULTI_DEVICE="1:1" + export TIM_VX_ROOT="${workspaceFolder}/tim-vx" + +## build +cd build +cmake .. -DCMAKE_BUILD_TYPE=Debug -DTIM_VX_BUILD_EXAMPLES=ON -DTIM_VX_ENABLE_PLATFORM=ON + +## run +cd build +./samples/multi_device/multi_device diff --git a/samples/multi_device/lenet/lenet.export.data b/samples/multi_device/lenet/lenet.export.data new file mode 100644 index 0000000..04278c8 Binary files /dev/null and b/samples/multi_device/lenet/lenet.export.data differ diff --git a/samples/multi_device/lenet/lenet_input_1_1_28_28_uint8.bin b/samples/multi_device/lenet/lenet_input_1_1_28_28_uint8.bin new file mode 100644 index 0000000..4f397eb Binary files /dev/null and b/samples/multi_device/lenet/lenet_input_1_1_28_28_uint8.bin differ diff --git a/samples/multi_device/mobilenet/mobilenet.export.data b/samples/multi_device/mobilenet/mobilenet.export.data new file mode 100644 index 0000000..e337dbc Binary files /dev/null and b/samples/multi_device/mobilenet/mobilenet.export.data differ diff --git a/samples/multi_device/mobilenet/mobilenet_1_224_224_3_uint8.bin b/samples/multi_device/mobilenet/mobilenet_1_224_224_3_uint8.bin new file mode 100644 index 0000000..b726a44 --- /dev/null +++ b/samples/multi_device/mobilenet/mobilenet_1_224_224_3_uint8.bin @@ -0,0 +1,550 @@ +VaY2=5š§ 9F?6E@)83Žžˆ˜—k{{'77Ÿ¡p‚„cru8GJix{‡•˜oy{HRT`kqƒ–`otKZ_IX[“—‚—œ†¡¨}š¨‚£²| ° ¯~ž«}ª€ ¯ ± ±~Ÿ°~Ÿ®~Ÿ®~Ÿ® ¯¡­€¢®£¯£¯¡­~ ¬~Ÿ®~Ÿ®€¡°€¡° ¯~Ÿ®~Ÿ®~Ÿ®Ÿ®Ÿ®€ ¯‚¢±‚¢±Ÿ®Ÿ®€ ¯‚Ÿ¯ž®€ ¯€ ¯€ ¯Ÿ®Ÿ®Ÿ®€ ¯¡°¡°¡°€ ¯¡°„¤³ƒ£²€ ¯~ž­}Ÿ«}Ÿ«~ ¬¡­¡­€¢®¡®‚¢¯‚¢¯¡®¡®‚¢¯‚¢¯‚¢¯‚Ÿ­ž¬ƒŸ­‚ž¬ƒŸ­„ ®ƒž¯‚®ƒž¯… ±œ­€›¬œ­ƒž¯‚®‚®ƒž¯‚®‚Ÿ­‚Ÿ­Ÿ¬Ÿ¬€ ­€ ­~ ¬~ ¬~ ¬~ ¬Ÿ¬Ÿ¬€ ­¡®ƒ ®ž¬~ž«Ÿ¬€ ­€ ­Ÿ¬~ž«€«€«€«€«ž¬ž¬‚Ÿ­‚Ÿ­ƒ ®ƒ ®œ¬€­‚Ÿ¯„¡±„¡±„¡±ƒ °ƒ °ƒ °ƒ °ƒ ®‚Ÿ­‚Ÿ­‚Ÿ­‚Ÿ­ž¬‚Ÿ­‚Ÿ­‚Ÿ­ž¬ž¬ž¬Ÿ¬€ ­¡®¡®€ ­€ ­€ ­€ ­Ÿ¬~ž«œªœª€«ž¬ƒ ®ƒ ®‚Ÿ­€«ž¬‚Ÿ­‚Ÿ­ƒ ®ƒ ®‚Ÿ­ž¬€«ŸªŸªŸªŸªŸª€ž©€ž©¨€ž©€ž©Ÿª€ž©¨~œ§~œ§¨}š¨|™§}š¨~›©~›©|™§{˜¦|™§{˜¦z—¥z—¥y–¤x•£w”¢w”¢v“¡CNH5@:” œFRNTc` /,„’’GWVN^]&&q`pp[kk-==fvvr€€S]^6@ANY[w…ˆO^a=LO=MMr„†yŽ“Œ§®€ž©z›ªzž®~Ÿ®~ž«‡¤²€ ¯~Ÿ°~Ÿ°~Ÿ° ¯ ¯€¡°€¡°~ ¬¡­£¯€¢®¡­¡­ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯€ ¯€ ¯¡°‚¢±‚¢±¡°¡°‚¢±„¡±„¡±¡°¡°¡°¡°¡°€ ¯€ ¯€ ¯¡°‚¢±¡°€ ¯‚¢±‚¢±€ ¯¡°¡­¡­¡­€¢®€¢®£¯‚¢¯‚¢¯‚¢¯¡®¡®¡®‚¢¯‚¢¯‚Ÿ­ž¬ƒŸ­‚ž¬ƒŸ­ƒŸ­ƒž¯‚®ƒž¯„Ÿ°ƒž¯œ­ƒž¯… ±ƒž¯ƒž¯„Ÿ°‚Ÿ¯ž¬ž¬Ÿ¬Ÿ¬Ÿ¬Ÿ¬¡­¡­¡­¡­€ ­Ÿ¬€ ­‚¢¯ƒ ®‚Ÿ­~ž«€ ­¡®¡®¡®€ ­‚Ÿ­ƒ ®‚Ÿ­‚Ÿ­‚Ÿ­‚Ÿ­‚Ÿ­‚Ÿ­‚Ÿ­‚Ÿ­€­ž®‚Ÿ¯ƒ °ƒ °‚Ÿ¯‚Ÿ¯ž®€­ž®ž¬€«€«ž¬ž¬ž¬‚Ÿ¯‚Ÿ¯ž®ž®€­€­Ÿ®Ÿ®¡°¡°€ ¯€ ¯€ ¯€ ¯Ÿ®Ÿ®ž¬ž¬ž¬ž¬ž¬‚Ÿ­‚Ÿ­‚Ÿ­ƒ ®ƒ ®ƒ ®ƒ ®‚Ÿ­ž¬€«œª¨¨€ž©€ž©€ž©€ž©€ž©€ž©ŸªŸª‚ «Ÿª€ž©¨¨€ž©~›©}š¨~›©~›©~›©|™§|™§|™§{˜¦{˜¦z—¥z—¥y–¤x•£w”¢w”¢?IH('Œ˜˜Zffo{{ †””`nnXff%33sftt]li/>;etot€|_jb@KCP\X{Ї_olQa^AQN}Ž€•–†¢¦Ÿª ¯~¢²}ž­‚Ÿ­ƒ ®€ ¯ ± ¯ ¯€¡°€¡°£¯£¯¡­€¢®€¢®€¢®¡­¡­ ¯€¡° ¯ ¯€¡°€¡°¡°¡°¡°€ ¯Ÿ®Ÿ®€ ¯¡°€ ¯Ÿ®ž®‚Ÿ¯¡°¡°¡°¡°‚¢±‚¢±¡°Ÿ®¡°‚¢±¡°Ÿ®€ ¯€ ¯€ ¯ƒ£²£¯£¯£¯£¯‚¢¯‚¢¯‚¢¯‚¢¯¡®¡®€ ­¡®¡®¡®‚Ÿ­ž¬‚Ÿ­ž¬‚Ÿ­‚Ÿ­‚Ÿ­ž¬‚Ÿ­ƒ ®ƒ ®ž¬ƒ ®…¢°„¡¯„¡¯„¡¯„¡¯ž¬€ ­¡®€ ­€ ­€ ­€¢®£¯€¢®€¢®¡®€ ­¡®ƒ£°‚¢¯¡®Ÿ¬¡®‚¢¯‚¢¯ƒ ®ƒ ®ƒ ®„¡¯„¡¯„¡¯„¡¯ƒ ®ƒ ®ƒ ®ƒ ®ƒ ®ž®‚Ÿ¯ƒ °ƒ °ƒ °ƒ °‚Ÿ¯‚Ÿ¯€­ž®ž¬ž¬ž¬‚Ÿ­‚Ÿ­‚Ÿ¯‚Ÿ±‚Ÿ±‚Ÿ±‚Ÿ±ž°ž°ž°‚Ÿ± ² ²€Ÿ±€Ÿ±€Ÿ±€Ÿ±€Ÿ±ž°ƒ °‚Ÿ­ž¬€«€«ž¬‚Ÿ­ƒ ®‚Ÿ­‚Ÿ­‚Ÿ­ƒ ®ƒ ®‚Ÿ­ž¬ž¬ŸªŸªŸªŸªŸªŸª€ž©€ž©ŸªŸª‚ «Ÿª€ž©¨€ž©€ž©€«œªœªœªœª}š¨|™§}š¨|™§|™§{˜¦z—¥z—¥y–¤x•£x•£lvw-78 «­Vachsu&13Œ˜˜drrixu2A>v…‚n}x^mh@OHang|‰€amcAKL7CC‚ŽŽ>JJKWU.:8v‚~amiJVRGDbkhªµ±~‰…COMN\\’¢¢ZllN``JZYxŠŠ‹ž¢‡ ¥}›¥†¦³‚£²‚¢¯ƒ¡¬Ÿª‚Ÿ­¡®¡®¡®¡®¡®€ «€ «‚¢­€ «Ÿ¬Ÿ¬€ ­¡®‚¢¯‚¢¯¡®¡®¡®¡®¡®¡®¡®¡®Ÿ¬€ ­¡®€ ­‚Ÿ­‚Ÿ­ƒ ®‚Ÿ­‚¢¯‚¢¯‚¢¯¡®¡®¡®¡®¡®Ÿ¬€ ­Ÿ¬Ÿ¬‚¢¯‚¢¯€ ­€ ­¡®¡®¡®¡®¡®¡®¡®¡®€ ­€ ­€ ­€ ­‚Ÿ­‚Ÿ­‚Ÿ­‚Ÿ­ƒ ®ƒ ®„¡¯„¡¯ƒ ®‚Ÿ­ƒ¡¬„¢­„¢­‚ «ƒ¡¬…£®„¢¬ƒ¡«„¢¬ƒ¡¬ƒ ®ƒ ®€ ­€ ­¡®¡®¡®¡®€ ­¡®€ ­€ ­€ ­‚¢¯ƒ ®‚Ÿ­ž¬‚Ÿ­ƒ ®ƒ ®ƒ ®ƒ ®ƒ ®„¡¯ƒ ®ƒ ®ƒ ®ƒ ®ƒ ®„¡¯„¡¯„¡¯„¢­„¢­„¡¯„¡¯„¡¯ƒ ®‚Ÿ­‚Ÿ­ž¬‚Ÿ­‚Ÿ¯‚Ÿ¯‚Ÿ¯„¡±„¡±„¡¯„ ¬„ «ƒ¡¬ƒ¡«ƒ¡¬‚ ª‚ «‚ ª„¢­ƒ¡«€ « ©Ÿª¢«¡¬‚¢­‚¢¯¡®¡®¡®‚¢¯‚¢¯¡®¡®€ ­€ ­Ÿ¬Ÿ¬€ ­¡®¡®‚¢¯ƒ ®ƒ ®ƒ ®‚Ÿ­‚Ÿ­ž¬€«€«œª€«ž¬€«€«€«€«ž¬‚Ÿ­‚Ÿ­ž¬œª~›©œªœªœªœªœª~›©}š¨}š¨|™§{˜¦{˜¦^ic1<6‹–LWQnysYd^v}U`\S]\ISRhqp~‡†[dcJSR\edºÄÉ“”ESSM[\‰˜›i{}^pr@PP…—™…˜œ‘¨®¨Ÿ¬~Ÿ®¡®€ž©ˆ¤¯ŸªŸ¬€ ­¡®¡®¡®¡¬¡¬ƒ£®¡¬€ ­Ÿ¬€ ­¡®¡®¡®‚¢¯‚¢¯‚¢¯‚¢¯‚¢¯¡®€ ­€ ­‚¢¯„¤±„¤±¡®ƒ ®„¡¯„¡¯ƒ ®¡®¡®¡®‚¢¯‚¢¯‚¢¯¡®¡®¡®‚¢¯¡®¡®ƒ£°ƒ£°‚¢¯‚¢¯¡®¡®¡®‚¢¯‚¢¯‚¢¯¡®¡®‚¢¯‚¢¯‚¢¯‚¢¯„¡¯„¡¯„¡¯„¡¯„¡¯ƒ ®„¡¯„¡¯ƒ ®‚Ÿ­ƒ¡¬…£®ƒ¡¬Ÿªƒ¡¬…£®„¢¬„¢¬†¤®…£­ƒ¡¬ƒ ®‚¢¯‚¢¯¡®¡®‚¢¯ƒ£°¡®¡®¡®€ ­¡®‚¢¯„¡¯‚Ÿ­‚Ÿ­‚Ÿ­ƒ ®ƒ ®‚Ÿ­‚Ÿ­‚Ÿ­ƒ ®œª€«€«ž¬‚Ÿ­‚Ÿ­ƒ ®ƒ ®‚ «‚ «ƒ ®ƒ ®ƒ ®ƒ ®‚Ÿ­‚Ÿ­‚Ÿ­ƒ ®ƒ °‚Ÿ¯‚Ÿ¯ƒ °„¡±ƒ ®ƒŸ­ƒŸ«ƒ¡¬ƒ¡¬‚ «ŸªŸªŸª„¢­ƒ¡¬€ «ŸªŸª¡¬‚¢­‚¢­‚¢¯¡®¡®¡®‚¢¯‚¢¯‚¢¯¡®¡®¡®€ ­€ ­Ÿ¬€ ­€ ­¡®€«€«€«€«ž¬€«€«€«€«€«ž¬ž¬€«€«ž¬ž¬ž¬‚Ÿ­ž¬~›©~›©œªœªœª€«œªœª~›©}š¨|™§|™§{˜¦Œ—‘;F@alf4?9z…Va[t}xœ¥ ‘š—?HEYbafonƒŒ‹lutENMŒ–•akjIWW>LMƒ’•apsSbe:HI}Œt‡‹‰ ¦„ «~ž©¡­„¤¯…£­ƒŸªƒ¡¬ƒ ®ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬„¢­‚ «ŸªŸª‚Ÿ­ƒ ®ƒ ®‚Ÿ­ƒ ®ƒ ®„¡¯„¡¯„¡¯„¡¯ƒ ®‚Ÿ­‚Ÿ­„¡¯†£±…¢°„¡¯ƒ ®¡®¡®‚ «„¢­„¢­ƒ¡¬ƒ¡¬„¢­„¢­ƒ¡¬„¢­ƒ¡¬‚ «ƒ¡¬„¢­„¢­ƒ¡¬‚ «ƒ ®ƒ ®ƒ ®ƒ ®ƒ ®ƒ ®‚Ÿ­‚Ÿ­ƒ ®ƒ ®ƒ ®„¡¯„¡¯„¡¯‚¢¯‚¢¯„¡¯„¡¯„¡¯ƒ ®ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬€ž©Ÿªƒ¡«†¤®…£­ƒ¡«ƒ¡«…£­ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ž¬‚Ÿ­‚Ÿ­„¡¯‚Ÿ­€«„¡¯‚Ÿ­ƒ ®„¡¯„¡¯„¡¯„¡¯‚Ÿ­ž¬ƒ ®…¡­„ ¬…¡­†¢®„ ¬…¡­…¡¯ƒŸ­ƒŸ­„ ®‚ž¬„ ®…¡¯„ ®†¡²ƒž¯„Ÿ°ƒž¯ƒž¯‚®… ±… ±€­‚Ÿ¯„¡±„¡±ƒ °ž®ƒ °ƒ °€ ¯‚¢±„¡¯„¡¯„¡¯ƒ ®ƒ ®ƒ ®ƒ ®ƒ ®‚Ÿ­ƒ ®‚Ÿ­‚Ÿ­‚Ÿ­ƒ ®ƒ ®ƒ ®‚ «‚ «ŸªŸª‚ «‚ «‚ «‚ «Ÿª‚ «‚ «ƒ¡¬ƒ¡¬‚ «‚ «ŸªŸª€ž©€ž©€ž©€ž©€ž©¨~œ§~œ§~œ§~œ§~œ§~œ§}›¦}›¦}›¦\gc(3/itp.95GRN%y‚}²»¶²»¸ENKNWT!*'R[XajgMVS‰”Yd`>JF7{Š…\jjVdd9EAl{vk{z¢¦ˆ ¬ƒŸ­†¢­ƒŸª„œ¨…©…Ÿ¬„ ¬…¡­…¡­…¡­…¡­„ ¬„ ¬„ ¬„ ¬„ ¬„ ¬„ ¬„ ¬„ ¬„ ¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬„¢­ŸªŸªƒ¡¬…£®„¢­„¢­„¢­„¢­„¢­…£®„¢­…£®…£®…£®ƒ¡¬ƒ¡¬„¢­„¢­…£®…£®…£®…£®„¢­„¢­…£®…£®…£®…£®„¢­„¢­„¢­†¤¯…£®„¢­„¢­„¢­„¢­„¢­ƒ¡¬…¡­„ ¬ƒŸ«ƒŸ«„ ¬„ ¬„ ¬„ ¬…¡­…¡­…¡­†¢®†¢®†¢®‡£¯‡£¯„ ¬„ ¬„ ¬…¡­†¢®†¢®…¡­…¡­†¢®…¡­„ ¬ƒŸ«ƒŸ«ƒŸ«„ ¬„ ¬ƒ¡¬ƒ¡«‚ «‚ ª‚ «ƒ¡«ƒ¡¬ƒ¡«…£®„¢¬„¢­ƒ¡«ƒ¡¬ƒ¡«„¢­„¢¬ƒ£®‚£¬ƒ¡¬„ «…Ÿ¬… «‡Ÿ«†¡¬†¡¬†¢­…¡¬„¢¬ƒ¡«„¢¬„¢¬†¢­€˜¢ƒ›¥}”¢™¦~š¥€œ§œ¤¨›¬ƒ®™ªƒŸ«„Ÿª¨¨©„Ÿªƒž©ƒž©ƒž©ƒž©ƒž©ƒŸªƒŸªƒŸªƒŸª‚žª‚žª‚œ©‚œ©‚œ«©‚žª‚žªƒŸªƒŸªƒŸª‚ž©‚ž©¨ƒŸª„ «†¢­…¡¬ƒŸª‚ž©ƒŸ«„ ¬„ «›¦‚ž©€œ§„ «‚ž©ƒ¡¬¨‚žª‚žª‚žª©€œ¨›¨›¨‚œ©euj!gtjvƒzang4A:MZSs‚}IXU>NM=MJŽ‹Q]]S__0:;”žfslXh^9I?s„|o~bpp5A=hwpt„¢¦…©‚œ«…¡¬… ©†žª†«…Ÿ¬„ ¬…¡­…¡­…¡­…¡­„ ¬„ ¬ƒŸ«ƒŸ«ƒŸ«ƒŸ«ƒŸ«„ ¬ƒŸ«ƒŸ«‚ «‚ «‚ «ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬„¢­„¢­‚ «‚ «ƒ¡¬„¢­„¢­„¢­„¢­„¢­…£®…£®„¢­…£®…£®„¢­ƒ¡¬‚ «‚ «ƒ¡¬ƒ¡¬ƒ¡¬ƒ¡¬„¢­ƒ¡¬„¢­„¢­…£®…£®…£®„¢­„¢­„¢­…£®„¢­„¢­ƒ¡¬ƒ¡¬„¢­„¢­„¢­†¢®…¡­„ ¬„ ¬…¡­…¡­…¡­„ ¬…¡­…¡­…¡­…¡­…¡­†¢®†¢®†¢®…¡­…¡­…¡­…¡­…¡­…¡­…¡­†¢®†¢®†¢®…¡­…¡­…¡­…¡­…¡­…¡­„¢¬ƒ¡«ƒ¡«ƒ¡«ƒ¡«ƒ¡«„¢¬„¢¬„¢¬„¢¬„¢¬„¢¬ƒ¡«ƒ¡«ƒ¡«„¢¬ƒ¤­‚£¬„¢¬„ «… «ˆ ¬ˆ ¬ˆ ¬ˆ£®‡¢­†¢­‚ ª‚ ªˆ¤¯¨Š¥®ƒš ˆœ£‡¨• „¤ˆ¡¦ˆ¡¦‡ §Ž¤²‡œ­ˆŸ­†žª… ©ƒž§…¡¬†¢­„Ÿª†žª„Ÿª„Ÿª„Ÿª… «„ «„ «„ «„ «„ ¬„ ¬„ž­„ž­„ž­„ž«„ ¬„ ¬„ «„ «„ «„ «„ «„ «ƒŸªƒŸª„ «„ «„ «ƒŸª‚žª‚žªƒŸª€œ§ƒŸª¨ƒŸª€œ§‚ «€ž©©‚žª‚žª©›¨›¨ƒš¨ƒš¨x„€#/+kwsƒ‹blkDPNGSQ‹š—_mmVdd2A>š©¤‚ŽŒ}‰…HSOŽ™•“Ÿ›‹KZUwˆ‚‘Ÿ }‹ŒVb`fup~Ž£§…©ƒªƒŸª„Ÿ¨‡Ÿ«…©…Ÿ¬„ ¬„ ¬…¡­…¡­„ ¬„ ¬„ ¬„ ¬ƒŸ«ƒŸ«ƒŸ«„ ¬„ ¬ƒŸ«ƒŸ«‚ «‚ «‚ «ƒ¡¬ƒ¡¬„¢­„¢­„¢­ƒ¡¬ƒ¡¬ƒ¡¬‚ «‚ «„¢­„¢­„¢­…£®…£®…£®„¢­„¢­…£®„¢­‚ «ƒ¡¬‚ «‚ «‚ «‚ «ƒ¡¬ƒ¡¬„¢­„¢­„¢­…£®…£®„¢­„¢­„¢­„¢­…£®„¢­„¢­ƒ¡¬‚ «ƒ¡¬ƒ¡¬„¢­†¢®…¡­„ ¬„ ¬„ ¬…¡­„ ¬„ ¬ƒŸ«ƒŸ«„ ¬„ ¬„ ¬„ ¬…¡­…¡­…¡­†¢®†¢®†¢®…¡­„ ¬…¡­†¢®†¢®†¢®†¢®†¢®†¢®…¡­…¡­„ ¬…¡¬„ «„ «„ «„ «„ «…¡¬…¡¬…¡¬…¡¬…¡¬…¡¬…¡¬…¡¬„ «ƒ¡«„¢¬„¢¬„¢¬„ «†¡¬ˆ ¬ˆ ¬ˆ ¬ˆ£®‡¢­„ «†¢­‚ž©‡¢­‰¤­„¤‹ž¤‘¢©…–žˆ™¡€’–ˆšœŠ™œ†•š‰š¢Š›¥¢®‡¨ˆ ªƒ ¨…£®~œ§ƒŸª„Ÿª„Ÿª„ŸªƒŸª„ «„ «„ «„ «„ «„ «„ «„ ¬„ ¬…Ÿ¬…Ÿ¬…¡­„ «„ «ƒŸªƒ ¨ƒ ¨„¡©„¡©„¡©ƒ ¨‚ž©ƒŸª„ «„ «‚žª©‚ž©‚ž©…¡¬ƒŸªŸ©§‚ ª€ž¨€ž©€ž©©©‚œ©‚œ©›¨›¨]ig&20frp“ŸŸOYZKD8C?ozvt~v_ia)21“œ›enijuo.89Š––‰ˆfqm2:3RTO}ƒƒ¦­‘›¥‹™¤Šœ¦‰ŸªŠ¥°Œ¤°‡¢­ƒž§„Ÿ¨‡¢«†¡ª… ©…¢ª‚Ÿ¥ƒ ¦ƒ ¦‚Ÿ¥ˆ¥«‡¤ª‡¢©… §†¡¨‚¤‚Ÿ¥„¡§ž¤…¢¨„¡©„¡©‚ž©¨…¡¬‰¥°‡£¯ƒŸ«…¡¬¨„ «‹§²{—¢ƒž©‹¦±}˜£… «‡¢­ˆ ¬ƒž©ˆ£®‚¨𥇢­Œˆ^hg6>@»ÄÃipi]d]7==©²±Yc[kwm?JF”žœ§ŸƒŽ†IROˆƒ®¸¯˜]hdt€|ÁÌÆš¥ŸW`]Ycb›Šœ ‰ ¨… «‚®„¡±‰¤¯†¡ª„ «„ «„ «„ «„ «„ «„ «…¡¬…¡¬„ «…¡¬…¡¬„ «„ «†¢­„ «„ «…¡¬…¡¬…¡¬…¡¬†¢­…¡¬…¡¬…¡¬…¡¬„ «ƒŸª†¢­†¢­„ «…¡¬„ ¬„ ¬„ ¬„ ¬…¡­…¡­…¡­„ ¬ƒŸ«…¡­†¢®…¡­…¡­…¡­†¢®…¡­†¢­…¡¬…¡¬…¡¬…¡¬…¡¬…¡¬…¡¬†¢­…¡¬…¡¬…¡¬…¡¬„ «„ «…¡¬‡¢­‡¢­… «… «… «‡¢­‡¢­‡¢­†¡¬†¡¬†¡¬†¡¬†¡¬†¡¬†¡¬†¡¬…¡¬…¡¬…¡¬…¡¬…¡¬…¡¬„ «„ «†¢­…¡¬†¢­…¡¬†¢­…¡¬‚ž©†¢­†£«‡¤ªˆ¥­†£«…¢ª€¥‡¤¬‚Ÿ§ƒŸªˆ¤¯„ «†¢­…¡­›§ƒŸ«… «ˆ¡¨…ž¥Š¢¬‚¨…¡­ƒ¡¬‚ «…£®„ «𡉡¥“§¨‹——NWTˆ‡ÿÿöýüèù÷ÞøøÞöøàóôâµ·©QSFceXrtfko`hnbnumu~{nxytœ¡¡¨ˆ ªŠ «‰¡«†ž¨†ž¨‡Ÿ©†¡ª†¡ª‰¤­‡¢«†¡ª…¢ªƒ ¨„¢ª†£«ˆ£¬œ¥ˆ£¬‡¢«‚¦‡¢«†¡ª†¡ªˆ£¬‡¢«… «‚¨‚¨… «„ž«›¨… «„Ÿªˆ£®†¡¬w’™¥‹£¯†žª…©¥±ƒ™¤Š¢¬ˆ ªŠ¢¬Š¢¬ƒ›¥‹Šgqr08;°¸º]c_`fb27:«±±cmdishBMI›¦¢¥±§œ’DNF‚Œ„¯¹°Š•Wc_com™¤žs~xOXU^hgšœ‰˜Šž§„Ÿª… ±†¡²ˆ£®‡¢«… «„ «„ «„ «„ «„ «„ «…¡¬…¡¬„ «…¡¬…¡¬„ «…¡¬†¢­…¡¬„ «„ «…¡¬…¡¬…¡¬…¡¬…¡¬…¡¬…¡¬†¢­„ «„ «†¢­…¡¬„ «…¡¬„ ¬„ ¬„ ¬„ ¬…¡­…¡­†¢®†¢®„ ¬†¢®†¢®…¡­„ ¬„ ¬„ ¬„ ¬…¡¬…¡¬…¡¬…¡¬…¡¬…¡¬…¡¬…¡¬…¡¬„ «…¡¬†¢­‡£®†¢­†¢­†¢­†¡¬†¡¬… «… «… «†¡¬†¡¬†¡¬†¡¬†¡¬†¡¬†¡¬†¡¬†¡¬… «… «…¡¬…¡¬„ «…¡¬†¢­†¢­†¢­…¡¬†¢­„ «ƒŸª„ «ˆ¤¯†¢­‚ž©ƒ ¨‚Ÿ¥„¡§… ©‚Ÿ§‡¢«…¢ªˆ£¬‡¤¬„Ÿª…¡¬†¡¬†¢­„ž«‚žª† ­œ§‹¢ª…œ¢Œ£«†ž¨‰¤¯‚žª€œ¨‡£®š£Š£ª‰ž¡”¦¦jtsUZTÖ×ÏûüîùùáùøÜûûãþÿêðñß~pOQCaeV‰Œ{|€ovzlpvjovoclg`jižŸ‘¤ª„›£„š¥†œ§ˆž©‹£­‰Ÿª†ž¨ƒ›¥†¡ª†¡ª‡¢«‡¤¬…¢ªƒ¡©…¢ª…¢ª… ©ƒž§‡¢«ƒž§ƒž§†¡ªƒž§‚¦‚¦„Ÿª†¡¬… «‚¨›¨‚œ©‡¢­‰¤¯ˆ£®€˜¤y‘Œ¤°‚š¦‰Ÿ¬ˆž«…›¨Ž¤¯ƒ™¤„š¥‡Ÿ©‹¡¬‚š¤™šoyz-58³»½ntpchd7A®¶¸ejdZ_Y49<`ehNUM‹•Š,54Œ–•˜¡œˆ’ŠIOKzƒ€¨±¬‡’ŽLWY[fh”žeplPVVV^`‹”™‰˜ŸŽ¢©ƒž§‰£²…¡¯†ž¨Š£ª… ©… ©… ©… ©… ©… ©… ©†¡ª‡¢«… ©†¡ª‡¢«†¡ª†¡ªˆ£¬†¡ª‡¢«†¡ª‡¢«‡¢«‡¢«†¡ª†¡ª†¡ª†¡ª‡¢«… ©„Ÿ¨‡¢«†¡ª… ©†¡ªˆ¢¯ˆ¢¯ˆ¢¯‡¡®† ­† ­† ­† ­…Ÿ¬† ­‡¡®† ­† ­† ­† ­‡¢­†¡¬†¡ª‡¢«‡¢«†¡ª… ©†¡ª‡¢«†¡ª… ©†¡ª‡¢«ˆ£¬†¡ª… ©… ©†¡ª†¡ª‡¢«‡¢«‡¢«†¡ª†¡ª‡¢«‡¢«‡¢«‡¢«†¡ª†¡ª†¡ª†¡ª†¡ªˆ£¬‡¢«†¡ª†¡ª†¡ª†¡ª†¡ª†¡ª‡¢«‡¢«†¡ª‡¢«… ©„Ÿ¨‡¢«„Ÿ¨Š£ª„¤ƒœ£Œ¥¬Š£ªŠ£ªƒ›¥‰¡«Š¢¬‰¡«ˆ ¬ƒ›§ˆ ¬…©~–¢£®‘¤«ŒŸ¥Š¤‹Ÿ¨‹ŸªŠ ­Š ­‡¨Šž§”𛫫jvrFMFÒÔÉÿÿôóðáú÷äÿýìúöêûøï¸µ¬MK?XVI©§šÿÿóýýñÿÿôÿÿöêïèž§¢u€–¡§ˆ™ ‰œ£t†~’›kŠVju€”ŸŒ «Œ¢¯ƒ™¦„œ¨†¡¬†¢­…¡¬„ «…¡¬…¡¬‡£®ˆ£®†¡¬‡¢«… ©j…ŽqŒ•v‘š~™¢†žª…©ƒ›§…©†«„›©}•¡rŠ–€–£Œ¢¯NdqOernlZny‹ŸªŒ «r†‘Xlwh|‡Vjuu‰”@KEjuqX`bž§¦Ž“Œ†‹…;?BbgjX_WŠ”‹+35…‰’‘y‚AFIowy•ž‰ŠKV\Ydj•Ÿ pzyQVYOWZ…Ž•‚‘˜£ª„Ÿ¨† ¯„ ®ˆ ªˆ¡¨… ©†¡ª†¡ª†¡ª… ©… ©†¡ª†¡ª‡¢«†¡ª‡¢«‡¢«†¡ª‡¢«ˆ£¬‡¢«ˆ£¬‡¢«‡¢«ˆ£¬‡¢«†¡ª… ©†¡ª†¡ª†¡ª… ©„Ÿ¨‡¢«‡¢«… ©†¡ª‡¡®ˆ¢¯ˆ¢¯‡¡®† ­† ­† ­† ­…Ÿ¬…Ÿ¬† ­† ­…Ÿ¬…Ÿ¬† ­‡¢­„Ÿª… ©†¡ª†¡ª… ©„Ÿ¨… ©‡¢«… ©… ©†¡ª‡¢«‡¢«†¡ª… ©… ©†¡ª†¡ª‡¢«‡¢«†¡ª… ©†¡ªˆ£¬‡¢«‡¢«†¡ª†¡ª†¡ª†¡ª†¡ª†¡ª†¡ª†¡ª‡¢«‡¢«‡¢«†¡ª†¡ª… ©ˆ£¬… ©†¡ª‰¤­„Ÿ¨… ©‰¤­~™¢š¡r‰t‹‘‰ ¦…œ¤–žŒ£«ˆŸ§‡¨¥°‡¨ˆž©’¨µ{‘žkކœ§ˆ›¡‹œ£Š›£¡«}›{™‡™§Šž©ˆš¤ƒ”›–¤¥@IFqvoÿÿôùõéüöæÿüìÿüîüõíôïé…xOK?`ZLÒ̼ÿÿñÿþòÿÿóüþðåëߎ˜ƒŽ›¨®”£ª‚“šct|l†[mwI[g{™£±zžn„’wŽœ€š§€œ¨©€œ¨€œ¨›§›§}™¤y• x“žsŽ™RmxWr}Nfray…tŒ˜xœvŒ™tŠ—q‡•o…“q‡”e{ˆj€yœSftCVdOam=O[?Q]j|ˆi{‡Ugsi{‡asI]h2FQ$/)DOI%.-§­«–›•§¬¦48;ˆŒ‹’‹–’9>Bryclkbkj.37gorr|{^hiN[GV@IX?FVAHX=GS?IUBLX:DP:GP>KT;HQ6CLS_]Q][&%„Ž^gfV_^)/-}ƒgmkw}{:@>]ca>DBX^\RXVS\[™£¤mxzXceG4?C1<>1<>1<@0;A.9?/8A09B08C&09-6?(39,7=(37(37-8<+4;(/7.5='.604=,09+06.39*/5).4")/'.4(/5&-3%,2#*0^jh[geŠ”“r{zW`_397X^\=CAy}IK|Š“¡¥‰œ Œ¡¦†ž¢‡ ¥‡ §†ž¨‡Ÿ©ˆ ª‰¡«Š¢¬‰¡«ˆ ª‡Ÿ©ˆ ªˆ ªˆ ªˆ ªˆ ªˆ ªˆ ªˆ ª‰Ÿª‰Ÿª‰Ÿª‰Ÿª‰Ÿª‰Ÿª‰ŸªŠ «‰Ÿª‰Ÿª‰Ÿ¬Š ­Š ­Š ­Š ­Š ­‰¡­ˆ ¬ˆ ¬ˆ ¬ˆ ¬ˆ ¬ˆ ¬ˆ ¬‰¡­‰¡­‰¡­‰¡­‰¡­‰¡­‰¡­‰¡­ˆ ¬ˆ ¬ˆ ªˆ ªˆ ªˆ ªˆ ªˆ ª‡Ÿ©ˆ ª‰Ÿª‰Ÿª‰Ÿª‰Ÿª‰Ÿ¬‰Ÿ¬ˆ ª†¡ª‡¢«†¡ª†¡ª„Ÿ¨‚¦œ¥€˜¢—¡~•~•~•‚–Ÿƒ— „˜¡…™¢‹Ÿ¨“¥¯”¦°†—Ÿo€ˆ_nuO^e;HP6CKBOWERZFS[FU\GV]@OVKX`FIDIMCHLADICGJBFICGH;@C>BKEOCJR8?EDLN?EE:?;MNH††~ÿûòîêßþ÷íÿúðýöìþ÷íüøíëçÛjdT^YFqlYìçÔþøèùóãÿÿñÿþïÿÿñ忨oqf;>7/34,0336;+.3.1625:,15).2*/3(-1&.1&.1(-1',0%*.%*.&+/$),&,*"($#)%&,*%++$),&).&).',0"&%*.!&)$**'--$! )("% %( $'#&'+."##'( $#&*+*.-!"'-+!%&%++!%&##\khdsp" ~Šˆy„€kvr"+(enkIOM]ca+1/_ecjpnLRP9?=JPN€‰ˆoyzJRT5=?•—istJTV5@By‡Šyˆ‹¢¦‡šžŒ¡¦…œ¢‰¢©†¡¨†ž¨‡Ÿ©ˆ ª‰¡«‰¡«‰¡«ˆ ªˆ ªˆ ªˆ ª‡Ÿ©ˆ ª‰¡«‰¡«‰¡«ˆ ªˆ ªˆ ªˆ ªˆ ªˆ ªˆ ªˆ ªˆ ª‰¡«‰¡«‰¡­‰¡­‰¡­‰¡­Š¢®Š¢®‰¡«Š¢¬Š¢¬Š¢¬‰¡­‰¡­‰¡­‰¡­‰¡­‰¡­‰¡­‰¡­‰¡«‰¡«‰¡«‰¡«ˆ ªˆ ªˆ ªˆ ªˆ ªˆ ªˆ ªˆ ªˆ ªˆ ªˆ ªˆ ª‰Ÿª‰Ÿª‰Ÿªˆž©†žª†žªƒž©‚¨œ§š¥~™¢}˜¡|”ž€˜¢ƒš¢‚™¡„˜Ÿ‰œ£ §¢©™ª²†”r‡anvFQW0;A.7>*3:/6<18>18>/8=309>,5:/:<*662<>/9:)13/79+03/47.44,01*.-+-,.0/243&(%132127$'.+.3/47/53(-'(+$GI>__SÜÚÍÿýîøòäùñæýõêÿûïÿÿóû÷ëÆÃ´QK;]XE•|ÿÿìùóãúôäÿÿñÿüíÿÿïÚÛË[]P03,')("#%)+*#%$$&%)+*(*)#%$"$#%'&%'&&('$&%#%$'''(((&&&&&$$%!""##$"###!%%#"""%'&! &('#%"$&#')$#"'#!%$"&%%'&&(%)+($&!*,'"%&(#+.'&(#(-&%'",1+*,'',&Ra^Wfc!‹‰p{wmxt(1.jspx~|qwu397]cajpnSYW4:8FLJ}ƒjppPVV7==‡ŒbjlNXZ/:<|Šv…ˆ’¤¨‡œ¡Œ£©…ž£‡¢©†¡¨†ž¨‡Ÿ©‡Ÿ©ˆ ªˆ ªˆ ªˆ ªˆ ªˆ ª‡Ÿ©†ž¨‡Ÿ©‰¡«‰¡«‰¡«‡Ÿ©‰¡«‰¡«ˆ ªˆ ªˆ ª‡Ÿ©‡Ÿ©‡Ÿ©‡Ÿ©‡Ÿ©‡Ÿ«‡Ÿ«‡Ÿ«ˆ ¬ˆ ¬ˆ ¬ˆ ª‰¡«‰¡«‰¡«ˆ ¬ˆ ¬ˆ ¬‰¡­‡Ÿ«‡Ÿ«‡Ÿ«‡Ÿ«‡Ÿ©‡Ÿ©‡Ÿ©‡Ÿ©ˆ ªˆ ªˆ ªˆ ªˆ ª‰¡«‰¡«‰¡«ˆ ªˆ ªˆ ª‡Ÿ©ˆž©‡¨‡¨‡¨‚𦙥~™¤}˜£}˜£}˜£~™¢𣅧…§†¥Œ ©•¨¯—ª± §’™p}ƒP[a1:?*38+364ZUBþªÿÿíúôäøòâÿÿñÿÿðÿÿíË̼NPC-.&&(%')(:<9@B?574$&#$&#+-**,)&(%)+(*,)')&'(#-.)/0+,+'+,&//',.#..&,-%,-'01+450/0+/0+-/*24//1,02-02-02-241574.0-79679424/9<57:314+69203*7:358/8;4581581;>7Yhejyv z‰†YeaXd`&"ozv|…‚cli:@<^d`qwsIOK9?;HNJ€‚gihOSR;?>ƒ‡ˆekkGOQ6AC~Œ~’’¥©Œ¡¦†Ÿ¤ˆ£ª‰¤­ˆ£¬‰¡«‰Ÿªˆž©ˆž©‰ŸªŠ «Š «Š «Š «‰ŸªŠ «‰Ÿªˆž©Š «£®Œ¢­‹¤«‹¤«ˆ¡¨‡ §‰¢©‰¢©ˆ ªŠ¢¬†ž¨‹£­†ž¨ˆ ª‹£­†ž¨Š¢®†žªŠ¢¬¨¯‰¡«‡Ÿ©ˆ ªŒ¤®ˆ ¬Š¢®Š¢®†žªˆ ªˆ ª†ž¨†ž¨‹¤«ˆ¡¨‘¨°†¥†¥Œ£«ˆ¡¨„¤¥¯‹£­†ž¨…§†ž¨…§ƒ›¥‚š¤„š¥‚˜£™¥™¥„œ¨†žª…©†žª‰¡«Š¢¬£®¥°’¦¯‰¦wŠ‘ev}Qbi@MS5>C05949<-25045*+-((($$$###$$"!!&&$)+(%'$#%"$&#!%$#'&#'&(,+"&')*,"#%%&('(*$%'%&((*),,,'''***((("""...00.*+%35*)*FG7]\JÛØÅÿÿìþùæöïßÿüï÷ïâþøìÿùíåáÕa^ONH8gbOíèÕÿüé÷ôãÿÿðÿÿñÿÿñÿÿíÁ²HJC=AFB;?>3768<=>BCCGH@DCCGFEIHAEDJOKPUOEJCGLFOTMBGAEJC;@:=B-26%)*)-.&('('%)($,+'*)%+*&43//0+-.(672./*35224102/130243798354465/02576679576888;;9999;;;645?><>=9<<4::.=>0\[Ivs`ÿýêÿüéÿùéüõåþöéøòæÿùíÿýñÄÀ´GD5VP@Š…rÿÿìúôäøõæÿÿñÿýîÿÿñö÷妧—IK=EG<>DB7>@;AC>EGB@B=DG@@CIOKz€|V\XGMI6;7’”mniWYT9;8‘syyHPR;EF{†Šž£‹œ£Šž¥Š¡©ƒž§… ©‡¢«ˆ ªˆž©ˆž©‡¨†œ§‡¨Š «Œ¢­‰ŸªŠ «‰Ÿª‰Ÿª‹¡¬Š «Š «Œ¢­‰ ¨‰ ¦‡ž¦ˆŸ§‹¢ªŠ¡©ˆŸ§‰ ¨Š¡©‰ ¨Š «‡¨‹¡¬‰ŸªŒ¢­Š «†¥…œ¢¤ªŠ¡©‡ž¦†¥Ž¥­‹¢ªŠ «‰ ¨‘¥®‹¢ªŒ ©Š¡§†š¡dx%8?`szˆ›¢‰¤Šž¥…œ¢‚™¡†¥š¡š¡ƒœ£„¤„›£‡ž¦Š¡©‹¢ªŠ «‹¡¬Œ¢­Œ¢­Œ¢­‹¡¬‹¡¬‹¡¬¤¬‘¨°¡ªŽ¡¨Œ¤gv}1>D"&!&) "!!#"%%#((&,+)0,+952EA>C@;<;6A@;BA@;@B=BDA>@=;@@=:<7<>;BB@<;9FB?MJEKHAHF:DB5VSDÐ;ÿÿñùñäÿ÷ìûóè÷ðæýöìþ÷íüøí–ŒJD8VPB£ÿÿîöóâýúëû÷ëýûîÿÿñëìÚˆ‰yZ\NIK@CD?OQNINJKPLSXT[`\?D@273384KPL‚‡ƒtys[]X‚…~}~x:;3Z[SjkcopkqrmHID12,,-%WZOrujpvj|‚vjpfaf_PUO_d`HLK_cdHLM>@5llb——ŽŽ†“’dd\56.!!lncœž‘”˜ŠŽ‘†„ydg^LOHbd_/1,,.+8:7KPJJQJJQJFMF6=6(/(BIBMTL8?719.3;0CI=jpdag[)/!LRDO[Ywƒ`ljlxv›—Zea?JFVa]ˆ‘ŒV_Z…‹‡[a]NUN>E>zzU\U…Š„uzvY^Z=B>“’{OWY6@Aw‚†‹˜ž•¤«Œ¥€“š„˜¡…™¢‡ž¦Šž©Šž©Šž©Šž©Šž©Šž©ˆœ§‡›¦‹ŸªŒ «Šž©‡›¦‰¨¡¬¡¬‹Ÿ¨Œ ©¡¨ŒŸ¦Šž¥‹ž¥‰¤Š¤¡¨Œž¨‰¦Ÿ©‹Ÿ¨‰›¥‹Ÿ¨‹§‰¦Š£ˆ¢„—…šŸ‰œ£‰œ£„—žƒ–Pai`qywˆŽŸ§„’›Ž¤|‹’CRWUbjMZ`Œ™¡Ž¤‡–†—ž §‰¤ˆœ¥†¥‹Ÿ¨¡ª‹Ÿ¨Œ ©¡ªŒž¨Œž¨Ž ªŒž¨Šž§Œ «¡¬Œ «¡¬Œ ©‰¦£ª‘¢ªž¥˜¥«—¢¨ƒRWZ59:;?@@DC<>=8:7FFDGGEAA?LNInpmy{vqvpv{uzz}„}†~w~vbiaOVNPWPovozzzz†ZaZ]b\KPI_bY„‡~x{rtumcc[MJCPMD\ZNOM@TREÐÌÀÿþòÿöíÿùò÷îçýôíþ÷ïõñèù÷ëÖÔÈNJ?[TJnh\ùóåÿýîú÷èûùíÿÿôÿÿôÿÿóáâÒhkZrtfhj_\^YUWT_a\`b]\]Xfhc_`[RTO_`[npk‚}Žˆ”•‡‡}‚‚xTTHnl`¡Ÿ“•“‡•“‡rofGG=86*vvjŒŒ€}rceZFH=AC8DE=OPH12*))!#$@C:=C9MRK,1*+0)9>7AF?@E>KPI>D:AG;?C5KO@26'"&:>-;GES_]3?=dpn†‘hso9D@>IER[V5>9CIEAGCV]VY`Y†DKD…tzv]b^.42‡‡irqPZ[3=?kvzy‡Š‘ž¤„“šhy€cv}l†…—¡‹ŸªŠž©ˆœ§ˆœ§‰¨‹ŸªŒ «¡¬Šž©…™¤ˆœ§Ž¢­£®Œ «Šž©Šœ¦‰œ£Š¤‹œ¤Š¤Œ¥Š¤Š›£ŒŸ¦Š›¥Šœ¦Š›¥Ž ª†—¡‹§Š›¥‡š¡‰š¡Ž¡¥‹œ£‹ž¤‰š¢Š›£Š›£˜¦¯bpy‚˜‹˜¡’Ÿ§ƒ˜˜£©ƒŽ”KV\T]dXci–¡§’Ÿ¥’Ÿ§‘ §’£«‹ž¥‰›¥‡›¤Šœ¦Šž§Šœ¦‹§Ÿ©‹§ˆš¤‹§ˆš¤…—¡ˆš¦ˆœ§…™¤†š¥•žˆš¤…–ž„•œ‹˜ž‚•ŠŽ™›wEMO=EGFONIOO;A?AEDDHGBFESXTousy{t}zqzwmxtr}wq|vmxrbmgWb\MXRfojhql_hcflhV\XUZTTYR[^U`cZfi``bWWWKZXK`^QIG8VTEpn_ÿÿñÿÿóüóêÿ÷ðöíæûôì÷óè÷õèþü“YUJXQG›•‰ÿûíùöçÿûïÿÿôÿÿöýýñÿÿôÐÒÄceWtlncNPKDFCQSPZ\YRTQJLICEBTVSTVSZ\Yce`|€z†‡……{JJ@jj^˜˜Œžœ—•‰xvjOOEII?ee[OOE9:201)%&AB:II?88.))%'%((+").'HMFLQKPUOING/2).1&<@2GK@5.0%$%%&  &('<>=-/,+,'$&HH><  %%$"CA5zxknzvnzv7C?Ua]mxtZe_IRMENIy{Y_[gmk†ŒŠ€†„gmkiomGMMrxxchk_dgRW[hmqRZ]LQU6>@IRQQZYLUTGOQt|–œ†•ˆw€‡r}ƒoxkv|kv|mx~cntju{grxitznx=GP"+HR[‚‹”w€‡uz€uz~nsyhoupwpy€dmtmx~`kqju{^gnjszmtzfmshouX_eoy{cmoitx^ksq{…lv€_iuyŒgnx„‰orwZ^aafiajiQZYYb_bhfu{yu{y`ffz€€ltvmuxhsy\iqM\cWhpVgoIZbSdkVgnKZaUbjWdlQ^fSbiVgoWhoYjrQbi\mtTfjP_d[ilVaeT^`\dg_ik_mnP^_]kl\jjSaa\jj[ggQ]]Vbb]iiYcdV`aV`_YcbT^]_ij_ikYdhYbg`in^glZagY`fV[_V[^nrseijprovvt^_Z89377/A?265#@=,FC2°­œÿÿñý÷éÿÿóÿüðÿûïÿûñ÷ðæý÷ëùõ颞’OK?OKB40'`\QŒˆ}ßÛÐýùîõòéðíäÿÿôïðàŠŒwHJ4LN8QT?deUBD7VWQprm€‚{~}~|€vz{swxw{|w{||€|}|}x}wpunuzskrkoyqhoggnfGNF //-%& 55)&'46)#%#% #"'#$ 24/%& =:3@<1-&wqehsoq|x_jf_hemvqW`[V\Xhnjlrn^d`rxvmsqmsshnnlrrdilejnotxjou]bhw|‚bgmhmqY^a^ddHNLIOMW][kpsƒˆŒ}‚ˆtyinrPUYLQUempmuxltwiqtiqtdloahnryKRXJOU‡‹”uz€w{~stxmqtvy~mrvmrvksvkuwhpsy„nvyx€ƒafjuz}otwhmpjorKSUXafDMTKS^CKVMU`PVbimxpsz.16@DG:@@5;94=:JSNu{ww}yw|xmrn{~mqr†‰fmsju{LYa[ir^luSbi\mt`otVejVag_jp[flO\bZin_nsRafVeh`orSbeVac^ik]ghV^`Z``dmlQ]]R``Zff[geVbbYec\hhT`^U_^ZdcdmlV_^Xa^dmj]ca`fd`ihZcbYac_eehnn\bbUYZeijXZY_a^wxs[\V@@8::2..$..";9,30!QN?[XIûõçÿÿñý÷ëÿüðÿþòüöêÿûñüõëÿúðõîämi^[WLLH?=903/$95){oÈĹÿýôøõìüúííìÚnpZ?1-/" -0),1+ #/.)85.>:1MF<80%f^SlpqX\]hlkkonlpokonGKJcgfuyx`dcz€€`ff{„ƒdmlowypx{mrxpt}[_j59Ddhstxsx|lqtfllX^\agcouqdjhqwwotwotwjnojnoaefjppotwotwlqtfknejmmrvw|€X]a"%*:=Bz}„tw|rsuuvxvz{y}€w|qvyv{~ksubgjLQTEJMAGGJNOimn>BC'+,,014::-25!%'!+$+5&9=H9=F#"(.376;> #ouuz€~†ŒŠkonswvƒ„†vz{}„mrxy€ˆPY`aktanvVckZip`ms\jmU^c^hjZdfOZ\Zff]iiR^^ZffbnnYec]feYbadjh`dc\`_fjiclkXbaS]\`kg[edQ\X\fe`kgYb__heiokTZVV[UY^WVYR^aXgjcjmd[^W`aY\]Uophee]``Vee[[[Olj^NL?LJ;_]NJH9B@1A>/=:+C@1µ²£ûõçÿùëý÷éÿúìÿÿóÿÿóþøìùóçýöìÖÏÅSOD_[PRNC±­¡fcT:7(DA2XUFžœõóæÿÿñßÞÊccKBB&KK/TT:ML7>?-AB2;<.;;/>@5EF>LMELMEFIBJKEJMFLMGILCGI>ORGVXMKNCY`XHOGJQI;A7%$%"".*!&"  ;5'FD7 ""+-"()!$' "%!$%(!9:4%$$!,(-&]UJ^VKlmq_`bbcedeg_`bhlmfjkcgh|€ciipvvmuwwblmr|}jru‚†MQ\04? %)46:C49=-25?EEcieipimtmiokqwulrptzzjnmqutkonntrquvnttnrsrxxhlogknmqtaeh+,1 !&~„€„sutmoly{zosry}|iomvzykonVZYKONRVUPUQRTQXZWWWUPQL>@;Z\WHJGBDCCDF"!& %"&/',2=BF>CF rvuv|z{€|fkgikh…‡„yyy|}xy}wzY^bgntens[diWbf`ko^hj[dc\b`W`][daZc`Yb]bkfcie_f__f_[`ZV[Uegbdfa]^Y`b]`ea]c_X^ZX^ZW]Ydjfu{wlrnjoinsmbe^VYPceZ]]QVVJYWJkiZkiZSQBlj[]ZIkhWifU[XGdaN^[H]XEb]IfaMd_K@;'LG485$PM>HE6üùêþøêÿüîÿþðÿúìÿýñÿÿóþøìý÷ëÿú𦟕XTINJ>b^RýúëßÜË“}KH5@=,JH9€~oÈǵÂÁ¬KK1II-::BB&?>)87#A@,89'98&12"<=/WYKnoaƒu{{opre{{o~€rrsepqc~qˆŠ}twlmsiuxo\_V>?7$$ # =82-& '.%?7,=5(OF7?8(4. $"(&&&%%%&+,$ !23-11)'$ +6/%=7+B:/SK@hkpmqthloptw[_b_dg_dgZ_bbgjemohprS]_x‚„alnny{`inIPX!%.$!*"((-1399:@>‚ˆ„}„}ipimtmlrnkqosywpvtjpnouumvubhh_hgdiliqshmqinrkptjos:=B kns€‚tvsYZTtuowzs}€yingy|uork{~wilepqknogSSKZZRaaYmmc`^Qmk^YWJpnb`]TKKCJKF<>;:>?).1.697?ANTTNRQ-/,ac^tys]b\cf_ab\ihclkfxupnmittrjlknrsioocii[aaekk]ca^c]V[TVYRZ]TPSJORIZ]RTVKOQDSUHLLBQQG[XOWTKROFYVMWWOGH@FGATUOZ\WQSNFKEKPIKNELMEFF);:%GI4baMfhSVUCbcQwvdtvalkW[ZFNM9[\Jgi\eh]acX88.(% !JA8G=33'5)@2%B4'L?/>2$5.4. -' 3/$30')&%%..&EB9/,#!.'OI=-%PH;ksuksu`hjrz|ckmqy{\dfrz|_gi[ceZbd[cehrtpz|Xbd+57#'"& #(!$>BEKOPHLK9>:€…†€rwqsxrinhinjhmiciegmihnlZc`OXUW`]U^]Xa`]fedmlchk]cc8<=!"BFGbdcbc[OOC``VffZhj]acVdfYceXnnbppd^\Ojh[b^R`\Pc`QebQ`[GSN8[U=d^HleRc^Kki\_aVSXRY_]MVUR[XGMKNSMQRLMNFUXOGJ?PRGRPDRNB]YM[UIaZPZVMZWNRRJMNFNOGLMEXYSKLDKMBHJ=LL@FG9FG9OM>ML:KH7JG4WTASM=WQAVP@VPBYSE\VJA=1MI>WUITQHUUKJKCAB:_`XZZPII=VTG_\M[UEXQ?\TAeZF_S=^R:dX@bV=8620A="A@":6HG+EC*99JH/BB(97 PP8_]FII1;9"><%?=&DB-JK;LM?PPD*'/&4*!J@4I=/I<,I9)7'H8(E4$P@1L@0?8&B;+)#A;/C?3.*<8-HD9:6+*&!MG91)JB5^jfcok]hd\gc_jf^gdajg_he`fd`fdcigV\ZV\\X^^Y__Z^]fjiFKGVXUPUQIKFXZUce`cf_UXOjmddg^^aZ^aZ^`[egbbd_bga_f_U\URYRSYUSYUJPLMSOY_[OVOTYUSXR46124/KMHTWNPQCQP>MK6?IAGLF>A8SSIHF9MN@QR@YXFUP=d]Jc[FdYEkcPmeRleSkdTkeUjdTliXspaebQUTBUT@RO'QI2XM9TL7ZR=kcPyr_zsab[IaZH_YIUOA]YMfdXfdXwwkmk_[WKc]OaZJ^UDSH6UH5YM7bS<[L5ZL2YK1UG-VH-VH-cU8bT9QF*ZL2UI1\P:ZM:I>,OF5QK;Ž‹|ýúëôñâÿýïÿþðüöèÿÿñûõçÿÿñÿúìÿþð°­žRO@OL=daRñðÞúüçïîÙþýèÿþéÿÿìëèת§”YWBZX?MI,MJ)JG&?<;762>9IF%C>MJ)PM.<;?<<;73:9D@#?> /+/+C?$EA(?>*GF4RPA0,  1'<0$I<,RC0O@+G7 H7#D3B/F5%H;*MB0VJ:7.F=.UN>80#A;/ -'*$("5- C<,?6'F=.WbZJUMNYQMXPISKLVNRYRKRKPUOVXSJLGKMHLMHIJEAB=PQLXYQkldcd\GI>PRGJL?II=DD8GG;EE9FF:JJ@CC9DDNPBJK=GH8VWGQR@NM8SQ:ZUAVQ;XS=UQ8a[CVP8[U=PJ0ngMohNVL3^T9eY?`U9UJ*\R.YM'n`;i[8h]=rkOtr[|nouipwow~vz}t„„z}r„r„ƒoƒj}d‹„jyoT‚v\Ž€f†x^vjPuiQ~t[‚waujTogPk`LWO:TN8RN5IC+IC)PF-QG,RG+K@$YK0PB'RD*G;!J>&WM4cXBeZDQF0A9"ME0SL9NI6OL=TPD]YMA=1VPBUM@B;+NB2C8&J=*E6!J9%WG0M=&B2ZJ1M=#K;!UG,UG,K=#O@)L@*M@-OD2I=-D;,VPBãàÑýúëú÷èúôæÿýïÿþðÿýïÿþðüöèÿüîÿýïyvgc`Q>;,ŒŠ{ÿÿñúûéÿÿïÿÿëÿÿíüûçÿýìüùæÉDzQO6RO0OL)YV3;872A<MH(GC JF#LH%OL)TQ.PM*LI&@=@=96DA">;51E@#<875<;'<9('!'7-#@4(5(C4!H9$UE,SC*J8 SA+I7#G6"=.F9&_R?SH4@5#JA0?6'?8(E>..(3,,%E>.F?-C:+G>-IOCOUIV\PQWKVYNUXMWYN\^S``VWWMa^Ujg^lh_kg^lh_nj_~~r–—‰€s\]MQRB\]KfeS_^LcbPVUChgU}{l{yj{ylnl_nl]}zg|ze}zgfcP`_Kpo[gfRcbM\[FWW?ZXAigNfbGjfIwsVxtWyuXxtWqkQgbEvoSslOf]@^U8riLg^?odFxmOTI+H=h[;VI'OBcW1]O(gX1iZ3ykHshJmgOon\fh[ilcjmfnnfpmdd]Srk[mhRe_Ec\@h]Ai[>m^?n]?jY;eV7dU8k[An^DdT:QC(E5E7H>#]V:RH-PG*VH-I;M>VG(N=J9=.C4PA$WI,QC(QF*SH,MB&J@%SL2GA+FA.NH8A;->8*KE7<4';4$?3#D9';.9,D5"@1:+F7 H9"E7E7A3?17+NA.9.C7'C:+?5)E=0Œ†xÿýïûõçøòäÿùëý÷éÿùëöðâüöèúôæÿÿðäáÒfcTqn_@=.º¸©ÿÿóúûíýþðþÿïýüêýüêþûìÿÿîáÞËSQ8WT5TQ.^Z7C?0) C<LH%PL'QM(RN)MI$MI$SO*OK&FBEAEAFA!GB"E@"?8613/8661/*2+VM>]QA:-1" >.YH.RA'UD*[I1YG1N<&E4 E6!PA,bV@I<)4)C8&E=*I@/6/2)>5$90KC0-$LD1ŒŽƒ’‡’‡Ž…–˜‘“ˆƒ‹‹……{Œ‰€’†‡ƒzŽŠІ{„}syuj}p™—ˆ¢¡wvd|isq\rp[d_Ic^JidP[VBlgS~yetr]jeQlgQmgMd^Db\B[U;^X>jfKZV;LH-YU:QM0NI+VQ1ZT2ga=c]9\V2XR2ZT4XR2SJ+^U4^S3`V3SI&_R0bU3aT1QD!F9F9XJ%aS.PDPBYJ!j[2^L$iY5j]=ZS7_ZFVTE@@4NNDTQHB;1LB6VJ:QI2RI,SH,aS6ZI+TD#^K+lY9dQ1eT6YH,YE*aM2UA&H4L;A3MB$I;OB"^O0XG)TD#P@J7P=C3?/SC"hY:_P1L?XK+OB"PE'JA$>7KE/F?-60 4.;5'80#@8+8/ :.<0 B5%J=,RE4@18,C4E9!E6QE-H<$9./$3+1(+$F>3TNBáÛÍÿþðøòäøòäùóåÿùëûõçùóåÿýïúôæÿÿñ´±¢`]N_\MTQBëéÜþþôûûñýýñüýïÿýðÿþïÿüðÿüíÇıKI0TQ2OL)TP-HD!>8C=EA?;GC QM(RN)OK&LH"MI#IE =9<8JF#XS3ZU5JC&4/1-:8E@*D=*LC2^RB^Q@TE0<,:*>-N=!Q@&TC)ZH0UC-:*B2O@)O@)G8!UI3ZN8MB,9.E=(JB-JB-?7">6!F>)OG2lkffe``_Z`_Zfeacb^cd_XYTbc^XYTVWQSTN`a[YZTSSKSPGQOC]YMOL=TQ>niU[V@QM4WQ9[U;_Y?VP6UP3ZU8YV7VQ3b]=TN.LF&HA$GB$GB%WR5SO2IF'C@!>;EAQM(PK%XS+QI"UM&UM)YP/NF"MC `V2K>OBWJ'M?RD]O(PBF8UG H:M@M@M@i[.`R%TCiZ3bU2]R4UN4=8$4.E?1E=05,I=-F9&K?'PE)QC(_P3ZI+VC%T?"YF(VC%_K0UA&WA)^H0P:"K3Q#JC)C;&B;(IB2G@0>6)F>1=5(8/ <3$H?0K?/D9'L?,@5>2?45)LA+8-1)-%:3 C<,0*JD8ƒ}qÿûíöðâöðâüöèùóåüöè÷ñãý÷éÿüî÷ñãÿýñ„€tnj^OK?zxk÷õéüüôùúòüþó÷ùìýýñýþðÿþò÷õ訥”JH1PL/FC MI&HD!C=C<?:72A<B>DBIG!FDLJ#FD=;?;IE NJ'PL)PJ*ID&?;*& *$ +93PH3J?+G;%`Q:RB)H8<+M< J: P@&RB)RB)C3:*K;"N@&H: SG/MA)L@(C7!=2C8"B7!OD.3(LA+>3HFGUUSHHH@BAKML@BACDFKON8<=BFE>BA;@RN+OK&XS-RM'WO*ME RJ&LBJ@WK%MATF!WI"UG OA]P&OBB5 SGI<M@NAcW'eY)WIUGcT+fX1ZM*TI+SI.SH2NC/SH4]P=]N9K<%OA'TF+TE(UD(SB$VC%VC%_K0ZF+cO6\H/U?'O7S;#aG.YA'I6O> \K-M<O<XE%aN0TA!R?VC"S@L9RB SC!UG$XJ%ZL'L>SE"_R2QF*F3!F;)F;'A6"7,;0D9#E=(5-70;4".(C=-VSDÊǸÿüîùóåõïáøòäûõçüöèûõçüöèôîàÿþðíéÝ`\PuqeKG;¢ “ûûïûüôúûóüþó÷ùìüüðùùíÿþòòð㎋zLJ3C?"85D?;65.=8A<:5B=C@FC KI#FDKI"EC?=?;LH#WS0TP-JD$D?:5,' +)$=6QG.A5;-QA(XH.RB(L;!N=#K;!O?%K;!UE+K;!@0L<"RB(D6L>#J>$G;!I=#B63' PF+B8B8H>%WM4,/4169.37,47.69%-0,39)35(-.8:&02#-..89/9:()*0.BB:MI=QK=hcPKE/RL4B;!C< I?$XO2RI,NH(OI'D>IDNI#PH$SJ)NH(HC#>9FB%FB'107665;:MJ+IF%QM*OK(@:LD C;SI%ZP,RF TH"UG A3 K=L?UIF:I=H?MAaV)OE_U"`V#XL[N!]P$bS*dV/eW4WH'^O2fW:YI/^N4\L2F6^N4RB(RA%L;UD(UD(N=!SB(E3P>&\J2bN6S=&S;#dJ1_E,[F)I6S@"UB$S@"I6L8I6O> TD#TD#O?ZJ(ZJ&[K'\M&O@F8K=TG%L>!I>"E9!B7!B:%JC0D=-4.4. 96'.+,)@9)<3"?6%,$>6#80-%7/7/914-C<*93#WQA{xgÿüíüöèý÷éûõçùóåüöèùóåüöèûõçùóçÿüðÁ½±_[Ob`T`^RØÖÊüüðüýõúýôýÿòúüîûüî÷øêÿÿóëéÜxudEC,62-* 4/.) -( 940*73;844==LL&IJ"ABDEFGCAECMK%HF HD!VQ1RM/E>!7.J?#UJ.N@%L<"P?%VE+UD*SB(L;!P@&F6G9VH+M?"I;N@#ZL/L>!PB%YK0G9M?$OD(PE)I>">23' E; VL1=GI8BD9DF@,68%/09CD]ca€€x‹NH8a\ID>(IC)MF*MF*WM2OF)A8>5OI)NH$GAMH"OG#KCIC!GA!?:?;GC(DB)977573>:83>9MH*KE%E=RJ%ND QG#aU/\P*F8OAJ<QEL@VM"PGHAA:OGKCVL`V%RGcV*eX.O@gX1fT0fS2mZ9^K+UB$cR6SB&H9C4H9\K/SB&VE)SB&P@&TD*J:!O?(RB+SA)M7 I1S9 W=$YD'O<TA#P=P7'MF6E?/Ëŵÿÿï÷ñãóíßý÷éÿùëûõçùóåúôæúôæÿûïÿúî}qqmaSQE„‚vþüðõõéüþóùüñûýïüþðøùë÷øêÿþòÛÙÌheT;9$402/,' 1,:4=7-)98=<3255AAAA;<=><=64 <:LJ$IG!C?LH%LE(RI,PE'cU8XK+J;RA#UD(Q@&ZH0SA)K9!N>%@0M?"N@#M?"J<F8RD'H:J<]O2TF)I;OA$f[?B7XM10% PG*D;?ONIYXFVU=MLAQQ5CD0>?9GH:EG0<<6@A;DC=FEKTSfll{€|šš”’ƒ]ZGQL882,& 1*=6A:+$ +6/6/B;HB"=8LF"XO(A5B8PF#RI(9381C=#:40,.(/)6/70@9I@#RI(WO+PH#F>G>PG QEI=PDI=8,UL#HAOJ QL"NIME^V'OGLCbV0\N+I9O<^J)WC"iR2[D%M8VB'N=#O>$G6K:N? G8I:I:I; @2>0G9C5>.K7ZB*Z@'R8P;Q<S?$P$TD*TD*TE(I:D5H:N@PBYJ#M=H6P=SC"M<M>!E5D6E;";3PI650 /.&'#!+%+#3)1':0$8."B6(QE7/#(2).&]UHc]Oÿüîÿÿñÿûíùóåùóåüöèûõçþøêüöêúôèüöê÷ñåZVKmi^WUI°®¢ÿýñúúîüþñøüîùüëýÿïõøçúýìùúìÃÁ´XUD5395@<2.73@:"@:"40/.65565613)+688;58 34 +:;FDB@=:A=I@#RG+TI+ZM-TE$QA VF%O<O;"XD,R@*Q?)I9 E5SE(J<5(D7G:G:H;SF&QD$F9J=OB"SE([M0PE'E:E:>3P`]BSMJ[UJ[UCRM?NI@LH2>:;EDKUTEKIPVTotp†‚rto{~u~q˜—…ZUBMF3D>&G@&0) 81B8/% 5+;1B8<3<3J@PAUF^R*MDICB<=84.+% +% ,$ %:/C9 G;!PE)H?ME!NF"QI%RH$QH!\P*QETH"A87.HAFAFAWT+IDIBUN"VM$YP)RH$NAN?P@L8\E%[D$ZC$R= E1Q@&Q@&O> I8<-@1>09+@48..$ 4*B6I:#I7F2G2Q.A1A1E5M>!E6B3F7N@G9D6M=SC!QAUE$J9F7M=#I;!OE,C;$:3 94!.-"#" "(!+"-%7-#<2&<0$0$1%%D:.ZRE±©œÿÿñúôæóíßÿýïý÷éûõçúôæûõçþøìÿùíÿùíÆ¿µSODmi`[XOæãÚÿþõïïåþÿõûýðøúìþÿðõ÷éþÿò÷øê¯° IH41/:6HE&<97350<7!-+'% ++"#34JK)BDGI!;=:=BCGH DB=;<9?:OF)K@"NC%TG'TE$K=P@RA#TC)N<&TB.]L8F6D6I; E:H:J?C61&B5TI+C5A3OA&=/C5SF&TG'XK+VI)QD$R^ZLYR]jaLYO_k_HTHgqhkul}„}~„€–˜•™›–‘‹‘’ŠŠŒ€‚t”—„Žz–„wlZbWC>3@65MB&D6G8!C4PB(PA$K8R>]G bO%RGNJLJ$@@EA$B>#.(0)=53+5*B6 A3SE*H=D;:4D>TL(RJ%OE!QG#MDE<2+FAUP*YU0B>OK%SN&E@OG"RJ%IA;1SE"[K)P=Q=J6Q=\G(H5TC'O>"SB&G6.=/9-<2@8!912*5-=2>3A5E6E5L<"A1<.H:L>$D66(6(5' G9F8H;K>J=F9D5C4D5QB#RC$D5E6F9K="G;!=6:450)&!"#%",(-)D>2E;/$+(XO@[SFïçÚÿþóÿýðüõåÿüìóìÜþ÷çÿùéûóæý÷ëùóçÿùï~wmkg^je_wtmÿÿøÿÿúÿÿúÿÿøÿÿøÿÿöÿÿöÿÿôÿÿôúûí¡¢>>&56AA[[7AA5464*'.,(&,*4387==DD II#?A;=@@??::@@>>EB!NG*I@!LC$TI)OE"SF$N? J;M=#QB+O@+OC-MA+E9!;/PF+WL0@7\Q1B9>3:1-! =1MA+H: >0E6dV3B4YI'WG&krkPZQCK>fn_Ž—†KRBDJ<|‚v £š¥¦ ‡†Š‰„•’‹š‘fdWOP>lnXPO:vn[ž“r_\Q;KA&I>";-K;!H8?/C3XG)I2O5W=J7 QDTP#IG!@@?;?93,@6;4+# ?4K?'L>$=/7, .%?6PI,MD#F>MC PF#RH$MDIBE@KG"GC D@KG!GCF@A;@:I@>5H;N?D4D1?, VC#P=C2G6J9F5<-9+7+9-3+0(+$5.4-5-A9$I>(J@'H9"G9>2@4G;!B60$ 7+>2H<"MB&=2A6H=J?!G<B4J<J<J<QC&B5A3E:D9H>#81*%  ##*&A;/4,!/%, 1%I@1‚yj©¡”ÿþñýõêüôçöïßûôäûôäÿøèýöæýõèúôèÿýñèá×XQIxsmID>¤¡œÿÿúÿÿûÿÿûÿÿúÿÿúÿÿøÿÿøÿÿöÿÿôòó劋yHH.AB"@@????ML.75 -*)&$" &$2032=<ON/55/1 79GG#II%>>BB <;74>9F?"NH(WN-OF%G<J?I> J<"PD,F9&G<(C8$I>(OD.C<"?5PI,G>NH(MD'B81&,!$H>#>4C9 :.C5E8B5>3A7F:C>50:4MD%KB#I> E6<, N>K:J9I89( F7@1F7K="<0@43+-%3,?8%6/A9&NF1H='H>%N?(H: L@&F46-=4E<H?"LC&I@#D;1& +?4QF*A6<1F;G< D:5.-(72'%!"%0,#,&0(4,3*lcTvm^âÚÍÿýðÿþòÿÿóøðãúòåýõèþöéýõèþöéùóçÿþò´­£jc[`[USNHØÕÐÿÿúýüøÿÿûÿÿûÿÿúýýõýýõüüòüüðìêÝjiWQQ9:;<<??=<ED(/,,)$")(76$0/33GG+HH,45/089CB#PO0GF(BA%?=$62=7B= C> GA!JD$C:NE&LC&OC+QF0H=)F;)2'/'E=&;53+5/G@$E@#.' 1)6.*"( %OD(G:1$9+aS0RD!43!FE3IH4DC.PN7EC,1.WTCVPBB;1^WOQJB?6-MG;NG7JE1FF.kiPE?)VP:kcL1*:0J?#J;J;N@%RD'K<WC"\@T4Y?dN)R@J<OB K= N>%N>%P@&M=#@53( 1& +>0D5E6H98* /!4(6-6- >5<3?48. B8:2 ?9ID$??00 501,83832+<5C< MD'B4B3?0C4C27( F6:,A2=/>0:.-# +-%5.,%"' 6.QI4E:&-" @4C7G="92<21*6,6/0)("-& +% -( =8:54/?992$4*D8E<C7@6G="=6<6=8"$!  !"95*A9.=5(# G>/ƒzk—€ÿ÷êüöèûõéÿüðùñäýõèùñäýõèÿ÷êüôçý÷ëÿüò‚{sVOG]XRpkeÿÿúÿþùýüøÿÿûÿþúÿÿúÿÿøýýóÿÿõÿÿôâàÓ^]KTS>KK/?>BB :920,)0-$"%# +*98#==%66&& +**,-&%+*.,64;9":8!GC*E?%:5<7C<?8>76/D9#E=(NC1@8%4,*# 1,<5"0+3/%'! =6$1(/'6+'>4>2 UH%QD!ID.RN5KE-93:41+(" D=*TM=B:-D<1D<1>4(HA1H?.;595TP5RM7QL6/)+% 0) ;0I:F5C4D5WG&XBpN(e?U4_E"P:E1 S<N6E-Q9I1I6N?NAG8O?\J&]I$ZG&H7.1#2' *90G>!G< 9, 8+ 8. @:61!!))A<G@&0)-& $'! 93C<"ND)5*VH-TF+7' E7>05*7) :/?4>45+.&0)+$,%3,A9&?7"QF2F;%0$ +0)@:">62,.&,&93*& +'40@<#62.*<8511)*# /% =6F<#<5E>$D>$A;#<7#-*55+1-"62'E=280#vna]UHÎÆ¹ÿúîÿÿóþúîÿþòöðäüöêúôèúôèüöêùóçÿùïÿþôE>6ng_&!{vp·´¯ýúõøôñäàÝÝÜØÖÕÐÇÇ¿ºº°¹¶­ ž’}pSR@;:%:: :9ED%76)'.+&")',-"#&'&%0/33++..77>=!)')';9"'%+)1/2-2.95B<"D>$71/)IA,A:'<3":3!' $   +94 ><'83.)# +$" "YR6G?TJ&ZP-B8KE+0+ID'HA%(!JC'C;$2*1(I@1LC4@7(?6'OF5IA.D<'<6>9<8E@*)% 4.8.B4XG-YE*-9* P=^D]6W+lF!uU/lO'jN&eG#I* E#O0Y<X@S?M;P>UBfO&M4 V>L5" $=.8+ 2' 4(<.=/>/D7@5)"2/'$7-=1.# 5/>6;4/% >2PE)I; 4& 7)6*>3@5?6G>!>7@8!3-.'3.)".'IB04,,$8-4).# %3-:45/,&2,2-3.-+@>)86!+)0/6442715/60-'4,=7A;#<8ID.721.;8'+) +  *&?9-7/$<4)iaTwobúôæúöêñíáÿÿóÿÿóùóçûõéþøì÷ñåúôèüöêúóéÿù‡?80?;2 VSLrojurmfc^_^Zba\aaWSSGOM@JH;=;,>=+0/>>$650/42*(&#0.!22&'(/.A@+$$ + %% >>"98.,*(+)+)*'" #! )$1,71?9#5.0)5.;4"IB2:4$4.,' +0-)& /,$!52! +>8( TM1HB"<4SK'H@YQ->:WS6B>!ID&FA$;6LD-805-D;*;/1%G;+B7%K@,?45+926082.)1+J@'9)<(M7E4=,I5fH$xL'g6nBlEqLkFg@]5S* d=nL'_CdO$oX/dIkL eD\>\BY>!Q7M8L<E64& 9)E6O> ?.@02& '""9-8'2#* ++ 0(+ +-# +;1)LA%C8$3( ,!:/TK.4-,% .(+% *%0++(60 E?/.(3,;4")!/'<4!(!5/6/IC-E@,83500+'%&#0-'&  ,+20A<&@;%)$(" 3.72.)4/85"74#)&! *,!+' $LE;lfZÏɽøòæÿÿóÿÿóïíàÿýñöðäüöêý÷ëöðäüöêûõéúôè÷ñåüöꉂx—“ˆ!*&OJD;81?<5=:5/,%31%53$'&+*%",)20=;$:9)( && )(! !"!# +.8:$13@@$KL-9::;FE';:53<:#(&-+%"(%-*4194!@;(E@-A<)?9)/)/),&82$0- " '%(&#!(%85&&#YTA720*FA#NH&B<4. +PJ&EA$+' +YU8B>!2,93916.7,@5#D7'1$@3"B5"K?)I=%C57+:/60)# 4(*B,M7>*.M6kJ'sCo9tCU(zP pEpEi=_2]2pM%gHbJdL fK bC]8 kEdCiI#jI(U8P6Q:A.:) D3C2G4D/E1;+.$ )L:$_J58&6%@1, +8,E9!,"NC'LA%H=!&<3A:C>!!+'1,   +41"30!$  /,93#@:*.('!*#2+70;4!:5!+&.)/*# (&&$   ! ,+1/+(/-4/)$50:5"63 1.!      ''., 51&IB8!RKAŠƒyëäÚÿüðøö麸«'%¢ “åáÕûõéúôèúôèþøìõïãÿúîùóçüöêÖÐÄ =9.D@51-$$!1.%41*!)(! )(  +'$A?*53)',*..*)(& +%(,/,.*-::67;<:;/.101/7553   *'41"63"1+)#5/!-'-'-'3-71#0-!"  >;*&#0+:582WQ1LF$C=:4.-54=< 3/GA)933+D9'L?..B35(F;)1)5*1" H3K2F-@*:% +5]:k9j2 h5 +p@yKuIvIuI"rF#Z2W4 +U6R7 +aF`CW4 \2tItO"oL"jF"b@gF#]CP98%J7]H)R;R8Q8"(#,T<$L0D+=)>,H8aQ7'<-6' +j\?L>!>01& +I@#94A= &")% 72(% %# "!$%*#HA/D=+(!*'51%#!!   !('+*0/*)41 41*'! 2/52!$"'%75()' (* 0-$96-:6- b[Sª£™ýùîÿ´lj]…ƒvopbÌʽýúëÿúìüöèøòäûõçùóåøòäüöèöðâÿþðXTH51%1-!  +(*()&0.<:##!*($" :8!/-(& 77! "!!"  "",-103232>=86&$ '%%#,&2,(" *$93'4."2, B<0/+%!3/#2."# +&#! + +;4!?9#$YT7F?"SM-82GA7676@>%:582D<)C8&& F6'@. ;(M:+WA3L7&XC0G2B-!@/J=,5(9,8'<'2G,>(1S8eA!p>s;q=m=f: e; mBj@nC iC_>aBP5 +H,Y;jG!mCg<eAmHuN'h@iCjJ#U;@)<(_H(X>aF)`D.>#'@(iI0E# +V60@& YA%S>!S@ @- N;QA dU4K>,G< G>!83:662.)%"  ! ,$,$92"2+5.?9) '#51($!# ))   .-*),+-,%" -*%# $"-+55)"$!''  (%"c\T»´¬øôëíéÞ¸¶©ŸØÙËôòåüùêùóåý÷éÿùëÿûíùóåúôæúôæÿüîÿûíÓÏÃ-)84(&" 20$'% " 7565! &$ *(-+.,:8!98#87#54"'(   $&$$ +!!+*54?>"=< B@'B@);9"HF193#  +%-'#'!/(0)+%*&"  +,(%! &# + 3.$>8 >8 60?8haDC=EA(ZV='" E?)LD17+M=0J8,F2'N8-?'D-T:-M3$L2!D+9#3 <)E4$D3#D3!@-7 #; 8 B*T9]:sB"I%€O'yL"h?\6Y4 +N(P)Y5W7J,I/ +Q7X;Y8f@d=_: e@k?g9e9iCZ<M5K5H2 U;X9O/;* U5_:c:g@#\97jK,`F%H0 fP+ZDM9J:]N-0")1( 2-3-<8A<& #!    5/#82$60 5/  +.(1-".*!"""%##!$"/-97(/-+)'% + -+53'(& ""!'$ KF@ÒÎÅû÷îîêßÿÿòþüïÿÿñóñâõòãõïáþøêúôæüöæøòâý÷çóíÝÿúìúôæÿÿðfcTIG:1/"97*FD70, !317695YV784($ .)0.53/./.%&%# %# +1/EC,><'0.411.""($0,!-) "  '# 3.>9%?9#.(^XB[U? IB(WP6G@$GC(A=$%;5C8&?2"' +:(C/$R<1H0$C(T:-V<-J. Q7&@*S<*;$J4&P=.<)?*A+F+D)6 ;" T9Z7sE$uC _2 `6 V1T2`>`>^9\7`=R4F)G- L/H) Z7lI#iHhCY,d4i9l@a?M4 _I iS*Y=aCH% 3J& c>#X+j;vI*AV/W5bB^@[?bK"hR+XF")'-$*#81'!'"  ! +  73(JD893%82"1++% +$+& &!$!&#-+.,20!-+%#-+)'(&"    "$! !!(%+(! &!MHDÀ»µøôëþúïõóç÷õèòðáêçØúôæûõçþøêùóåùóãûõåþøèøòâóíßûõçÿüíÿÿðüúíúøëüú퉇z %"!=<B? B? 840,)$83 *'%"-,%$     +)0.4286<:!<:#DB-<:%,)OL;52!41"95))% ! +$"(%$! +   +74+EA5KE54/<6 1+A:(mfSaZGF>)?9!<;D@#8293<1K>.2"4"=):$@*G/#G0"J3#K1"G08" D-J0!K1$M6&E0O:%D0=$L30/A' Y7c8wK(pE"lFZ9P0S3 ]:b: \4_8O* >>@"Q3eF'_A]>dA_1m8j6i<[8K/U@cQ#D,cFd@ O' T-pD'n=j8h8i;tH#kD`;cBjJ!\@[DaM(:+ +@5 ' A7-#3)%'     $%  !*&+(/,! " 1,()&)&&$ *(,*0.!., '%  ! **85..+$! +XSO¶±«øôëóïäõñæïëßüùêõòãÿùëýõêùñäÿ÷êþöéûóæ÷ñãÿùëÿÿóÿúîþúîõñåóñåðîâôôèSQE 2/84IF%2/622.% )#3052!.-! + +  $" -+951-1-0,:8=;$53CA,10#" !$" !!&&  +&$ '%'"50?9)71#'!IC3D=+>9&GG%76LH+HB(<48- B2%8&:(<)=*5"=*P;*7"B-ZC1H.5 ?%H1A/9'F06 E/>(B( J+d=X0 L&R. +N.K.I(P+X.]/[-g; Q* F#E& +K0S6U9F*O-d6q<j4h6S.U:XCaOX@S6 +d>k?"i>W)€K)n8n:~M%vFuJnEW2{Z-jM!cJ!`M%>/:/<5F@&PE)@5H<"A7I@/C9-<4))" +  +(*'"$!!"+*%$$EC6B@1'$ %!# '"    +)&$!%##! ## +# #  PKG ›—ýøòôðåÿûïðíÞÿüëÿÿîûóèýõê÷ïäþöéüôçûóæóíßüöèÿûïûõéúöêòîãõóçþüðòòæ$  +8362@=B?&"512-%+(&# *(  + ,*;:%.,*) +' +.* <8B>!0/(' 0.20--;;#>=(/01/    !#    +"!%"/*)$@:.70&)",&<6(02 GI$EF$ON0c_F=7!7.4(0#2%* 5(9,( +?/D5"G5!K6#@$L0">$B,H66% 6" :& C/J5@( >#I'S/ T0V4J*H(I'L%P Y%_)k8Y*G=:H. P7K1 G&^/p8r9r>U.W:WE]MhSF*d>m@W)j8p:v?‡P)zGŠY.…Y*pFa; +lJhI]EJ7<- 0' +KE+<6I>"TF)bT9OA'9-/$6*3),%  +%&!?A>]_\aa_GHC/0(44(VWI[YJ.,$"($&&** !$ 30!*&.*+)" !" + +  +  +  $! RJH§Ÿœûôîüõëÿýñ÷ôåÿÿïþûêúòçÿöíüóêýõêúòçÿ÷ìûõéûõéÿüòÿþôÿÿô÷óêÿÿöüùð©©Ÿ0-<7!MI,:5)$3./).)/)-)#%#&$   + '&1/62<9DA DA 30@=A@!2132'' 25"$"$  35'(,     +  &#63")% 2.# JP*48XY9cbF3/4-.&8,8,' +1&0%?2B6 D4J5 I.D)>$9$RB)WG-J9D0;*B18$ ?* F+ C$I' Q0A#A#I( Q)Y)o8$u=&q9 X& Y0dA#D&>"J0 P4U2d7n8l7i9R/K3\OUJO>gMZ7 ]3 _1Y)n:|Gl7 ‰V+…R%‚S%uIjBuP#aBuY1/7( OC)1),% F8J;bR8XH/. +=0 <0$  !!((&220783JJBEE;45'=>.LJ;(& $ )&!!$"  *'# 1-!86*75)%"  %"  IA?š’øñéûôêùõéùöçÿüëÿþîÿøëûóèûóèýõêúòçûõéÿúîÿùíÿþôÿøîÿÿôÿÿôÆÄ¸[YMTQHHF:-*50EA&<70+ & +)$&  +!20#   55BA#1. 52=;?=63DAII'.-"!++../237)- +25$/1#%' +15&#'      +"  +.+# #&!C>8  */9DK).4BC$UT6-)+%5-+9,9,' 2&?0PB(N<&R<'Y>+G,?)2 I;!RD*A17% /+6*0"+8" 88B(C'=O)Y*`-_+e1Y,T- =7<1E"S, Q$_1b6Y3 L4B4;4GB C7D2L/X3 Z0 +X+_2 o@wFxGb2i: …Y,g<b=H(E(.D3XH1$!'M=#?/F68)3' 7+ +  (%0-$42&97*?=086)  &"   # !         + +   >95ˆ‚ñêâüõëøòæõïáÿûëÿüìþ÷çÿøèüöèüöèþøêý÷éùóç÷óçýùíû÷ëÙÕÉa]Q51%2."%"96':4$<7$.)'" 8440% +-(/*" *'$#&$  +-/:;:<BCCD@ARS)JH"1. ?>NM197))!# "$ ')/1!$ + "#% +     *&?;0 !0-$0-$ '',74= (/KP0RU69:.-3/7/+ 9-K>-. H9$K=#N>%D2@+J1M4@,3# +@4G;!P>&<*/!%'1 @)73<#D(M*S(\.W'^0b9E!8H& +<7F!P) +Q&]2Z4Q3 L99.74<9G?K=M5 S3 +\6M&L!k@P$Š[-uEe6i:L!Q+[9]@"1.I7&&1!?/>.9)5&3$,'   +%  '"!40'?;0@<162&;7+IG8HE6'$ #.*!/*$ie\ƒ}oF@00+.+!    +  +    + +" 61+‰…|ñêàøòæõïãý÷éÿúêÿûëÿûëÿûéþøèüöæý÷éý÷éýùíÿýñòî⌉zKH9TQBA>/! 50% ;6"B=)&! (# )$3.'" 0.64'&"!#$  -.DG,<=35 DEQS$IJ>?ZX1CC&%21?>"55(+68 %'')57!),24&)+   +  ,+&!!'$ +.*!-*!  '-5(.#-0==!PO3>:604,A6"XM9B6 C7TF,H: 8(?-:$ K5S?&@07)A3<(#(/ &".!B1>):#;%D.H.> AAK"X1M* H& +G'I)V3 E"C!O-S.X3U2E(B07+IBB; 6+I:WA_CT6W5i?uJo@~P„T$P"}N"lAc<_;}_=I.*6!A,<+G6$QA(5% @15&:-5((   -) =7+1+"71#93%.(.+[UGWTE#% 2,GA1E?/0*.+$!    88,)* 0.  0, .*0)!ˆwúóé÷ñåøòæþøêýõèÿøèýöæýöæüöæüöæüöèúôæú÷èÿþïQN?NK:C=- 4/1,,'"&! % + !)$# +&/*95;7#!@>'43  +.4837?AAD=>:;BBCC;;*+ @A!.1(+59:>##26)-'**, #"  HD9 +  *)$(/EJ3'+/2&& +54@<?:NG-G=$E9!H<"D5C59+5' >,N:"J8 M=#D4D4K7,&.&$6)8'B+58" C-D.;!C% H) E#E& +C( A% =" : G&< 6C( I+J+R4A( 6&@480 4,;/ TEE1I3I3S9Y8jCc:uL |Q&yP$tJ oJ iG!_>_B$<#O7A,-4# D4B2G7 @0D5!QD1,&  $/)(!90+"+$.'  +?9+d^P     /)2, +  ((+(A>+74#DA0C@1   xqgñêàöðäÿûïÿùëÿúíÿþñýöæþ÷çÿùéÿûëÿûíý÷éüùêÿÿî[XGHE2HC0% ?:&D?)50/+B>%+'&! -(& )$)$513298@@&A@+$$,,  #&(*8:"69'* 45?@45>?:9:;BC!46(* 7:03/3-1 %(       + $ RNC 1.%  !%+/!!%&*14$' #$ML-@==7H?"UJ.L@&9*B33'8,6&G5=-;+QA'F5ZD-<&1>.." +$0! &; @$E,6" +9% :&7! 6 D,L6[F1N<(WA3hQCvZO€fYu`MvbJ€jS€hP‘{cy^}nQˆ}]}rRvkK€sS~oN~mO€pOˆyX€pNƒkG“wRŽpL•wQoIŒnJrN–|Y”{\x\x]…qY‡u]…u^ueNoXr[qbK}nYn_JhYDiZE`S@\O?WK=^RF`VLnf[h`Uqi^ldYsk^„xhh]KmbPpeSrfV|sbg^OYRB]UHƒ}o_YMf_Uzvk„€w‚~u~zoƒ}o|vfvp`sm]khYmj[mi^ie\b]Wlgakf`oleqneywkwuhsr`ywb€{e‚}i{vbup]xrbyse{oŒ†zª¤˜ÓËÀÒÊ¿äÜÑëãØéáÔäÜÏãÛÎãÛÎâÜÎäÞÐæàÒäÞÐåßÏêäÔ¹´¡‘Œxvo\^XB:4<6IC):4=7:45.)".)75:9=<22>=( !))!#,/+-57"?A+79#.035XX@QT7:=?C",0 !+09=".248(, ! ! #'! +       + + !".1&&) (,69$78DD"73:4KB%J>$PA*2#6+?41%A2>/3% H8=,P:#XB+Q;$F2-7'P>(G1H)A! <# :(F6&6)%).4: &#( +15(,3759)-!-112&<0<.8(J6N8 L6F059# M4Z>(Q-I'4 ! +)$!OII„~~ ›˜ ›—˜“¨£ÄÀ·ÏɽÉÁ´Ã¼¬ÍĵÑȹÝÑÃÛÏ¿ÕÌ»ÝÖÃÙÔÀÚÕÁàÙÆÙκÙ̹âÓ¾ÒÆ°ÚϹÔзØÔ»Ò̶ÒÊµÑÆ²ÒdzÒdzÒdzÍŲËıÓ̺ÐʺÓÍ¿ÎȺÔÎÀÍÅ¸ÐÆºÍĵÐÄ´Óȶ×ʹÎïÕȷͰÔÉ·ÐÄ´ÐĶÏõÏŹÚÐÄØÐÃÐɹÔͽÛÒÁÐÄ´ÚξÑŵÑÅ·ÕÉ»ÖÌÀÎĸȾ²Ñɼ×ÏÂÓ˾ÑË»Ò̼ÎɶÓλÏÊ·ÍÇ·ËŵØÒÂÔξÐʼÔÎÂÔÍù²¨wphunf¿¸°×ÐÆÍÆ¼ÖÒÆÒ̾Ò̼Ñ˵ÚÔ¼ÑÉ´ÓÍ·ÓʹÔÍ»ØÑÁÔͽÖÎÁØÐÃÓ˾ÛÓÆ×ÏÂß×ÊÞÖÉÝÕÈÖÎÁØÐÃØÐÃÚÒÅÞ×ÇÞ×ÇÚÓÃØÑ¿Þ×ÅáÚÇÝÕÀÝÕÀâÚÃåÞÄáÚÀÐɯ£ƒ`ZB93+$93%>8*-'72IG0@>%1133-/ !!"!$*,$%$%$&!##&! +!' *12939179?%)/ %5:$6;'(, +   +   CB0,+$#:;+ !#  !' ?D049"16UY8TS4KH'6/:00$ ' (*"$,! 7+>0>,<(B,H0?$>" F'c@,e@&Z:#H2%=2.316MO[kmzqsoow~ƒœš²±¯¬«¦²²¨¾¾²ÃÁ´ÓÍÁÞÖËÜÔÉß×ÌÜÙÊÜÚËÖ×ÇÝÛÌßÜËäÝÍæÚÊçÚÊæÛÉãÜÉÕÓ¾Ø×ÂÔѾ×ÔÃÛÕÅÙÓÃÙÓÃÕÏÁÖÐÂÛØÉØÔÈÙ×Ê×ÕÈÜØÌÛ×ËÞØÌáÙÎÞÔÈÜÓÄØÏ¾ÚξâÙÈÛÏ¿ÞÒÂÝÑÁàÔÄã×ÉÜÓÄÞÔÈÝÓÇߨÈߨÈàÙÇÝÖÄÙÐÁÞÕÆà×ÈÞÕÆàÖÊÞÔÈÛÑÅéßÓÚÒÅÙÑÄÝÖÆÙÒÀÝÖÄÜ×ÃÛÕ¿áÜÈàÛÈâÜÌÚÔÄàÚÌÞØÌâÜÐÝÖÌåÞÔçàÖÐÉ¿±ª ¾¸¬àÚÎÜÖÊÛÕÇÝÖÆàØÅß×ÂäÜÉèàÍßÖÅæÝÎæßÏãÜÌÖÎÁÖÎÁÜÔÇÜÔÇÛÓÆÝÕÈáÙÌÝÕÈÛÓÆÜÔÇØÐÃÖÎÁÙÒÂÛÔÄÚÓÃØÑÁãÜÊàÙÆÙѾß×ÂÙѼÐȳÜÔ½ÛÓ¼ñëÓñëÓ¬¥’LE293#LF661DB+EC,99!+**,$% !+,'*03'*+.,.!*,!+- #(-27 #) !$ +%*"' !&%*&+/4 <@/?C414)   +  + + +))'=<(=<''&QP@('+&)25$+-!#   %*/4#( +)." -2'+%) $" +    $"10#! +%#:9$CE0EF4 8:- $'!%+/16")-#*!( % & 66FB)82>6!*!.&)  ("2++%'$=-8#; 2> K$V1!W8&M9.?99?EQ4D[4HcBSoP^xnuˆ‘ ŽŒ—£¢¨««­´¶³«°©½À·ÃÀ·Å¾¶ÆÂ¹×ÔËÊÌÁÆÌÀ¿Ç¼ØàÓàãØæäØãÚÑìâØæÜÒìä×éæ×áàÎáÛËåßÏãÝÏáÙÌÞÖËàØÍåÝÒÛÕÇÙÓÅÖÐÀÕÏ¿ÚÓÃßÖÇáÕÇäÔÇäÖÉÚÐÄÜÔÇÜÔÇÞÖÉ×ÐÀÖÏ¿×οÛÒÃÞÔÈÚÐÄØÐÃÖÎÁÕξ×ÐÀÚÕÂÛÖÂàÛÈÜ×ÄÜÖÆÞØÈÞØÊÞØÊß×ÌÞÖËÜÔÉÜÔÉàØËâÛËâÙÈâÙÈâÚÇàׯâÛÉàÚÊÞØÊÜÖÈÛÕÉÞØÌàÚÎáÛÏ×ÑÅØÒÄçáÓÀº¬ž–‰ÊµáÙÌß×ÊëßÑéÝÏåÜÍãÚËãÙÍâØÌá×ËßÕÉàÖÊá×ËãÛÎãÜÌáÚÊáÚÊâÛÉߨÆáÚÊãÜÌäÝÍâÛËàÙÉÞ×ÇÞ×ÇÝÖÆÜÓÄÜÓÄà×ÈäÛÊäÛÌáØÇÞÕÆÛÒÁïèØäÝËàÙÆøóßßÚÄ:5  + #& (+>B)<@)"%#& "#(', #"&&*'+'+     ! 31MK4*(IH4!"13% + 6:!%)# >C-%#!(!(!24868383,%1(2+# + +&#)#,%*"  -B(?? N(+ 1'%&)2&7!9S7Ql1G_IYpPWi=71SNHROHZ[SOUK-7.µ¿´êðæáãØíæÜäÚÐéßÕéáÔæãÔìéØèâÒêãÑëäÔìãÔêàÔéßÓèÞÒæßÏÛÔÄÙÒÀÝÖÄâÙÈâÖÆâÕÅæÖÉäÖÉßÕÉßÙÍßÙËáÛÍÞ×ÇߨÈÝÕÈß×ÊàØÍÝÕÊÝÕÊÞÖÉÜÕÅÜÕÅÞÙÆßÚÆâàËßÝÈÜÙÆÝÚÇàÝÌàÝÌàÚÌßÙËÝÕÊÝÕÊãÙÏæÜÐçÝÑçÝÑêÞÒæÝÎäÝÍæßÍèáÑæßÏäÜÏãÛÎäÜÏåÝÐêâÕÝÖÆéâÒäÝÍÁºªÙÒÂìä×ß×ÊèÜÐæÚÎåÙÍåÙÍåÛÑçÝÓçÝÑçÝÑäÚÎåÛÏèßÐçÞÏäÝÍåÞÌæßÍãÜÊäÝËæßÍçàÎçàÎçàÐæßÏæÝÎåÜÍéßÓäÚÎÞÔÈÞÕÆâÚÍåÞÎåÝÐåÞÎáÙÌîç×îéÖïêÖõðÚ¹·   %$!# %( 79!57! +.2#-1" !% + + +    + + + " *';9$%#)'?=&QP<13% "3749#19$18& ! /2.-  +#$%" # !/ 1 6I)L.#I0)) '!;T=Yq8NcEUd/5A  $&' ONJgfaYTNYTN!@=6ed_mpi6=5291ÅËÁàâ×áÝÔâÙÐíãÙìä×ïéÛåßÏæàÐæßÍíäÕñèÙòæÚéßÓåÜÍìãÔãÚÉãÚÉæÞËçßÌçÛËæØËéÙÌèÚÏéáÔæàÒâÜÎçàÐéâÒìåÕèàÓåÝÐãÛÐàØÍáÙÎçßÒéâÒéâÒèáÏåàÌéäÎæäÍäßËàÞÉæáÎæáÎãÝÍãÝÏáÙÌàØÍãÙÏæÜÒæÜÒéßÕìßÖéßÓæÝÎçàÎéâÒéâÒèàÓæÞÑåÝÐäÝÍâÛËçàÎåÞÌïèÖÞ×ÅÑʺæßÏçßÒèÞÒêÞÒêÞÒêÞÒçÝÑèÞÒëáÕîäØéßÓëáÕíäÕëâÓèáÏëäÒìåÓéâÐéâÐêãÑêãÑêãÑëäÔíæÖîåÖíäÕíã×îäØêàÔçÝÑéáÔëãÖëãÖîæÙóëÞ÷ñáñìÙÜ×ÃüúãàÞÇ20&#! +BA/JI50068 46 +- + #' $' +%( #      !!;;/*(?=.(%63 #! " 41   ).6;%! >F/IQ:'/! ##'36%;>-%&$#)'*& "" +$2"J4)A*"10!" ( ,<&8L*CW7QbG[d7DJ49+PM:-.  " &*"'$*26>& (&.%")#' ?A3=@/'*)*#!! -!% % '>-&5&2'!%  %+9);&7I=P_PblDTT+62?D@PPNCAD75:"zwnŸ‘ˆ†z”‘ˆ^YSTOIgd]mlg[\TrofߨÎåÝÒçÝÑëäÔéâÒñëÛêäÔëåÕìåÕïèØñçÛðçØëâÓäÝËéâÏîèÒéâÏèãÏôíÛöïßõëáûñçôêÞõìÝóêÛõìÛóêÙ÷îÝõìÝøìÞùíá÷ëßöêÞóêÛðçØòéØöîÛ÷ïÜ÷ïÜ÷ðÝ÷îÝôíÛöîÛöïÜöïÝ÷ðÞ÷ðÞöïÝøïàøïàöíÞöíÞ÷íáöíÞùðßõíÚòéÚòéÚõëß÷íáùðáúñàúóà÷ñÛûõßôîØÿøåçàÍãÜÌùòâ÷îÝõìÛóêÙôëÚöíÞøïàøïàøïàöíÞöíÞøïàøïàöíÜ÷îÝùðßøïÞôíÝõîÞõîÞôíÝöíÞ÷îßöíÞõìÝøïàûòãøñáôíÛôíÝöïÝöðà÷òßþøèõðÝ÷ôáùöãðíÜöóâµ³¤ -+   ! 21ED/89' +""%%  MNFOQF     ++.%   +  0." !85&4.3-WQA,)%#() + +#"&#"'$ +060&*!"5+. % ,$# (,!,$!('#* &6#4+7GKXaJUY094AF?MPG9:4>?A)*, %& €~o¢¡‚ƒu‘‘…ŽŠ*#<5/ohbpkehe^\YR˜‘‡ÜÔÉíã×ãÜÌèáÑòíÚìåÓëäÒêáÐîåÔîâÔíáÑòæÖëãÐêâÍðêÒóí×óí×õîÜõîÞ÷íãúðäøïàúîÞ÷ëÛùîÜùîÜþóáúîÞúíÝýïâýïâýïâùíßöêÜøìÜûðÞúïÝûïáùðáüðâúñâúîÞúñàüôáûóàùñÞùñÞúóàúóàøñÞøñÞùòßøñÞ÷ïÜõíÚõìÝöíÞ÷íáöìàöíÞ÷îÝùñÞúòÝúôÞîèÒüõâûôáߨÈïèÖüôáúòßùñÞøðÝùðßùðßùðß÷îÝùðß÷îÝùðáûòãùðáøïàúñâúñâõíà÷ïâøñáøñáúñâúñâûòáúñàøïÞùðßùòà÷ðÝõðÝ÷òÞöñÞñìØú÷äÿÿíöóàòïÞïíÞöôåÚØËfdWjh[kiZqo`hfYgcWieYMI= 6679$"#  !PRGJJ>    +-"  "# " ,(NJ>)# /)96'75(00$(*&+$* & +39$*,2 58'.0"59*"$ (( .&2&4*3- !%#$')!.5=HKRX5;;9<5OQF<>3>?7>><352,-(@B7qp^zyedeUecV~zoLE;"ibZsldnjaok`IE:E?3À¸«èàÓçàÐçáÑëæÓêãÑæßÍæÝÌïæÕëßÏäØÈôèØ÷ïÜïçÒðèÓòìÖóìÙóìÚ÷ðàúðäøîâùíßûïßùíÝûðÞùíÝýñáûîÞúíÝúìßúîàýïâüðâýñáþõäÿóãùíÝüðâûïãýñåýñãúîÞüðàýõâúòßúòßùñÜúòßùóÝ÷ïÚöðÚøðÛøðÛ÷ïÜ÷îÝùðßúñâùðáøïàùðßüóâþöãùñÜ÷ñÛùóÝöïÜÿùççàÎôíÛúòßûóàüôáúòßøðÝ÷ïÜ÷îÝøïÞûòáøïÞúñàýôãûòãúñàûòãýôåúóãûôäûôäùòâùðáùðáùðßùðßûòáûòáüõãûôáöñÞøóßøóàòíÙÿþëýúçùôáóðßëèÙåáÕàÜÐêæÚäáÒųÓÐÁÀ½®ÏË¿¿»¯Ò΋ˆy10,.%&  .0%]_RQRD"#    +   +    $!1/# EA6#!+'-)&$! '-)2&/5<(-24*++.02$   &#&-1:(/9",!(0%+-4:SX\^bcMOLTUOqqivvl„x…‚{Ž‹„¬© ´²¦›™Š…ƒt{xgmjYztfe_Q1+[UG„~rrl`vpd—‘…ÐʼèâÔÝ×ÉæàÐèâÒæàÐèáÑåÜÍÞÕÆíäÕðçØåÜËçÞÍúñàåÝÊïèÕðé×úóáûôäùòâõîÞõîÞõìÝöíÞùðáúñàûïáøìÞøìÞùíßúîàûòãýñã÷îßøïàüõåüóä÷îßùðáøïà÷îß÷îß÷îÝ÷îÝøïÞùðßùðßùñÞúñàúòßûðÞöîÛøíÛùîÜøìÜùíÝüðàüðàùíÝøìÜúîÞúîÞýôãüôá÷ïÜøðÝøñßüõãçâÏíæÔûòáüóâúñàüóâøïÞøïÞôíÛõîÜøñßöïÝøïÞúòßúñàøðÝøïÞúñà÷ðÞöïÝøñßøñßôíÛôíÛöïÝöïÝùòâøñáùòâøñßõîÞùòàúóãõîÜ÷ðàëæÓéâÐßÙÉÝ×ÇÛÕÇÚÔÆÙÓÅ×ÑÁÆÀ°¼¶¦ÇÁ±Á»­º´¦ÇĵäáÐÅİxwbA@,*(  +'(_`PgfT32*)%$"! &' +   #$    + +     +>;2$! #!!$D9ALFN[RZeW^dqvy‡Œ™ž¥§¤¨©¤±°«»¸±½º±»·¬±­¢°¬ ¿»¯ÐÌÀØÔÈÞÛÌÛÕÅÌÇ´¸²¢¢œŒŽˆxtn^Œ†x¼¶¨ëå×òìÞôîàçáÓæàÒæàÒÝ×ÇáÚÊßÖÇæÝÎåÜÍíäÕíäÕèßÐêáÐõìÛåÞÌðé×ôíÝöïßóìÜùòâ÷ðàôíÝöíÞ÷îßùðáúñâùíß÷ëÝ÷ëÝùíß÷îßúñâúñâøïà÷ðàúóãùòâõîÞ÷îß÷îßøïà÷îß÷îÝ÷îÝùðßúñà÷îÝ÷îÝúîÞûïßûðÞùîÜùîÜúïÝ÷ëÛ÷ëÛøìÜ÷ëÛóç×ôèØøìÜúîÞüóâúñàöíÜøïÞöïÝúóáåàÍæáÎùðáùðáøïÞúñàøïÞùðßõîÜõîÜ÷ðÞöïÝøðÝúòßúòßøðÝøðÝúòßøñÞ÷ðÝøñßøñßõîÜõîÜ÷ðÞ÷ðÞùòâùòâùòâøñáöïßøñáøñáõîÞðéÙçàÐèáÏçàÎìåÕíæÖîç×îç×ðéÙóìÜõîÞõîÞñëÝüöèõòãëè×ÿÿíÿÿ늉w 1/"IJ8cbP=<(65 320/?A,23#"$   +   + + +  + 74+=:1 #%07' $ &+/1$$ +)+*(*./')    !  %.)9CB;ENEQ]ht€|†„Œšž£§¦¦¨¥¨©¤®­¨¹¶¯½¹°ÆÂ·Àº®¼¶ªÁ»­Ä¾°Å¿±Å¿±Å¿±ÈÂ²ÌÆ¶ÎȸÛÕÅêäÖÛÕÇðèÛûóæùñäñéÜéáÔÛÓÆæÞÑçßÒß×ÊÝÕÈæÝÎìãÔèßÐíäÕñèÙôëÜôëÚøïÞêãÑíæÔøñá÷ðàðéÙùòâùòâ÷ðàøïàøïàùðáøïàøìÞ÷ëÝøìÞúîàöíÞøïàùðáøïàøñáùòâ÷ðàôíÝõìÝ÷îßùðáøïà÷îÝöíÜøïÞùðß÷îÝ÷îÝúîÞúîÞùîÜøíÛøíÛùîÜøìÜùíÝüðàûïßøìÜøìÜûïßýñáþòâûïß÷îÝúñà÷ðÞúóáèãÐãÞËùðßùðß÷îÝúñàøïÞúñà÷ðÞ÷ðÞõîÜöïÝùñÞüôáûóàøðÝøðÝúòßúóàøñÞùòàøñß÷îÝøïÞúñàúñàùðßúñàùðáøïàùðáøïàøïàùðáøñßïèÖóìÚôíÛ÷ðÞöïÝöïßøñá÷ðàüõåîç×ÛÔÄëå××ÑÃéæ×ØÕÄñðÜçæÑ£¢" 56($$*+HI7^_M?A,98#::"5568"89'14#   +    + + +   +++! % ' ( "*tzlgk\]^NYZH\[I^\M[\Lln`CG9 + ($5A?6ACQ[dq~‡Œ•Š•›•››œž›Ÿ ›§¨£®­¨´±ªÁ½´ËĺÁ»¯Â¼®ÈÀ³ÌƸÏǺÐʼÖÎÁÜÖÈÒ̼ÍÇ·ÑË»Ïɹ×ÑÃàÚÌØÐÃçßÒíåØçßÒåÝÐß×ÊâÚÍåÝÐäÜÏåÝÐñèÙñèÙîåÖõìÝúñâüóäûòáÿ÷æòëÙçàÎ÷ðàûôäôíÝúóãùòâüõåùðá÷îßöíÞöíÞ÷ëÝ÷ëÝùíßûïáöíÞöíÞøïàùðáùòâøñáöïßôíÝöíÞøïàùðáùðá÷îÝöíÜöíÜöíÜ÷îÝøïÞúîÞùíÝøíÛ÷ìÚ÷ìÚøíÛöêÚ÷ëÛúîÞûïßùíÝùíÝûïßúîÞýñáúîÞùðßýôãøñßúóáìçÔäÝËúñàúñà÷îÝøïÞöíÜúñà÷ðÞ÷ðÞôíÛöïÝúòßüôáûóàùñÞøðÝúòßúóàøñÞùòàøñß÷îÝùðßúñàùðß÷îÝúñàøïàøïàúñâùðáøïàüóäöïÝðé×öïÝöïÝöïÝóìÚöïßúóã÷ðàúóãÓ̼RK;¡›[UG¬©šifU¡ ŒŽyº¹§&$;<.--! &'AB0PR==?)00//::"68 ,.-0$',/9;-#%           + '336BB8DBnyuàéäëòëÕØÑÃļ¾¾¶Âû¹¼³«°©€‡5?7=C?9?=:@@/79$+5%2.!.!,2!,0>IKXcgy„І‘—‰”˜¥§¡£ ©ª¤±±©¼¹²Á¾µÅÁ¶ËŹÉÁ´ÈÀ³ËÄ´ÍĵÑʺÞÕÆßØÈØÏÀÓ̼ÜÕÅÞ×ÇÕξÝÖÆÝÕÈÚÒÅÖÎÁäÜÏÞÖÉäÜÏäÚÎâØÌãÚËæÝÎèßÐôëÜóéÝõëß÷îßýôåûòãúñâøïÞÿöåúñàåÜËöïÝûôâõîÞùòâúóãüõåøïàõìÝôëÜôëÜøìÞùíßúîàûïáöíÞ÷îßøïàùðáùòâøñáõîÞôíÝöíÞøïàùðáøïà÷îÝ÷îÝöíÜôëÚöíÜ÷îÝùíÝøìÜ÷ìÚ÷ìÚùîÜùîÜùíÝöêÚöêÚ÷ëÛ÷ëÛùíÝûïßûïßüðàùíÝúñàüóâøñßøñßíæÔáÚÈøïÞúñàöíÜöíÜóìÚøñß÷ðÞ÷ðÞõîÜ÷ðÞúóáûôâûòáùðßùñÞúòßùðßùðßúñàùðßøïÞùðßúñàøïÞ÷îÝùðßøïÞøïÞûòáùðßøïÞüóâõîÜïèÖöïÝöïÝ÷ðÞõîÜ÷ðàúóãùòâûôä×ÑÁqk[¶°¢|vh¼¹ª‹ˆy·¶¤«ª˜ÊÉ·(&*+$$ !/0"34"79$46 ////8813,.25 03 -036%!#)+     +  +  + +  +    +  + #.25HLNaeL^bRaf}ˆŒ„Œ¤©¬º¾¿•–˜‚†…~„‚x~oyxy……~‰‹r}erxUbkAM[6AS0;O/:L*6BCMV`kot~€ƒ‹Ž•𥫫Ÿ¤ §¨ ³³©½º±ÂÀ´ÄÀµÊĸÏǺÉÁ´Ë³×οÚÑÂØÏÀÛÒÃÛÒÃÙÐÁÜÓÄ×ÐÀÕξÚÓÃÜÕÅÜÔÇãÛÎæÞÑáÙÌàØËäÜÏêàÔòéÚíäÕñèÙòéÚõìÝöìàöìàöíÞ÷îßôëÜùðáöíÜøïÞüóâéàÏ÷ðÞ÷ðÞðéÙ÷ðàúóãøñá÷îßõìÝóêÛõìÝùíßûïáûïáüðâ÷îß÷îßøïàùðáøñáøñáöïßôíÝõìÝ÷îßøïà÷îß÷îÝøïÞøïÞöíÜøïÞøïÞùíÝ÷ëÛöëÙ÷ìÚùîÜùîÜûïßøìÜùíÝúîÞûïßýñáþòâûïßüðàúîÞúñàûòáøñß÷ðÞíæÔÞ×Å÷îÝúñà÷îÝöíÜòëÙùòàùòàùòàöïÝ÷ðÞùòàúóáúñàúñàúòßûóàøïÞøïÞúñàúñàøïÞùðßúñà÷îÝùðßúñàùðßøïÞùðßùðßùðßúñàúñàóìÚøñßøñßûôâùòà÷ðàôíÝõîÞýöæ÷ñáðêÚôîàûõçôñâóðáÿÿïÿþìÌÊ»31$ !./23!>@+57!**..3347026:#15$'),47$ + "')   +  +     +  " +"$!5PW@[bIdkD\fDZeAU`@Q[.;Dˆ‘š‘˜ W[dU\dOX_ERXAPW:KR;MW1EP+>L0CR7I]:K_7F]-:MAM[gqzs{~„ŠŠœž©ª¥±°«²²¨¹·«¼º®À¼±ÄÀ´ÆÀ´ÊĶÕÍÀÖÏ¿ÙÐÁÙÐÁÚÑÂÜÓÄÞÕÆà×Èá×Ëà×ÈÛÔÄæßÍâÛËâÛËèáÑâÛËíäÕëâÓêáÒèßÐóêÛúñàöíÜúñàÿ÷æùðáùñäôìßðéÙîç×îç×ùòâõîÜôíÛúñàíäÓûòá÷îÝðçØõìÝüóäøïà÷îßöíÞöíÞ÷îßúîàûïáûïáüðâøïàøïàøïàøïà÷ðàøñá÷ðàôíÝôëÜ÷îßøïàöíÞöíÜøïÞùðßøïÞùðßùðßúîÞ÷ëÛöëÙ÷ìÚùîÜùîÜøìÜ÷ëÛùíÝýñáþòâþòâüðàøìÜýñáüðàùðßùðßúóáøñßîçÕÝÖÄ÷îÝüóâúñàøïÞôíÛúóáúóáùòà÷ðÞøñßøñßøñßùðßúñàûòáüóâøïÞùðßûòáúñà÷îÝùðßûóàùñÞùðßùðßúñàùðßúîÞüðàýñáøïÞöîÛòê×øïÞöíÜùòàùòà÷ðàôíÝþøèïéÙÿûíý÷éÿÿðýúëóðáòïàîìÝðîß©ªœ,-$%./:<'13,.69:: 58-08<#7;"(,#&14!&) $&%' +      +     *,) A_i=[e@^i;YdJdsF\jK\lS`pYbqQYfQWcQYdOYcKYbHYaFZcBXfNewD[mCYnH]r9Ka5FZEUe`jvs|ƒŠ’ ¢Ÿ¨§¢±®¥¶²§Áº°Á½±À¾±Ã¿³Ç÷ËÅ·Ñ˽ÜÕÅÜÕÅÜÓÄÖ;ÜÓÄãÚËÞÕÆÜÓÄßÕÉÝÔÅãÜÌáÚÈèáÏåÞÌçàÐîçÕîåÖòéØìãÔõìÛúñàøïÞþõäøïÞùðßúñàôìßïçÚðéÙðéÙïèØ÷ðàôíÛöïÝøïÞîåÔýôãûòáòéÚóêÛüóäúñâ÷îß÷îßøïàùðáûïáúîàûïáýñãøïàùðáøïà÷îßöïßøñá÷ðàôíÝôëÜ÷îßøïàöíÞöíÜøïÞùðßùðß÷îÝøïÞùíÝ÷ëÛ÷ìÚùîÜûðÞüñßúîÞøìÜùíÝûïßûïßýñáýñáûïßýñáýñáøïÞøïÞüõãúóáïèÖÞ×Å÷îÝýôãüóâúñàõîÜúóáøñß÷ðÞùòàøñß÷ðÞ÷ðÞøïÞúñàüóâýôãùðßúñàüóâúñà÷îÝùðßüôáúòßùðßøïÞúñàùðßùíÝýñáÿóãúîÞøðÝ÷ïÜýôãøïÞ÷ðÞöïÝøñáøñá÷ñáþøèùóååßÑÔÑÂÄÁ²º·¨ª§˜š˜‰xvg<=/    23!79$79#-/(+4425-1+/-1"& &*/225"), " "       +  +  9Yf;[h<\k9VfHbsD[mJ[mR_p>GVOWdIO[GPYDNWDQYCRY;MW5J]8Ne@TlBVn=Oe5HY?O_[itu~‡Œ‘•ž Ÿ¡ œ§¤›´­£À¸­Ç¿´Ã½±¿»¯Ã¿³ÎʾÙÓÅÛÕÇÙÑÄ×ÏÂ×ÏÂÖÎÁ×ÏÂÜÔÇá×ËâØÌá×Ëà×ÈãÚËçÞÍçÞÍæÞËìãÒðèÕòëÙ÷ðÝÿøæÿúèÿùçûôâþ÷åùòàýöäøñßóëÞéáÔèàÓéáÔ÷ðàòëÛôíÛýöäÿöåòéØùðßøïÞõìÛôëÚøïÞüóâùðáûòãùðáöíÞùíßúîàúîàûïáöíÞùðáùðá÷îßøñáøñáöïßõîÞõìÝøïàùðá÷îßöíÜøïÞúñàûòáùðßøïÞúîÞûïßûðÞûðÞùîÜ÷ìÚùðßõìÛùðßøïÞýñáúîÞÿóãþòâúîÞþòâøïÞûòá÷îÝýôãõîÜÜÕÃúñâþõæúóãþ÷çöïßùòâøñáùòâýöæüõåûôäüõåúóãÿüìþõæÿûìûôäÿùéûôäýöæýöäùòàÿöåýôãøðÝøðÝúñàúñàýñáýñáýñãþòâúòßöîÛÿøæüõãùòâ÷ðà÷ñãûõçòìÞÊĶ®«œ‹ˆyro`nk\‚pro`?=0  ,/CE08:$,.,.(*35-1+/)-&*/358#,/+.,/35(#%#%#$         +IK=KL:KR-@Q5G]GYq=Md,=OCS`er{s~„’ššžŸ  ž©¦Ÿ´°¥Àº®Ä»²Ãº±Á»¯ÆÂ¶ÎʾÔÐÄØÒÄ×ÑÃ×ÏÂÕÍÀÕÍÀ×ÏÂÙÑÄÚÒÅÝÓÇâØÌçÝÑéàÑäÛÌëâÑðèÕñéÖóëØôìÙõîÛùòßÿúçûôáøñßÿùçüõãøñßøñßüõåñéÜðèÛðèÛðèÛöïßöïßøñßûôâÿöåðçÖ÷îÝøïÞøïÞùðßùðßúñàùðáûòãùðá÷îßúîàúîàúîàûïáøïàùðáøïà÷îßùòâøñáõîÞõîÞõìÝ÷îßùðáøïà÷îÝøïÞùðßúñà÷îÝ÷îÝùíÝùíÝúïÝúïÝùîÜ÷ìÚøïÞùðßøïÞúñàþòâäØÈÞÒÂöêÚúîÞþòâøïÞûòá÷îÝýôãõîÜÜÕÃøïàüóäþ÷çöïßöïßüõåøñáÿøèÿýíýöæùòâùòâÿùé÷ðàÿöçüõåûôäùòâüõåøñáýöäþ÷åúñàýôãûóàúòßúñàúñàýñáýñáüðâûïßôëÚîæÓíæÔïèÖòëÛèâÒÛÕÇÐʼµ¯¡wtezwhliZtqburc{xiHF7 &&.179$,.')134624*.,0+/*.48!8<%,/%(03 ),68*24&  "$  + +  %% +  >TkCYn3I^'=RF[nM^pO\lIS_@DOSV[UVXRVUPUQMWOJUM@NN7EP;HY@M`5AQ?KWhsy‰‹Š“’¡ ¥§¤¯°ª¹¶¯»·¬¼¸­Â»³ÉºÈĹÑÍÁ×ÓÇÕÑÅÓÏÃÕÑÅÚÔÈÚÔÈ×ÑÃÜÖÈÞØÊÚÔÆÛÓÆáÙÌéáÔìåÕêáÒìãÒòéØ÷îÝøñßúóáùòàõîÜ÷òßóîÛÿüìöðàòìÜùóãêäÔľ®èàÓòêÝóëÞ÷ïâõîÞöïßùòàüõãüóâîåÔöíÜøïÞùðßúñàùðßøïÞùðáúñâúñâøïàûïáùíßùíßüðâøïàøïàöíÞ÷îßùòâøñáöïßöïßöíÞöíÞ÷îßøïàøïÞøïÞøïÞùðß÷îÝ÷îÝùíÝúîÞûðÞûðÞúïÝùîÜöíÜúñàøïÞüóâÿõåâÖÆÛÏ¿ùíÝûïßýñáùðßûòá÷îÝýôã÷ðÞÜÕÃøñáøñáùòâúóãùñäøðãÿùëÐʼÁ»­Ý×Éÿ÷êûóæüôçøðãûóæüôçûóæôîàÿûë÷ðàöïßøñáþ÷åúóáüóâúñàùðßùðßúñâûòãûïáùíÝìãÒäÝÊÞ×ÅÖϽÔξÏɹ¼®‹ˆynj^rpcywjhfYki\TRE+)+)+,%&(( + "$&#% !#'*(+*.,.+-/1,.&*'+%)$(-137 *.$'*-47$9<),/ +,-&' +    85$.-20#55+&%  EWoDYn+@UGN4?E=HN`kqˆ‘•œ¢ª®­¸¹³ÀÀ¶ÆÄ¸ÊƽɺÏɽÕÏÁÕмØÓ¿ÚÔÄÕÏÁÙÑÆÚÒÇÜÔÉÞÖËáÙÌäÜÏèàÓëãÖïèØðéÙòëÛõîÜ÷ðÞúóàüõâüõãüòæüòè÷ïäòêÝòìàôîâôîâñíáû÷ëáßÓ—•‰ZZPMMEIJBXYQCC;µ±¦ÿúîóëÞ÷ïâùòâôíÝóìÜýöæÿøçóêÙøïÞøïÞúñàüóâüðàøìÜùðáüóäúñâöíÞøìÞúîàùíßùíßøïàúñâùðá÷îßöïßöïßöïßøñáúñâùðáøïà÷îßøïÞúñàúñàùðßúñàûòáýñáýñáüñßûðÞûðÞüñßùðßúñàöíÜüóâýôãùðßöêÚþòâýñáúîÞýñáüðà÷îÝúñàûòáÚÑÂ÷ïâüôé÷ïä÷ïäóíáÿýñ·±¥mg[^XLÅ¿³–…“Œ‚ž•Œxofg^UÖÍĈ~YUIÌȼmj[‚|nȲÿüì÷ñáøñßûôâûôäøñáøîâùïãúðäúñâûôäùòà÷ñáïéÙõòãôñââàÓLJ>  "$!#(*!#  !  ! +$&,. +,*+,-&'"&)" +!$-148!*.!% 15*.,0+/#'&)),;=/"!    ('1165 AWdI_lG_kC[gF\iQepTfpQ_h:DMAJSAHR?FP;AM9AL5?K=GQ\gk‡‘“—Ÿ¢¢§ª¶¸³¾¿·ÊȼÓÏÃÐÊ¾ÌÆºÔÌ¿ÛÔÄØÑ¾ÙÒ¿ÝÖÄÛÓÆÚÒÅÜÔÉÞÖËáÙÌåÝÐêâÕîæÙïèØóìÜùòâüõãûôâúóáüõãýöäüõåøðãüôé÷ïäðêÞñëßöðäùõéþúïÛÙÍ‹‰}WWMTTJ\]UYZT[\VEE=¬¨ÿûïöðâôìßõîÞøñáúóãöïßÿöåòéØùðßùðßúñàûòáüðàùíÝøïàüóäúñâõìÝøìÞûïáúîàöíÞ÷îßúñâøïàöíÞöïßøñáøñáùòâúñâúñâùðáöíÞöíÜøïÞùðßøïÞøïÞùðßüðàüðàûðÞúïÝûðÞüñß÷îÝúñàùðßýôãùðßüóâüðàýñáþòâúîÞþòâûòá÷îÝùðßúñàØÑÁöîá÷ïäÿ÷ìõíâóíáÿûíœ–Š¤žzth³­¡¨ •}uj ˜¦ž“‡~u»³¨€yonh\Àº®]WI^XJíæÖÿûëúóáøñßúóáûôäøñáøïàùðáúðäúñâûòá÷ðÞøñáòìÜìæØôñâèæÙMK?! !!! "!!#(*+-(*23%(+ ),$'  #%($(%)+/(,,0!%#')-"%.0#  **)(  AXfE\jH^lJ`nDWf>N]>K[=IW/9E1;E/7B-7A4>H1>G:FR_ir‡‰–’šŸ›®±ª´´ª¼º®ÌɺÏɹÑË»ÏȸÓ̼×о×Ò¿ÚÕÂÝ×ÇÜÖÈßÙËÝ×ÉåßÑâÜÎèâÔñëÛðêÚôïÜýöäÿûéÿüêÿÿíÿøæÿüìþ÷çùñäøðåÿøîôíãùõêüøíüøíðìáÌÈ¿~uYVMWWM__U[[Qff^__WHH>¤¢•ÿüíòìÞòêÝ÷ðàüóäõìÛûòáûòáïæÕ÷ðÞøñßùðßøïÞûïáûïáøïàúñâúñâöíÞõìÝöíÞ÷îßöïßøñá÷ðàöïßöïß÷ðàøñáøñáøñáùòàøñßöïÝöïÝøïÞøïÞùíÝøìÜùíÝùíÝúïÝûðÞüñßüñßüñßüñßøïÞùðßúòßûóàýòàüñßúïÝùîÜüðàýñáýôãûòáùðá÷ðàõîÞÙÒÂóëÞþöéõíàúòåùñäÿúꑉ|¹²¢€xk¸°£¹¯£{qeœ’†À¶ªuk–Žwodh`S·¯¢qjZUN>üóâÿûê÷îÝúñàúòßùðßúñàúñàúñàùòâúñàøïÞýôãøïÞóìÜïéÛñîßëéÜRPC "$  "$& # ! !%#'"&(+,0)-04#-1 !%'+%*#("'&+27!27!,1*/ +#( !%'* +$% )'<:%"  !"G^lLcq>TbM`o3ES ),, + )'30=F?LUTaj‰”š˜žœ£¦Ÿ©ª¢´´ª¾¼°ÄÁ²ËŵÑ̹Ó̺ÔÍ»ÔÍ»ØÑ¿ÞØÈàÚÊàÚÌãÝÏæàÒçáÓêäÖóíßñëÛõïßúõâøóàÿÿíÿûéÿûëúóãÿøëøðãñéÞùóçùòèøôéÿüñìèÝîêßû÷쳯¦plc^[R_\SYYOXXNRRH__U^^VKKA ž‘þüíîèÚñëÝöíÞþõæöíÜüóâûòáïæÕõîÜõîÜ÷îÝøïÞûïáúîàöíÞøïàùðá÷îß÷îßøïàøñá÷ðà÷ðà÷ðà÷ðà÷ðàøñáøñáøñá÷ðàøñß÷ðÞöïÝöïÝùðßúñàûïßúîÞüðàûïßüñßýòàýòàûðÞúïÝûðÞ÷îÝøïÞúòßûóàþóáýòàýòàüñßüðàýñáûòáùðßøñáùòâóíÝÓͽôìßúòåýõèûóæøñáÿùé…~nœ•…†w«¢“›’ƒ~uf£™‘‡{ui™ƒwobtl_£š‹Ÿ–‡qhWÿúéûïßýñáýòàüñßúñàúñàûòáûòáúóáúóáýñáþòâúñàïèÖòëÛóðáèäØVTG + +  ! +  #%#% #%$'(+&) #%(+.+."%%(&)%(!$!$/2+.*-!  (++. #  23!,+'&/-CA,)& + 31"., F]mI`nCYgH[i>P\(8E)7D)7D%1?4@N'0?-6E>HTGQZ‹”œ¦¨šŸ›¯°¨»¼´¹¹­ÃÁ´ÉÆ·ÌÆ¶ÕμØÑ¿ÛÔÁØÑ¿ÛÔÂçàÐêãÓçáÓìæØóíÝôîÞõïßòìÜóíÝûõåöðàúôäÿûëÿùéòìÞëå×ùóçóíáþ÷íÿøîÿøðÿÿöáÝÔœ™—”‹›˜li`^[Rb_V]ZQTTJff\ZZP[[Q__WNND™—ŠþüíïéÛñëÝòéÚüóäôëÚüóâýôãðçÖöíÜöíÜ÷îÝùðßüðàúîÞöíÜøïÞøïÞøïÞøïÞùðßøñß÷ðÞöïÝ÷ðÞøñßùòàùòàøñß÷ðÞ÷ðÞùòâøñáøïÞùðßúñàûòáüðàüðàüðàûïßûïßþòâýòàúïÝùîÜúïÝøïÞøïÞüðàýñáþòâþòâÿòâþñáýñáýñáúñàøïÞøñáüõåóíÝÊÄ´÷ïâ÷ïâøñáöïßøñáùòâƒ|jun\ž•„ƽ¬vgzqb«¢“h_P§‘ÝÓÇul] —ˆ¼³¤Æ½®© ÿúéüðàÿôäýòàüñßùñÞùñÞúñàûòáúóáùòàÿöäùîÜùðßõîÜôíÝîëÜîêÞigZ  +  ')""  +$$ %&$%'))+ " &()++-#%"$!##% " &(.0')*,#%+-35  0/4186!(&:8!=;&'&53$75(=;.I`pF]mLboH\gJ\fOakHXeO]jKWgP\l@IZ7@OR\hpy‚œ¥ª¤­¬®°«·¹®ÀÀ¶Å÷ÍɽÌɺÒË»ÝÖÄÝÖÄߨÅÜÕÃߨÆêãÓïèØïéÛôîàöðà÷ñáüöæùóãûõåþøèòìÜóíÝñëÛóíßôîâüõëúóéýöîöïéçâÜùõìÔÑÈ‹ˆa^UTQHYVMc`Wc`W_\S`]T[[QddZXXNYYO``XJJ@ŽŒýûìñîßôîàòêÝúñâõìÝýôãýôãñè×øïÞ÷îÝøïÞúñàýñáûïß÷îÝøïÞøïÞ÷îÝøïÞøïÞ÷ðÞõîÜöïÝ÷ðÞùòàùòàùòàøñß÷ðÞ÷ðÞøñá÷ðàøïÞùðßúñàúñàûïßûïßüðàùíÝúîÞýñáýòàúïÝúïÝüñßùðßúñàüðàýñáýñáýñáýðàýðàüðàýñáûòá÷îÝøñáýöæðêÚÀºªñéÜÿùéùòâüõåúóãýöæËIJ½¶¤àׯþõ仲£†w„uº±¢ïåÙùïãÖ;ðçØïæ×ñèÙîåÔþõäúîÞûïßýòàüñßùñÞøðÝùðßúñàúóáúñàýòàüñßùðßöïÝòëÛõòáïìÝ^\O + $& +      + &'&$ +*()-,-/.-$&%$  "$)+,.*,02!# )+&(#% +(( +)30=;&#! +(&;9"0/+*)' +*'DYlI^oI\jL`kM_iK^eRcmTboQ]m6AS5=PNUgƒ‹–›¢ª¥­°¯µ³´µ¯ÀÀ¶ÇÄ»ÏÍÁÑÍÁÒÏÀàÙÉâÛÉãÜÊâÛÉäÝËçàÎëåÕòìÜ÷ñãøòäôñâõòãøõäõòáôñâðíÞðíÞíêÛðíÞòîâþúïãßÖÓÎÈêåß±¬¨‘Œˆ²¯¨ttlTTL[[SUUM]]Uee]WWOWWO^^V[[SSSKYYQ^^V]]UKKA…ƒwúøëôðäóíßøðãûôäøïàüóäûôäðéÙøñßøñßùðßùðßüðàûïßùðß÷ðÞ÷ðÞöïÝöïÝ÷ðÞ÷îÝöíÜ÷îÝøïÞøïÞùðßùðßùðßùðßùðßøïÞ÷îÝ÷îÝøïÞûïßûïßûîÞüïßýðàûîÞûîÞþñáþñáüïßüñßþóáüðàüðàüðàüðàýðàüïßûîÞûîÞüðàýñáüóâ÷îÝöïßüõåíç×¹³£èáÑÿúê÷ðàúóáóìÚøñßýöäýöäÿýìæÝÌ‚yh™veÚÑÀÿüíÿöçÿ÷èûòãñè×ÿøçÿ÷çþòâÿôâýòàþóáþóáûóàùñÞúñàûòáüóâûòáüñßýòàúñà÷ðÞòëÛ÷ôãíêÛŽNNBAA5 !!((    """#$+-%&#& ! %& "'*&)-003 .1),"%''*(32 ,+****11<;&"!$$ +EZmI^oEXfK_j;MW"5<):D)7D6BR8=9KMHWYTlmgjkfYZTEF@OPJHICHICJKFIJDIJEIJEDC?HGCPOKMLHTSOXWRNMHSRMQQIQQINOGTUMXZOVXMY[P]^VXYS[\VYZT\]WXYS[\V^_Y\]W]\W[ZUWWOVVN[[Scc[``XXXP[[Sÿÿ÷ÿýöôñêúõïÀ¼³plcRPD[YMåã×ýùíôðäüöèÿ÷êüôçøðãùñäøðãøðãúòåùñä÷ïâøðãûóæöîáùñäûóæüôçüôçùñäøñáüõãûôâùòàùòàúñàüóâýôãýôãüóâüóâüóäýôãþõæþ÷åÿøèÿøæÿùéýøåûôäøñß÷ðàöïÝöíÞóìÚïèØèáÑàÙÉÖÐÀÒ̼Ð;ËȹÀ½®È´ÏÉ»ÓÍÁÑ˽ÓÏÃÑÍÁÕÑÅÑÍÁÓÏÃÌȼÑË¿Ò̾ÑɾÏǺɿµÇ½±ËøÌÄ·ËøÈÀµÇ¿´Á»¯È¶ÅÁµÍÆ¼ÊÆºÄÀµÅÁµÁ½²ÆÂ¶Á½±ÈĸɸÀ¹¯ËļÉżÄÀ·ÇĽÁ¾·¦¦ž§§Ÿ¥¦ž¥¤Ÿ••‘‹‹‹ƒ‹‹ƒ„–“Š•’‰‰€‘އ‹…‹ˆŠ…„z‚}y|yrztЇ€„yyvm€|s}zqrrfoqdpqcrtfxykmoaefXceWjk]Z\N_`R`aS[\NSTFIJRXLUZSOSRGKLI_jI_jI\jFWgIXkNYk#,;   +   $*)/89>7;:;@<8=9INJ@B=FHCIJEHIDLMHRSNIJEGHCMNIEFABD?JKFKLGHGCLKGUTPRQMNMIQPKMLGPPHPPHOPHTUMUVNSUJVXM_`X_`Xbc]^_Y\]WVWQ[\V]^XYZTYXSZYTWWOUUMZZR__W^^V[[SYYQúúòþûôþûô­¨¢eb[[XOZWNSPGJJ>†„xÿÿóðîâøôèüöêÿùì÷ïâùñäøðãöîáöîáõíàõíà÷ïâøðãóëÞõíàõíàôìßöîáøðã÷ïâúóãûôäûôäúóãûòãüóäüóäúñâýóçüòæùïãõíàòêÝïçÚíåØêäÖéãÕåâÓåßÑãÝÏãÝÏäÜÏãÛÎàØËÝÕÈàÚÌßÙËÜÖÈÚÖÊÝÙÍÛ×ËØÔÈÞØÌÜÖÊØÑÇÚÖËÓÏÄÕÑÆÓÏÄÍɾÒÎÅØÔÉÏȾÐÉ¿ÕÌÃÐȽÑǾÉÁ¶Ë¹ǿ´Á¸¯É¸ÌÅ»ÆÂ·¿»²ÆÂ¹¿»²Èż¸´«½»¯¾º±¼º®·³ª¿»²´¯©¸³­¿º¶·´¯¯¬§´³®¯®©¶µ°¤¥ ¥¦ ©¨£¡ ›¤£ž¡ › Ÿš››“’’Љ‰ˆ‡‚…„€|‰ˆ„ƒ‚~†…‹Š†~}yƒ‚~~}ywvr~}x„ƒ~Œ‡•–‡~xsvmsvmlofgjajmd`aY]`W\]U]_T[\TZ\QYYQMNFNOGUXQLOHLNIHJECE@AD;8;0CG9EI:BF7DJC?JLIEGDGIFFHENOJLMHKLGJKFEFAIJEPQKKLFGHBJKEKLFHICGHBKLFMNHNOIQRLNOIQPKQPKSRMUUMUUMSSKWWObbZef^cd\]^V`aY[\T[\T^^V]]UVVNZZRYXSVUPXWR\[V\[V[ZUZZR˜˜÷÷€]ZSWTM[XQUUMUUMKMBPPFëëßóñåÿûðôðåùóçøðåöîãñëßïéÝòìàñëßïéÝïéÝðêÞòìàøòæûõé÷ñåöðäøòæöðäóíßõïáõïáòìÞòêÝñéÜîæÛêâ×çßÔçßÔèàÕèâÖëåÙìæÚìæÚìæÚëçÛêèÛìèÜíéÝïëßóíáñëßïéÝõïãõïãïèÞåáÖßÛÐÕÑÆËÈ¿ÈÄ»ÇÀ¸ÇÀ¶Á½´¶²©“†~u‚v…‚yŸœ•´±¨¶²©½¹°ËļƿµÆ½¶Ë¹ȿ¸À¹¯Ã¼´ÓÏÆÍÉÀ¶²©¼·±Á¾·º·°±±©²¯¨©©Ÿ´±ª——–“ŒŽ‹„”‹š•’€{x€|y‚~{wvrjiehidhhf]^Y^_ZQRMMLHhgb”“Ž…†€xytUWR=?<9;8LNMhjiTUW78:12478:<=?+-,!#" "!&(%1627<8/40%*&(-)05116227302/+0,,.+13.24124/66401,12-12-894886--+01,EFA<=701);=2;=2?A>AC@FHEDE@GHCGHCEFADE@FGACD>BC=FGAMNHJKEGH@LMGGHBIJDRSMMNHNOIPOJPOJSRMSRMSRMRRJUTO__Whiahiabc[bc[\]U^_W^^VYYQUUM[[S]\WYXSWVQ[ZU\[VZYTYYQ\\TmmeOOGURKcc[XXPXYQIJB\]UFG?¾ÀµÿÿõìêÞöòç÷óèöïåõíâòìàõïãüöêý÷ëüöêý÷ëøòæøòæ÷ñå÷ñåöðäóíáïéÝæàÔêãÙëäÚêãÙçàÖåÜÓâÙÐÝÔËÙÐÇßÖÏÜÓÌØÑÉÔÍÅÐÉÁËļž¶¿»²½º±»¸¯¶³ª°­¤«§ž¥¡˜ ™‘š“‹Šƒ{~wookbgb\`[UVQKQNGTQJVQKRKCPKENICJG@C@9JGBJG@FC>PMFXSOTOI^WQaZRd[Vƒzs‡€x™’ŠtpgLH?SNHZWPvslYXS]\WNMHcb]‘‘‰ˆ‡‚vvnIIA>=8:65QMLFBC986@>?@?=44400.997331442672984;:6nmi‡ˆƒtvqY^Z463&*)465RVWTUW,03#.25ABF8<=%&(  $%'"$# $$$*)',,*)(&,,*;<7561782<=7ED?BC=ONIDE?KJEFGADZoJ_rM`qIYhMYgPXc48A    + 0218:7574574<=89:5AB=FGBDC?@?;CB=DC>HGBGG?IIAJJBNOGIK@QRJMNFJKCPQIKLDKLDONIONIRQMONJONJQPKSRN]\Wiiannfiiadd\^^Vcc[``XTTLVVNZZR]\WZYTWVQ^]X`_ZYXSQRJSTLMLGdc^MLGba\MLGSTNOPJDG>CF=³µªùùï÷÷íÿÿöÿÿôÿùï÷îåêãÙáÚÐØÑÇÇÀ¶·°¦°©Ÿ°©Ÿ«¤šš–‹’Žƒ‘‚ŒŽŠˆ„y‰‚zˆy†wƒ|t€yq~wo{tlxqislfqjdngale_id^e`Za\V]XRVVNUUMTTLQQIPMFOLEMHBJE?HC=@;5:5/:5185063.52-63.83/:5/94083/=:5:72=<8=<773074/D?<<73>63@93;1/SJEpic„ymhb0+%-*%63.A>9IHD<;734/12-z{ulmh}~x;<6762,()512D?C.,-.,/444$$&'''132-/,220331**(%&!TSO‚}|}x`b]450$&#((&BDCPPP124$$&$%'<<>>@?$$$$$$       +     $#*&#,+&74/761=:5OOGJ_tG\oEXgK[jKWcKT]BGM  + + +  + + "!46302/574886783@A<894A@:DC?BA9?@:@?:?>9@?:C@;DA:@=8@<9@<9=9662/50,>9583/83/952=9687398462/51.?:7>96<74?747/-80-id^„yqlfC@9(% -,(762FFD331@@>--+RSNefa|}xEFA)*%*%)'%*86;+*/+*/*+-((*!"$'+,+/.%'&$$",+)('%10,ZYU]\X=<8"!.-+0./  + +  +  +  + + +  +   +    +    + '"zvmH[lL_nGYgN^kIWbHR[EMP  +  + ,.-777775:97:97<;9:97=<:@?=DCAHGEHHFIIGHHFHIDMNHOPHOPJOPJPQKPQKPQKSTNXYTYZUVWRSTOUVQVWRZ[Vcd_jiefeaef`abZ_`X\^SXZOYZRabZbc]\]XZ[VTSOYXS[ZU``XZYTWVQHIDWXS_`[de`YZUNOJ_`[cd^VWQˆˆ€¦¦žurkrohc`Y^YSmhbd_Ygb\vqk€}vqlfYVM[VPkha|ugd]XUNPPHWTOURMSPIPMFNKFNKFNKFMJENKFPMHOKHOKHNJGMIFNJGMLHLHEED@GHCGHCGHBGHBEF@ED?FF>IIAMMELLDIF?HE>DA7B?:C@;A@:>=;764:65>:9>:9;63=77'"gb\‰…|vsjKHA*)$01,--+IKJ8:9;=<,.-;=:gifegbPQL"# %! + +   + +         +  +     "(% &# '#&"&!/( &;2+.%of]JZiJ\jK[hGXbGU^LV_=GI   +   + $$$$$$*)'/.,431542986<;9?>BBBDDDFHGHJGLMHLMGKLFKLFLMGJKELMGSTNTUPVWRVWRWXS[\WZ[V\]Xddbgfdedbfgbbc]\]UWYNXYQ`aYcf_dfa``^\\ZUTRXWSXWR[ZU^]XSRMFGBRSNVWRlmh]^Y[\WghcTUP[ZUsrm|ytmjcqngc`YZUQpkgfa]id`rojƒ€{zwpspiROH`]Vxupnkf]\WKJEKJFMLHMLGKKCJIDIHCHGBGFAHGCIHDKJFKJFIHDGFBHGCIHDGFBDC?BC>CD?FGBFGADE?BC=DE?GH@LLDKKCGG?FE@FC>FC>JEBB=:>;6@=6B?:BA<<;9320=98*&#NICmjaa^W+*%'&"!!!#$&$%' 243&(%""    +      +   +  + ! %$   !"$'+*1629@AD@=EA@?;8:957616517839:579635202/.0-+-* "%'$""   0,)&"!   +  +  + + + +      + +! ! * 0(1)-%-%( #"  * 1'C9-UMBjdVwp`mfT„}m«£˜»¶°‰…‚BBB130]_Z¥§œ±¯£¶³¤¿·ª»³¦¾º®¶´§ÂÀ³Á¿²›˜‰¤¡’³°ŸÎ˺¿®½º©ÇÁ±»µ¥Â¼¬Á»«ÌŵÀºª%.(1 "$%(399BG.37 +   + + + + + + +   !!!!#""$##$)*%01,34/01,./*23.23.450;<7CD?GGEDDBCCAGGGECF>9AB=FFDIIIIIIGGGCCCBB@DCAED@DE@FGBIJEKLGKKIJJHTTRJJHLLJTUPIHD/.*ED@/.)85052-40-2.+*/*2/*30+.+&63.650.-(0/*-,(0/+-,(10,10,21-10,10,10,0/+0/-/.,/.,10.21/10./.,/.*0/+10,10,**(++)++))*%'(#&'"()$*+%)*%'(#&%!%$ &"%!$  +      $#!  +   + +     + !#  *7)K;.J8*VF7[O?[S@YQ>_WDd[JRK9+"& 6/NG7c\LpiY‡€p›”„©¢·°ž¾µ¤Æ½®Ä¼¯ÊµÓ̼»©­¦–½·©ÓÎȈ‡ƒ???<>=UZT–™»»¯º¶ª¸°¥½µª±­¡¸¶©°®¡¯­ž®«œ³°Ÿ³°Ÿ¾»ª¶³¢¹¶¥¬©˜Â¿¬¦ µ²Ÿ«¥•®«˜ " $*3:*17$)-    + + + + +      !!$$"))'''%"" """ ! &&(+++)))%%#%%#///.0/-.0,,.&&($$&$$$))),,***(++)//-**(&&&###44411/11/DDB#"     + + +  + +  +    +   +   + +   + +   ((*%$)237 "!12-UNHcYPsbXeSEm]M|mZxiV…t`p^…tbˆ}i–Žy•xœ–€¥ž‹“Žz𓀩¤¬§”©¤‘©¤‘«¦“£ž‹­¨•©¤‘©¤‘«¦“¢œŒ¶°¤³­¡£­§—¶³¤±¯£­®©swv?DG@IHQZWy€y§ª£¦¦ž®«¢°¬£–”ˆ¹·«¤¢–žœ¥£—­«ž½»®—•†»¹ªŽ™—ˆ®­›‘ŽÀ¿­†ƒtÅIJ + ;DK3:@/6<%),*+0,-2 % +       + + +  +  +  +  + +  !!               + + + +    ""!!!# '-*1'')-,(aZR‰}qŠzkŒ{i‡xc—‹s¨œ„ÏÀ©áÒ½ðáÎáÙÆ¸±ž£œ‰¤Ÿ‹³®›©¤‘ÎɶÄÁ®¯¬›¨§•³°Ÿ³² ¡ž±°ž¯¬›¬«™·´£¥¢“³¯¤±­¢¥¡•«©š¨¦™¶¸­ÁÆÂzƒ‚HRT7BDR^\†‘­²¬¦©¢¶µ°§¤£ ™º·°ª§ ¦£š¯¬£¶´¨ÃÁµžœÔÒÆ’“…·µ¨§¨š¢£•ÇȺ‚ƒuÍÎÀ + 29?5I.39 & + +       + + + + +  + + +      +    + + +  + + + +   + +  +   +  +   + + +-'(".([WL)($1++<74-*%?<5aZPjbU© ‘ÿúéöñÝñïÚ©¤‘ ›ˆÿúêÿýðÿýñþüïÆÃ´¦ ¥Ÿ‘£¶³¤ÄÀ´³±¤©§š°®¢±¯£žœ±¯£¦¤˜¥£–³±¥ ž’·³ª¹µª±¯¢²³£«­Ÿ¸»°ÃÊÃ}‡†DPP8FFMYW…Œ°¶²­¯ª»¼¶¬«¦¨¥ ÍÊů®©µµ­©©¡¶¶¬ÓÓÉ­¯¢ÖØËœž‘º¼¯¡¥—³·©´¸ª”†¾Â´ + 8?E7>F+2:'.6$26?*.7 "CIU*1;",$,04=.2;     +  +  + + + + + +  + +   + +   + + + + + +  +  +  + +  + + + + +  +    + +     + +         {oœ–ˆ›•‡˜’„ËŹ1-"  +  +,(@:.†|rÀ¸­d`U¬ªž¸´¨‡{ØÐÅÿýññïâøöçÔÍ½š‘€©¢’«¤”»´¤µ­  šŒ—‘ƒ­§›ª¤˜”Ž‚®¨œ§¡•²¬ž®¨œ šŽ¼´©¿·ª·±¡®«˜´µ£ÇÉ»ØÞÔ€‡€LURJSPGMI‰Ž‡ª­¤ªª Á¾µ¥¢™•’‹··­ƒŠŠ~••‰¥¥™‚prd~€rVZK}rVZK]aRX_ODP  ##!,&-7&0% #&- +    +    + +     +  +   + + + + + + +    ! #" #" #"! &% --#&&//%!! +   +!#"          + 2.%°ªž¾¸ªŸ™¢œ©£—D@5xun;<.rub[_NAD386)le[¥›’¸­§JC;Œ…}ÖÏÅ„|q©Ÿ•íåØöóäñîÝîçÕµ¬›¤›Š¤›ŠÇ¾¯Ä½­´¬Ÿ¤œ³«ž¶®¡¥¶®¡¬¤—°¨›³«ž¬¤—Á¹¬¼´§³®›»¹¤©¨”~n}€uTYR?D@@EABGA;>5II?<:./+ 62':7.//%,, ,,  )*)+&) $  +#'%) /6>BIQ,3;&.+2:/6@'.8%)8@M #' ,&2 (5 -'  ) %+ +    +  + +  +      +   + + +   +  +  + + +    +  + +     + + + XVJ|zn53' +  ;<6  '("$%qrm       4/)«¤š®¨œ”ƒ°©Ÿkg^fa[rnk "**0"0)®¡™š‹„6)!uh_ÜÐÄŒ~q¢•„Æ»§ÿÿêøóÝ÷ðÝçàͺ³¡­¦”ž¬Ã¾«¥Ÿ›•…¸²¢«¥•—‡±«›¬¦–´®ž³­™“…º´¨¾¸¬¾¸¨¤¡ŽWVB  #!53&($   ,*     ./! + $& +  +18@ELT)08+2:-4>&0#-*4@ &!1$0@ )8 !& $&.    + + +   +  +   !$ #&'   + + + $'  + + +         +    + + -+GE8YWJ‚€tIF=   + RSN‡ˆƒ/0*"%PSLƒ†#&%'":<7 +  +  + +  + + 61+¦Ÿ—³¬¢–…²«£OJDPKG[WV  )4,š‘EF>kd\ßÒÊÜÎÅʼ±×ɼÞÑÀ ‘~¡’}«Ÿ‰ëäÊýùàúóàü÷äÊŲ’z¸³ ½º©ª¤”Ÿœ‹³­¦£’ šŠ´± ¥Ÿ¨¢’«¥•Ÿ™‹½¹®°¬ º·¨ŸžŠCD2   97*/+ .*#($:6+")% ;9,)'  +)' + +  ,5>DKS '/("+ +  *4>.:F +%./!.?+<" % + "$,  + + +  +     #&+-" + + "! INR    + +%&$$    ""  KK?sqbTQB[WK‡…yHE<  ^_Zvwr ! +,1*BGAuzt9;6@B=/1,VXS350  +  + + + 0-&¯«¢§£˜“„§£š")$(<;A7>F;HNNY[[ed¼¾»ÑÎÇýóéþòäÿøæþóßôèÒ«œ…Ÿy±¢‹À¶þøà÷òÞùöåÝÚÉž›Š²¯žÄ³«¨™˜–‡­ª›¤¢“—”…«©š Ž«¨™¦£”˜”ˆ­ª¡©©±²¤“–ƒ:=," + + !0.!IG:40$=6, "0);5)!82&60$<6*60$6/% "/(%    ,5>NU]&.)-6$(1 #%2;@NY6FS4DT1@S3BU/>Q*7H,8H'0?'1;,5>!(.   +   +  #&DG<<>1  + X]c +      ""::.  00&EE; YWKmj[VSBPL@‰…za^U   &'"UVQPQL    <90¬¨½¹­–’†ok` # "!!&'1;ju{?IKw{zÉÈÃôíãîç×ùôàúôÞìäͽ²œ´§”§š‡¯§’áÚÇÿÿìÿüéòïÞÉÆµ§¤“¿®¨¥–—”ƒ©¦—›˜‡š‹À½¬§¤“®«š¯©™ ŽÆÄ¸¹¹­·¸¨¾¿­hkX   ($*&NK4(C9-9/#( .$ + $   + ++4=HOW$,$*,17! *4AJBP[6FS4EW3DX0AU,;N4AT5BS6BP3=I7@I-4: #( +  !  03(IK> +    kpv + + %%%333    >=8>>6FF>33)12$01!)*12$WXJ==1>>222&;;/TTHRRF>>2.."%%((HF9gdUwqakg[ZVK.+" +  + + + :95A>9B?:  +  + 42%³±¢ª¨™‘€VTG(%3/,'#"*(-%(1*19Š“˜(23HNLÔÖÑúüñïðâñôãõöäíìÚ ›ˆvm^“Š{Œ„w°©™ÿøæüõâÿúèæßͽªÀ»¨±«›˜“€¬¦–¤ŸŒ–’‹ywp^Œ…s‹‚qhaQlfZzvj|iˆ‡rhgR=<(,(  /'6+6+% (  8-/$0%?4"@3"G:*C6&OB2NA1E8(1=I6BN-9E7CO8BN=GQ6?H&"* + )@NW5CN0@MARd:L`8I]3DV2AT*:J4AQ2>J7AJ07?+04    + 02-&(#"  6;4AD;   !$  U\f$+3 + /1./1. + + !55-==300&**()34"54":;) '(97*23%(&,, (&$$*(23%-+ # %1-!1-" +      RMIOJFMHD;62  +    + + CA2³°Ÿ²¯ž™–‡`]N )$"348y}~683¿À¸ûûñÿÿôÿÿóüýíÿþïÐͼ³«ž¹¯£¬¤™´¬ŸóêÙÿÿêÿÿìûóàÖλ¼´¡ª¢•z£›ˆ†~kNC1B7%G<*PE1NC1YNN5BR'5B +   />E8<5/81+B;5 + +XRBTN>F@0?9)&91$8.$%&6+%;1/SKHytp[VP{tj•б©œ»±¥´«œ±ª˜®¥”«¢‘­¤“¼³¢¾µ¤´«š¥ˆ£›„ •œ‘}’~’~¡–‚°¥‘­ ®¡Ž³¦“±¤‘¶©–¼°š³¦“®¡Ž¸­™½²žÅº¦¸¬–·«•¿²Ÿ·¨•¹©™± ¼«›«šŠ³¢’®ŸŒ±¢«œ‰±¢²£Ž¯ ‰¬†ªšƒ³¡‰º¨¤w¨”{À¬“½©¾ª’°œ„µ£±Ÿ‰¨–€¥•~);S"4L&8N/C%4G#3C+ "! !0=F3AJ@NY1AP7GW'7G'8H.>M+;J0@O.,15)*,###     + !   qjdKFB   $' 269#"dc^  !%)+ ( YNLWIV_8AJ'.6##'0 )-6:AK   (,7=AJ$(1>CI9MF2OF7XO@bVFh\Nym_‘ƒ–Š|u’…|ž”Šž•Œ—Ž…–Œ¤•¢›“ª£™¶®£¼´©»³¨©Ÿ•¹¯£¬¢–¢™Š¬ ’º®ž¸¬ž¼° È¼®Ê¾®Â¶¨¸¬œ°£’­  “€²¥’¯¢‘°¥“±¤“²¥”³¦•¯¢­ž‹©š‡ž|¦•®‰­œˆ°Ÿ‹©™‚¨˜´¤¦–¬œ…° ‰¢‘}¦•ƒ­œŒ¦•…·¦–¾­²¡³¢«œ‡¤˜€¥›‚«¡ˆ³©¶«•²§‘²§“´©•£˜„›|œ‘š{ •« Œ­¢Ž©‡§–‚«™…¢|¨–‚§•©—ƒ»©“½­–¸¦µ¥Ž¹§“¼«—¬š†¬›‡¨—…±¢¹ª—·¨“­ž‰¾¯˜¾¯˜±£‰«ƒ¤”z²˜·¨‹®ƒ³¢ˆ¶¢‰·£Š´ž†¤’z¦—‚¨›ˆ®¡ŽŽ{¦—„²£µ¦“¯ ®ŸŒ¸©–·ª™¨›Š‘½±¡°§–¤›ŠªŸ©žŒ®£­¢Ž¬ŸŒ¬ŸŒ¨›ˆ¥˜…ª›ˆ±¢¶§”¶§”¼­š»¬™®¡Ž°£°¥‘«£Ž¸­™­¢Ž¥˜…ªŠ£–ƒ¡’©š‡´¥’£”™Œy¥˜…»®›¶©–®¢Œ¨™„«œ…²›Ÿvšˆp¦’z›…m©“{£uœ†n›…m’|d‰q›‡o‹s§•}=BF3;=>GF>IE2=9:E?:D<7>66<2(+   +)%   !1*"5.&.'A=4]XR`\Sjc[kdZwod~tj‰}q”ˆzšŒ¢–ˆ­¡•ª ”¬ ”´¨œ¹­¡µ©›·«Â¶¨Áµ§Ã·©É½¯ÍÁ³È¾²Å»¯Â¸¬ÍÁ³É¼«Óı»¬™½°Ì½ªÃ¶¥´§–½° Å¸¨Æ¹©½¯¢¾²¤»¯¡°§˜”…­¤•·®Ÿ¼³¤½´¥»¯¡½±£­¡‘¶ªšš|±¤“¸«˜¶§”²¥’¾¯œ»¬™¬Š¨™†°¡Œ³¤›‹t°¡Š¸©”º«–¼­˜º«–¶§’± ŒÄ´Åµž´¢Œ«™ƒ»©‘°ž†©—®ž‡À°™¸¨‘±¡ˆ»«’¥•~œŒu¥”€¬›‰®²¡º©—¾­™¸§“­ž‰¤™ƒ´¬•º¯™µ­˜º¯›¹±œ¸­›°¨•¯¤’ž–ƒ¡–„¢š‡®£‘²ª—°¥‘­ ¸§•»¨—¨•†­š‰«˜‡¯œ‹­œŠ³¢Žµ¤’¸§•¶¥“µ¤’·¦”»ª˜ªšŠ¼¬œ¿°´¨’½±›®¢Š§›ƒ¿³™»­“žu´™±£ˆ³£‰½­“º©³¢ˆ¬˜®ƒ°¡Š°¡Œ°¡Œ¤•€ª›†±¢¹ª•¶§’¸©–½®›¯¢‘©œ‹œ€­¡‘³ª™¯¦•¬¡¬¡®£« Œ©œ‰¨›ˆ¥˜…¦™†¯ ¬Š·¨•·¨•±¢´¥’°£°£¶«—­¥¬¡ªŸ‹¦™†£–ƒ¨›ˆ¯¢­ž‹®ŸŒ¥˜…ž‘~©œ‰¨›ˆ£˜„¤™…¸©”»¬•«›„²¢‹Ÿuª˜€ª–~Ÿ‰q­—‡o™ƒk Œs—ƒk¤xŸu¢x‰~z‡|x“Šƒ‰‚x}r‹‹…w™’‚™œ€¨˜‰²¢“±Ÿ‘­› ± ·ª™³¨–¹­¿³£¸¬œ°§–³ª›¶­œ¸¯žµ¬›·¬š­¢±¤‘¿³Äµ È¹¤È»ªÁ¶¤¼¯ž»®»®¯¢©œ‰²¥’³¦“¶©–µ¨•¶©–¹¬™°£­ ³¤°Ÿ‹²¢‹©˜„µ¦‘¶¥‘¿°¼­š¼¬œÁ±¡»«›¼¬œ¶©˜¶©– •²§“²§•¾³¡À´¤Áµ¥ÎÁ°©œ‹¹¬›´§–ª›ˆ´¥’±¢³¢Ž±¢¸§“·¦’¯žŠ·¦’µ¤’½¬šŠy£’€«šˆ± Ž»ª˜Æµ£Ã² µ¢‘²ŸŽ²ŸŽ¹¤“®™ˆ¹¤“º¨”¼¬•³¤¸ª·©°¢ˆ³¥‹°¡Š£”}©š…®ŸŠ³¤‘µ¦“¾¯œÅ¶¡»¬—¬ Š¢–€³¨”°£ªŸ´§–¶«™·ªš¶ªš¯¢’•‰y “ƒ®¢’¹¬›·¬šµ¨—µ¨—²¢’¼«› ¡‘­¨˜ˆ±¡‘¼­š·§—¸¨˜³¦•²¥”·ª™¿²¡ª¨œŒÅº¨Á¶¤Àµ£§œˆ±¦’¶«•´©“™v¾²š¹­“¼®”¼®”¶¨Ž® †­„° ‡®ž‡° ‰¸¨‘©™‚«š†¿®šº©•¶¥‘µ¦“Á²Ÿ¶©˜­ ¡–„¬¡¶ªš¬ ¬ŸŽ¬ŸŽ¬ŸŽ¬ŸŽ¯¢‘­ £–ƒ¢•‚¯ ·¨•¸©–³¤‘·¨•¼­š¹ª—¶©–±¦’¾³Ÿ»°œ¸­™»®›¸«˜µ¨•´§”¹¬™²¥’¬ŸŒªŠµ¨•«ž‹©žŠµª–¯ ‹¸©”´¤¯Ÿˆ–„n“i›‰q”€h…qY…qY‹w_Žzb‘}eŒzb‡u]ƒqY¾ª£»©Ÿ¹¨ž©›Ž²¦–¹®œ˜{°¥‘¹­—¹ª•µ£µ °›ˆ«”‚¦}§’ªšƒ¤–|ª›„¯£‹±¢ªžˆªžˆ¯¤Ž¯£±¥´¨’¨œ„«œ…º¬’½­”¾°–ĵ ¼°š¶ª”·«•¼­˜³¤­ž‡¶§·¨‘¹ª“¹ª“¾¯˜À±šº«”ô»«”³£ŠÆ´œ´¤° ‰·¦’·¨“¼­šÄµ¢Á²ŸÀ±ž¾¯œ·¨•¶ª”±¥º®˜À´žÁ¶¢·¬šÅ¸§¾± Ã¶£Á´¡Â³ Ÿ}µ¤²¡¸§“° ‰¯Ÿˆºª“»©“ñ›°žŠ½¬š¢~«šˆ¼«™¿°¼«™Á°ž»ª˜¶¥“± Ž¸¥”¹¦•²ŸŽº§–ò º«–½±™¾²š¹­“®¢ˆ²¦Œ¬ ˆ¥™­¡‹¶ª”´§”·ª—·«•¶ª”¾²œ»¯™«œ‡°¡Ž³¤‘¹ª—ºªš¹©™¾®ž»«›¦–‡“ƒsªšŠ·§—´¤”±¢¶¦–¶¦–¶¦–µ¨—¡”„¨›ŠªŒ­ ®¡´©•¶©–·¬˜­¢Ž¨‰°¥“´©—¥šˆ¬¡±¨—´«š»²¡»³ ¶®›§ŸŠ¡™„§ŸˆÆ»¥Á¶ ³§‘Áµ»¯™§›ƒ¬ˆ«œ…± Œ²¢‹­œˆžy {òžÁ°œ¹¨”»¬™Å¶£À³¢¯¢‘¥˜‡´©—¹®œ®£‘«ž°£’²¥”­ «ž¨›Š§š‡²¥’·¨•¹ª—²£¯ ­ž‹­ž‹­ž‹£”Ÿ’œ‘}ž‘~›Ž{•ˆu•ˆu–‰v’…rŽnƒp„wd~q^…xe‹~k„wd‡zg†wb†wb‡w`…u^|jT‡u_{iQ„rZ„pXŒx`ya”€h†t\‡u]Šx`†t\º¨ž³¡•¬œ “ƒ­¤“´­š¡›…²¬”­¥Ž¶«•¬ Š¬ˆ¥–©˜„™ˆt¤”}²¢‰¯Ÿ…¬œ‚²¤‰µ¥Œ¬ž„ª›„¬ ˆ­ž‡±¢‹¸©’°¢ˆ²¢‰¶¦Œ½­“½¯•¾¯š¼°š¶ª”±¥¸©’­ž‡¨˜­„®ž…µ¥Œ¹©»«’¼¬“¹©µ¥Œ¹©° ‡¹©«›„±¡Šµ¦‘µ¦‘º«˜º­š·ª—±¤‘±¥°¤Ž¯£®¢Œ²¦Ž¨œ†±¦’±¦”¾³¡¹®œµ¨•­ ±¤‘£–ƒ·¨•¨™„«œ‡®ŸŠÁ°œ¸§“¦–¶¦¥•|´¦ŒtœŽt´¦Œ©ƒ§™·©´¥Žµ¦£”}«›„®ž‡¤”}®ž‡­ž‡«Ÿ‰ªž†°¤Œ³§°¤Š¯£‰©…šŽvž’|°¤Ž°£®¡Ž¡”ž’|£—­ž‰­œˆ«š†¯žŠ°Ÿ‹°Ÿ¶¥“·¦”¯žŒ¡€¢‘¥”‚§–„ª™‡²¡³¢«šˆ§š‡¨‰“ˆv’~¡–‚¡–€Ÿ”€œ”}£˜‚¡™‚ª¢‹°¨‘¦ž‰¢š…•€¡™„¤›Š«¢“±¨™±¨—°§–¦ž‹°¨•¥ˆ‘‰tˆs›|ž“}œ‘}–‹u‘„q™Šuœ‹yš‰uš‰w•„rŒ{i›ŠxŒz”ƒqn•†sŽl„wd‚ub‡zg‰~jƒxf…xg‡zir_~q^‚ubƒvc„wd~q^zkX}n[~oZ‚s^ˆyd…vaƒt_‰ze‡xc„xb„u`…va‰zg‹|iŒ}j€m•†s™Šw–‡t’ƒp“„qœ|šz “€¡’}Ÿ{ ‘|Ÿ{ yv£“|¨˜žŒt™‡o~f}e“iŽ|d}eˆv^¶¢—¨–ˆ° ‘¢•„¥Š´®˜ª¤Ž´®–«¥­¥Ž³¨’®£¬ Š¬ Šœzªž†µ¥Œ²¢ˆ®ž„¯Ÿ…®ž…¨š€©šƒ°¡Š­ž‡³¤º«”³¤±¡ˆ³£Š¶¦¸ªÀ´ž¾²œ¶ª”°¤Ž¹ª•­ž‡¥•~ªšƒ¯Ÿˆ³£Œ¶¦¸¨‘ºª“µ¥Ž±¡Šµ¥Ž´¤¸¨‘¦–°¡Š¸©”¸©”´§”¶©–·ª—´§”¸¬–¸¬–±¥ªžˆ³§‘´¨’¯¤³¨–³¨–Á¶¤º­š©œ‰´§” “€Ÿ’§˜…®ŸŒ°¡Œ½®™¸©”«š†¯ ‰ªœ‚¶¨Ž¢”z ”zªž„°¤Š°¤Šº°•³§¸¬’¬ ˆ°¤Š±¢‹£—­ž‡­¡‰²£Ž¬ Š±¢°¤Œª›„¤˜~£”}œxœx¦š„¬Š°£©š‡ “€¡’}«œ‡®‰¯žŠµ¤’º©•º©—¼«™¸§•¯žŒ™ˆvž{ª™‡²¡²¡³¢Ž¶¥“´¥’±¤‘« Œšz¦›‡¤—„›z–‹u˜wœ‘{”‰s”‰s™Žx”‰s‚lŒk‡|h‡{k‹o{o_scym]€uc©žŒ™Žz‚wet`„ye~s]}p]u_…xe†wdƒr`}lZ†ucŒ{iŠygŒ{i†ucŽ}kŒ}jn‘‚o—ˆu™Œy”‡t‘†r…q•ˆu™Œ{•ˆu–‰v˜‹x™ŒyŸ’¡”¢“€§˜ƒ¥– ‘|š‹v™Šuœx˜‰t•†q“„o’ƒn“„on‰zgƒtaƒta€q^†wd…vcr_m^KhYF]P=h[HhYDaR=YJ5UF1PA*QA*N>'J:#D4P>&K9!?-8&8&9';)·¡”ª—ˆ²¢’ “‚£˜†®¦‘­¥¬¤®¦‘¤œ‡µª–¨‰©žŠ©žŠ˜y£˜‚¯ ‰¯Ÿˆ­†¬†­ž‰ª›†ª›†­¡‹«Ÿ‰®¢Œ°¤Ž­¡‹¬ˆ°¡Œ±¢‹µ¦‘¾±ž¾±ž´§”¯¢º«˜°¡Œ«œ‡µ¦‘±¢°¡Œ²£Ž·¨“¹ª—±¢¬Š°¡Ž°¡Œµ¦‘¡’}«œ‡±¢®¡Ž«ž‹³¦“·ª—¯¢²¥’¶©–±¤‘¤˜‚¨‡« Š¦›‡´©—¬¡º¯°¥“š}¦›‰©žŒ•Šx§š‡®¡Ž¯¢¯¢²¦³¤±¥®¢Š¥™”ˆp¢˜¥›‚°¦¨ž…ª£‰³©³©©žˆª ‡®¢Œ¨‡ªžˆ§›…¥–ƒ¦—‚­œˆ¯ ‰¯Ÿˆ¬†¢’{ŽhŒ{g‘‚o˜‡uŽ{¡~¡’•„p€k“†s”‡t“†uŽn‹~m‹~m€o€oŒn…xg‚ud€s`}p_}p]|o^zm\~q`‡ziˆxh‰|kƒscƒvc…xe‡zg‡zg‡zg€mƒp‰|i€s`ŽnŽnŒn‚q’…t“†uŸ’”‡t—‹u¤—„¤˜‚Ÿ“}–Šr¢“~¥– ‘|Œx™ˆvœ‹{¢‘|l‰xhŽ}mƒrb„sc‡xeŠ{h„u`p[ymWxlVwkUrfPm^Ko`Mj]Ji\IcWAWK5VJ4YM7TE0L=&K<%RC,L<%E5K;$I9"I9"G7 K;$N>'G6"A0G6"Q@,Q@,O>*L=*WH5SD1bS@eVCqbOobOuhU|pZs]wkU‚s^‹|e~g”…n©™‚¯Ÿ†©™€§—~´¤‹´¤‹·§Žµ °›Š§–„“„q}©‡°¥‘« Š²§“¦›‡²¥’¨›ˆªŠ­¢Ž •¢—ƒ­ž‹«œ‡©š‡¨™†¬Š­ ¬ŸŒ¯¢­ ªŠ§š‡¦™†§˜…°¡Ž°¡Œµ¦“·ª—º­œ´§–­ µ¦“¨™†£”±¢®ŸŒ«œ‰®ŸŒ¶§”¸¨˜±¡‘¬œŒ®žŽ­ž‹®ŸŠ—ˆs¢“~®ŸŒ³¦“°¡Ž´§”¼­š³¦“³¦“±¤‘©œ‰}¨‰³¨”²§“¯¤¨‹¦›‰£˜†¬¡¯¤’¤™‡…zhš}•ˆu™Œy­ ¯¢‘{¥™ƒ£–ƒ”‡t‹~k•Št‘†r›z’‡q”Œu„n”‰s‘†rŒkˆ}i‡|h†{gƒvc†ucŒ{ikŒ{gˆxa‹{dŠzc‚r[„s_ˆweŒ{i‰xf‹zh–…s”ƒo”…p•ˆu˜y—Œz’‡s’‡u–‹w—Œz˜y–‹y™Žz™Ž|”‰u…s“ˆt—Œz˜‹zœŒ|¥•…¤”„Ÿ}˜‰v¡’ž{“„o—†r™ˆt™ˆt”ƒo|h„s_‚q]nZ}lXrcNtcQsdOsdQn_JeVAfWBj[FbS<`Q:aR;XI2UF/N>'C3<+?.J9'B1E4"G6$G6&M<*RC0L=*PA,ZK6TH2RF0]Q9aU=iZEgXEi\IuiS|pZ|pZ„xb‘…m—ˆq€i™Šs¨™‚§—€t y­†° ‰©™‚­†»«”¾­™¸§“µ¤¶¥‘·¦’¼«—³ Éº§À±žÄµ¢Ã´¡Å¶£¸«˜µ¨•»¯™»¯™²¦²¦´¨°¡Š¯ ‰µ¦¼®”´¤‹° ‡¶¦° ‡ªš±šˆ­˜…² ŒŸŽz§–‚°¡Š¯ ‹¤•~± Œª™…®‰°Ÿ‹­ž‹®ŸŒ§˜…¥˜…ªŠªŠ­ «ž­ ®¡¨›Š¨‹¯¤’­¢ªŒ©œ‹§š‡¯¢®¡Ž²¥’´¥’¹ª—µ¦“°¡Žµ¦“¨™†¢“€¬Š²¢’­¬ŸŽ²¥”±¤”ª¦™‰¦™‰£–ƒ§š‡˜‰tš‹v ‘|¤•€ {¢“~¥”€¡’} ‘~ž|˜‹xƒp™Žz •šz•‰s—Šw”‡t–‰v€mˆ}i •†{g†{gŠ}j†yf{n[ta€t^†yf„tdŒ|l’‚r‹~k„wfŠ}j‡zgŠkŠ}j”‡t™Œ{”‡t‘„s–‰x–‰xƒr’o”p˜†rœŠvšˆr™‡qŸw¤’|£‘}Ÿy£ |žŒxœŠv—…q—†r“„o”ˆr‘„q‹iŠ}j‰}g„wds]{n[vjTnaNj^Hh[HeYC^Q>YL9\M:VE1M<(L;'J9%K;$K9#G7 A/E3C1<*D2M;%B0E3R@*L<%XF2N>'WF2[K4[K4aQ:l\EyiR{kTƒsZ‚rY‚rY€pW}f€iŽ}i™ˆt¢‘}¨™„¨™„¶§”À±œ¹ª•®ŸŠ·¨“ôŸ¸©’³¤Ã´È¹¢¼­˜¶§’¶§’»¬—¹­—±¥²¦Ž½±™Å¶Ÿ¶¨Ž´¦Œ·©Æ¶Æ¶œ®ž…¦–}±¡ˆ¯Ÿ†´¤‹¼¬“·§­†¬†´¥Ž¯ ‹¯ ‹µ¦‘º«–·¨•¶§”¹ª—º«˜²¥’£–ƒ¦›‡¨‰­¢ŒªŸ‰­¢Œ£—§›ƒž’z­¡‡¬ž„©›ªœ‚²¢‰¯Ÿ†±œ‡¡y¶¦¢’{Žw´¥Žµ¦±¡Š²¢‹² Œ¯‰¹¨–­œŠ¡’›‹{šzªŒ«ž‹®¡©œ‰¨›Š¦™†ž“¡–‚’~Ÿ”€¢•‚Ÿ’œ|Ÿ“}ž’|¡•Ÿ{žz–‡r€k•†q~iŠ{fŽjŠ{h†wd…xe‡zi…xgƒvf‚vfue{n]ˆ{h‰zeˆydˆwc‰xd‹zfk~jk’o’ƒp”…rŒl‹~m†yf‹|gŠ{f‘‚mŽ‚lŽnƒp‚oˆ}i‚n…zfŒl‚o’…r}—‹u‘‚o‘q—‡xŸŽ~–†v˜ˆx—Šy–‡t—ŠwŽ~n€oŒ|ltc|l\{k[yiZp`PdSAgVDiWChXAgU?dT=bP:^N7ZH4SB.S@/L;)O=)P?+P>*K:&L=(OC-TE0PD.O@+NB,VG2XL6_P;[O9^O:aU?dU@_S=j[FzkVr]p\ƒs\’‚kšˆr•ƒm•ƒk–„l•„j¦•{´ ‡¯›‚´ ˆ¾ª’¬˜€²ž†»©“ºª“»©“±¡ŠÃ³œ¿°™½­–Æ· ³£Œ»¬•Á±šÆ¸ž·§¹«‘¾®—¿¯–±¡ˆ³£Š¯Ÿ†­„©šƒ¨™‚¶§³¤®ŸŠ¦—‚©š…­ž‰ ‘z ‘z±¢‹¶§ª›†©š…¯ ‹·¨‘´¨¬ ˆ©…´¨Ž¹«‘·©·©³¥Š¿¯•Ĵ𱡇«›±¡ˆ° ‡´¤‹¼¬“¾®—³¤«œ…­ž‡¬ˆ¯ ‹¼­˜Äµ ¾¯œ­ž‹´¥’º­š½°­ °¥‘­¢Ž²§‘¨‡°¥®£³§¢–~¯£‰°¤Š±£‰§™³£Š° ‡«œ…¢“|±¥£—˜Œv¦š„¢–€œx“„o–…sm—†v|lƒsc~n_{n]‰|iƒxb„yet^vb…zd‚wcˆ}g€u_ƒxbˆ}g‚x_ƒw_„x`ƒw_u]Œ~d‰{a†x^ƒu[Œ}fŽh’ƒl”…n–‡r–‡r˜Œv™Œy—Œx›~ž“›~ž‘~Ÿ}žyœ‹w¡yžŒvžŒvšˆrœ‡rŸwŸy˜‡s•†s€m’…t’…r—‡p’‚kŠzcŠ{d‰ze‚s^ufQqeOsgQeYCj[Fj[FbS>cT?fWBYJ7cRB\K;VC4N=-O>,F7$D3!F7$?.E6#M<*QB/L;)I8&TC3WF6VE3aR?eT@_P9eU>ugMqXsY‚r[~gš‰u–‡r—†rœx¬œ…©šƒ§–‚§˜ƒ± Œµ¦‘¯žŠ¬ˆ¸§•ô¡Ã² ·¨•²¡¸©–½¬š´¥’³¢¼­šÃ´Ÿ¾¯š®ŸŠ°¡Œ·§¯Ÿˆ®ž…©™€§•}«™°ž†¥“{¤x©•}£w¥“{ªšƒj¦–›Œuœv¢–~˜‰t¡•¥–®¢Œ±¢®¢Š²£Ž­¡‰°¡Œ®Ÿˆ²¤‰±£ˆ¬žƒ¯¡†¬ž„¨š€§™¬†³¤©šƒ¨™‚³¤±¢‹¥–¯ ‰Á²›·¨‘³¤·¨‘º«”¼­–¸ª´¨Ž¾²˜¾°–»­’·©Žº¬‘²˜Äµ˜¿®’·¨‹¶¦Œ¹«·©Ž¶¨¸ª²¤Š°¡Š·«“·«“±¥°¤Ž¼°šÂµ¢¶©–³¦“¶©–º­š« Œ­¢Ž­¢Ž²§“¨‰¬¤¬¤¯¥Œ¢˜¨œ„­¡‰´¦Œ§™­Ÿ…«ƒxlTs[s[€u_ƒwa‡{eˆ|f~r\‰zg€m‰yi‹{k}n”„uƒs‹~m…xe€u_‰}g‚l™w’|“‡q“ˆr›yšŽvœx“‡o—‹q›s™‹q“…kŽ€eŽ€e€fŠ|a‹}cˆz`†x^‚tZzkT}nW€q\znXsfSuhUuhUnaNm^KcT?_N:ZJ3_M7ZH2[I1VD,WB-VD.Q?)I8$I:%E6!F9&G8#N>'D2B2K;$B3F7"A2M>)PD.TH2RC.ZK6fWB[L7]N9aR=hWEudR†sbŒ{i‘€n”ƒoŒz¤“¤“©˜„´£‘Å´ Â±Ÿ·¦”º©—¹¨–¼­šÂ³ž¿°›¸©’»¬•Á³™¼­–³¤ª›„°¡Šµ¦‘°¡Œ©š…§˜ƒ½®—ôº«–«œ‡­œˆ³¤­œˆ¦—‚¯žŒ¸©–·¦”«œ‰¤“¨™†¯žŒ§˜…¤“©š‡­ž‰±¢§˜ƒ¬ˆ¯Ÿˆ¡‘z¤”}¥•|¤’z§•}´¢Š¯…©—¦”|¬˜€¨–~§—€¬†¯ ‰¦—€Ÿ“{ ”|¡•¬ Š¬ Š°¤Žµ©“²¦¶ª”°¤Ž¹­—´¨¶¨Žµ§Œ¬žƒ¬žƒ°¢‡²¤Š¬ž„º¬’»¬•¹ª“­ž‡­ž‡°¡Š¦—€¦—‚¶§»¬•´¥Žµ¦¸©’»­“·«‘®¢ˆ²¦Œ·©¹«³¥‹¸ª¶¨¶§Š¾®”±¡‡·§º¬‘µ§Œ¶¨ŽÁ³™¼°˜±¥³§¶ª”³§‘«Ÿ‰µ©“º­š¶©–µ¨•º­š´§”­¢Ž±¦’´©•¶«—¬¡‹®£±§Ž±§Ž­¡‰§›ƒ¬†°¢ˆ£•{¨š€¬ž„g‡y_–ˆn–Šr™Šs“„mŸy€i‡{e“‡qƒp’…r‚q‹~m}p_sfUuhUthRvgRmaKeVCXK8VG4[N;dUB]N9ZK4ZK4UG-QA(O?%M=#L<#I9 L:"J:!M=$I9 L<%N>'K;$SC,TD-QB+XI4]N9\M8[L7aR=bS-?2!;.C4!D5 N?*UF1WH5WH5WH5]N;cTAcT?jZCscLwgN|lSƒrX†u[ˆv^‹ya”‚jšˆptžŽu¥•~­†²¢‹²¢‹³£Œ·§º©•¶¥‘´£¶¥‘­ž‡¨™‚³¥‹º¬’½­”¾®•¼¬“Ä´›¾®•¶¦À°—»«’º¬’³¥‹¸©’¯¡‡³£Š­ƒ¨˜~¶¦Œ­Ÿ…¬ž„¨™‚¦—€µ©“°¤Ž¨œ†¬ Š³¦“£–ƒŸ“}§›…¯ ‰¥– ‘z£”}¥–¯ ‰¬†¬†«œ…¯ ‰³¤·¨‘»¬•»¬•µ¦¬ ˆ£˜‚§œ†«Ÿ‰ªžˆ®ŸŠ·¨“²£Ž«œ‡©˜„ª™…­œˆ©˜„¨™„­ž‰³¤½®™¹­—®¢Œ©‡±¥µ©“ªžˆ§›…´¨’»¯™®¢Œ¡•¡•¬ Š®¢Œ©‡¥™ƒªžˆ¦š„£—¦š„­ž‰ª›†¡’{£”}¥•~®ž‡«›„¦–¤”}«›„­„¸¨£“|¬œ…³¤´¥Ž©šƒ¡’{ ”|¥™³§¦š‚­¡‰­¡‰¯ ‹°¡Œ¬ˆ±¢²¦­¡‹«œ…«œ…¬†«œ…ªšƒ¨˜«š†¬›‡¨™„ª›†°¡Ž­ž‹¨›ˆ®¡Ž¶ª”¯£‹±¥²¦Ž¶ª’²¦Ž©žˆª ‡µ©“³§¬ ˆ©…¯£‹¸¬’º¬’±£‰¢’y¦–|«ƒ°¢ˆ¬ Š®¢Œ¨‰®£« Œ¬¡«ž‹¯¢¶§”±¢¬›‡°¡Œ¯£©‡¦š„«Ÿ‡¤˜€¡•}¡•{ªž„¥—} ’xžŽu w¢’{ y›‹tv[O5maGthNymSthP}qY…ya•‰q™wˆ|f€m›Ž{—ŠwªŠ£–…¨›ˆ°¡Ž¬ˆ³§‘¹­—¹¬™¹¬™µ¨•³¦“º«–¶§’µ¥Ž³£Œ²¢‰¶¦»ªº©¯Ÿ…­ƒ«›‚«›‚§—~¦–}­„¸¨¬œ…§—€ª›†²£Ž±¢ª›†©š…«œ‡£”}žv¤–|§™ªœ‚±£‰²¢ˆ¶¦Œ¸¨Ž¨˜~µ§¬ž„´¦Œ¨š€® †ªœ‚ªœ‚µ§°¢ˆ´¦Œ·¨‘±¢‹°¤Ž¡•¶ª”µ©“¬ŸŒ±¤‘¯¤´©•¯¤¨‡®¢Š«Ÿ‡ªž†©…¦š‚«Ÿ‡¬ ˆ°¤Œ³§±¥½±™®¢Š³§½±™·«“·«“§œ†®£±¥³§‘ªžˆ¬ Š°¡Œ©š…¢“~©š…¬ˆ§˜ƒª›†­ž‰°¡Œ½®™·«•¬ Š¤˜‚«Ÿ‰µ©“¯£©‡¯£¯£­¡‹§›…£—¤˜‚¦š„©‡¬ Š¬ Š¥™ƒ ”~£—§˜ƒ©š…§˜ƒžz¡’{¤•~¥•~§—€¦–° ‰¨˜¬œ…¤•~¨™‚¶§·¨‘±¥¡•}¦š‚¨œ„²¦Ž£—¢–€§›…¤˜‚§›…ª›†®ŸŠªžˆ©‡¨™„¥–¥–§˜§—€¥•~¨—ƒª™…¨™„ª›†®ŸŒ«œ‰§˜…ª›ˆ­¡‹©‡©‡ªžˆ©žˆ« Š¦›‡§œ†¯¢¯£²¦¥™¤•~­ž‡¨™‚¨š€¡‘x™‰pœŽt¡“y–Št™w™Žzš{œ‘}ž“}ž‘~¥–¢“~Ÿ{¡’}œx“‡o•‰qž’z›Œu›s ’x¥—}£•{›sžŽušŠqšŠq wv y­¡‡¾²˜©ƒ´¨Ž®¢Šªž†¸¬”µ©‘¿³¬ Š«ž‹²¥’ªŠ¯¢¦™ˆ©œ‰©š‡ ”~¥™ƒ¨œ†¦™†¨›ˆ¥˜… “€¤•€£” y›‹tžŽuªš€± †«›«›ªš€©™€±¡ˆ¯Ÿ†®ž…«›‚° ‡­†¬œ…°¡Œ´¥±¢®ŸŠ­ž‰ª›„­ž‡¦˜~©›«ƒ²¤Šº¬’»«‘ºª¼¬’«›¶¨Ž¬ž„³¥‹® †¶¨Ž¹«‘¦˜~¶¨Ž³¥‹­Ÿ…¸©’¯ ‰²¦ªžˆ­¡‹³§‘ªŠ¸«˜³¨”Æ»§»°œ°¥‘­¡‹®¢Š¦š‚¢–~¨œ„­¡‰«Ÿ‡®¢Š³§®¢Š»¯—®¢Š¯£‹¹­•±¥¶ª’©žˆ­¢Œ²¦¶ª”«Ÿ‰ªžˆ°¡Œ®ŸŠ©š…©š…ª›†©š…¦—‚¤•€ª›†¼­˜¹­—®¢Œ ”~¡•®¢Œ®¢Œ§›…ªžˆ´¨’µ©“¯£©‡©‡«Ÿ‰«Ÿ‰«Ÿ‰¨œ†§›…¢–€£—¥–§˜ƒ©š…žz¥–¦—€¢’{¢’{v¦–§—€¬œ…žxŸy¯ ‰«œ…©…¤˜€¥™£—¬ ˆ¥™ ”~¢–€šŽx ”~¨™„§˜ƒ¤˜‚¤˜‚¢“~›Œw—ˆq™ŠsvvŸŽzŸŽzœxŽy¢“€¡’Ž{œzŸ“}‘{˜Œv—Šw’‡s™Žz˜y—Œx™Œy˜‹xŸ’™wŽy£”}™Šu—ˆqŸv›‹ru¢“|›y¤˜‚§œˆ¦›‡¨‰©žŠ§š‡¦™†¬ˆ®ŸŠ¬ˆ¬†¨œ„¡•}¡•}§›¨š€¨š€©›ªœ‚©›§™¨˜ wt¦–}­†®ž‡œv®¢ˆ¤˜~°¤Š£—™u·«“±¥­¡‹§›…¥˜…¯¢²¥’«ž‹¬ŸŒ®¡Ž±¤‘«ž‹®¡Ž¬¡¨‰¬¡¬ŸŒ¨›ˆ§›…­¡‹¯ ‰¨™‚«›‚¸¨Ž½­“¶§Š¶¦Œ¶¨¸ªÃµšÁ³™¾°–´¦Œ±£‰·¨‘µ¦¹ª•º«–µ¦‘²£Ž±¢­ž‡®¢Š¥™ªœ‚³¥‹¸ª¸ª¸ªº¬’¿±—°¢ˆµ§©›¬ž„­Ÿ…³§º®”¾¯˜¼­–¶ª’®¢Š¼°š­¡‹­ ¹¬™®¡Ž³¦“ªŸ‹µª–º¯›Ã¸¤¹®š³¨”¬ Šµ©“ªžˆ ”~¬ Š­¡‹§›…¨œ†®¢Œ«Ÿ‰°¤Ž¬ Š¬ Š´¨’®¢Œ³§‘¬¡¢—ƒ©œ‰¬ŸŒ«ž‹©œ‰­ž‹¬Š¨™†¡’§˜…¬Š§˜…¢“€¥–ƒ®ŸŒº­š²§“¦™†£–ƒ©œ‰©œ‰¦™†©œ‰«ž‹¬ŸŒ¨›ˆ£–ƒ©š‡®ŸŒ«œ‰¦—„£—ªžˆ§›…¦š„§˜ƒ§˜ƒ©š…¢“~žz£”¡’{¢“| yv¢’{¢’{š‹v–‡r¥– ‘z ‘z¨™‚ž’zšŽvž’z¢–~ž’|™w„n™w¢“€ž|¡’}£”¡’}š‹v–‡r˜‰tvŸxŒxœ‹w›ŠvŸŽz¨™†¯ ­ž‹ª›ˆ®¡Ž­ ¦™†¤—†£–…¢•„¤”„«œ‰°Ÿ¯žŠ«šˆ©˜„¨˜­„®Ÿˆ¯ ‰¦š„¥™ƒ¤˜‚¥™ƒ©œ‰¨›ˆ¥™ƒ¢–€¨™„­ž‰¬†©šƒ¬†©›¢”zŸ‘w§—~§—}¤”z£“y©™ªš€¨˜¦–}¡‘x¤”{¬œƒ©™€§›­¡‡©ƒªž„¼°˜²¦Ž¶ª’¸¬”²¦¶ª”­ µ¨•»®›¨›ˆ«ž‹¬ŸŒ®¡Ž­ °¥‘®£ªŸ‹®£°£®¢Œ¥™ƒ¬ ˆ±¢‹ªœ‚¨˜~²¢ˆº«Ž¹ª²¤‰²¤‰´¦‹º¬‘¼®”½¯•º¬’º¬’·¨‘²£Œ´¥¹ª•·¨“°¡Œ¯ ‹±¢¬ ˆ¨œ‚«ƒ­Ÿ…® †°¢ˆ´¦Œ¶¨Ž¸ª±£‰²¤Š«ƒ©›® †±¥‹·«‘½®—¸©’³§«Ÿ‡»¯™°¤Ž¥˜…´§”®¡Ž¶©–²§“¦›‡´©•·¬˜º¯›°¥‘ªžˆ¸¬–²¦§›…­¡‹§›…£—£—¯£¯£«Ÿ‰¬ Š«Ÿ‰³§‘±¥°¤Ž°¥‘¦›‡¬ŸŒ«ž‹ªŠ¦™†¨™†¨™†§˜…Ÿ}¤•‚©š‡§˜…¨™†§˜…¢•‚¡” •ž‘~œ|œ|œ|œ|Ÿ’¢•‚©œ‰§š‡ “€Ÿ} ‘~ ‘~Ÿ}‘{¤˜‚§›…¦š„¥–£”¥–¢“~£”¦—‚¢“|Ÿy yŸx¦–¬œ…­ž‰¤•€®Ÿˆ®Ÿˆ«œ…¶§©…¥™¤˜€¯£‹±¥©‡£—­¡‹¶§”³¤‘­ž‰¯ ‹±¢¯ ‹¬ˆª›†¬œ…¯Ÿˆ¬›‡©˜„¥”€£’~§˜…¬Š§˜…ž|¡”£–ƒ£–…£–… “‚¤—†¥˜‡œ~™Œ{œ~ €¨˜ˆ©˜†¢‘¥”‚§–‚¤”}§—~¡’{§˜¤˜‚Ÿ“}›yŸ“}ªŠ©œ‰§›…¥™ƒª›†®ŸŠ®Ÿˆª›„ªœ‚ªœ‚¡“yšŒr¥•{¨˜~§—}¥•{¦–|¥•{ w¥•|¤”{Ÿv¥•|¢’y©…ªž†²¦Ž§›ƒÁµº®–°¤ŽÂ¶ ¶ª”¸¬–­¢Œ¹®˜¾³Ÿ©žŠ¬¡­¢Ž³¨”·¬˜º¯›µª–°¥‘±¦’¯¤Ž®£§›…©…¬†ªœ‚§™~¬žƒ¸©Œ¿°“²¤‰³¥Š·©Žº¬‘¾²˜À´š¿³™»¯•µ©‘¯£‹¯£·«•¸¬–¯£¬ŸŒ³§‘°¤Œ°¤Œ®Ÿˆ§˜¥–«œ…®Ÿˆ©šƒ®Ÿˆ«œ…«œ…«œ…©šƒ©šƒªž†­¡‰°¤Ž¶ª”´¨’­¡‹¸«˜¶©–¦™†°£³¦“º­š¹®š£˜„­¢Ž®£º¯›±¦’¬¡‹­¢Œ« Š©žˆ®£« Š­¢Œ¥š„©žˆªŸ‰§œ†ªŸ‰¬¡‹¬¡‹ªŸ‰£˜‚Ÿ’£–ƒ¥˜…¤—„ “€œ|Ÿ’ž‘~§˜… ‘~œz—ˆu—ˆuŽ{Ž{œ|ž’|œ‘{Ÿ”~¡–€¢–€£—¥™ƒ¢–€œz ”~¢“~ ‘|¦—‚®ŸŠ±¢±¢¨œ†§›…²¦µ©“¯ ‹¯ ‹°¡Œ¬ˆ ‘|¨™„°¡Œ¬ˆ¨™„¨™„¤•~´¥Ž´¥«œ‡«œ‡¬ˆ¨™‚°¡Š±¢‹ª›„žx©šƒ®ŸŠ§˜ƒ¥™ƒ¨œ†®ŸŠ±¢±¢®ŸŠ®ŸŠ®ŸŠª›†£”¢’{¤”}¨˜§—€¤“¡|¤“«š†ª™… ‘|šz}¡”¢•‚ “€¢•‚§š‰™‰y˜ˆx˜‰v¢“€¨—…¤“¥“£‘}§—€¦–œv¡’{¤•€£”ž’|‘{¢–€¢–€¢–€¢–€£—¦š‚§˜£”}¡‘x¡‘w¡‘w›‹q¡v u¡vœ‹qœ‹qŒr™‡o˜†n˜ˆo™‰pœŒsŸv²¦Ž ”|¶ª’­¡‰µ©‘´¨´¨’¼°š³§‘²¦§œ†»°š½²ž­¢Ž­¢Ž°¥‘¯¤·¬˜¼±·¬˜µª–·¬˜¶«•·¬–³§­¡‰°¢ˆ³¥‹±£ˆ°¢‡·¨‹½®‘¹«¸ª¹«¸ª¿³™¿³™¼°–²¦Œ¶ª’²¦Ž°¤Žµ©“·«•­¡‹¨›ˆ®¢Œ²¦­¡‰«œ‡­ž‡­ž‰¬†ª›†£”}§˜ƒ¦—€§˜ƒ¬†®ŸŠª›„ªžˆ«Ÿ‰¯£·«•±¥«Ÿ‰®¡ŽªŠž‘~®¡Ž°£­ ©žŠ¢—ƒž“˜y¢—ƒ§œˆ©žˆ£˜‚§œ†§œ† •’|« Š¥š„¥š„ž“}šy›z¡–€’|Ÿ”~ž“}}«ž‹¤—„§š‡£–ƒ¢•‚¤—„œ|©š‡«œ‰«œ‰¦—„©š‡ª›ˆ¨™†¯ ­¡‹¤™ƒ¤™ƒ¨‡ªžˆ­¡‹¬ Š¢–€‘{Ÿ“}Ÿ{œx¡’}©š…¬ˆ­ž‰©š…‘{­¡‹²¦ª›†­ž‰®ŸŠ¦—‚£”¢“~¨™„¥–¥–¯ ‹œv­ž‡º«–µ¦‘«œ‡¨™„¤•~­ž‡»¬•±¢‹¤•~ª›„¯ ‹¨™„©‡¤˜‚¥–­ž‰°¡Œ©š…§˜ƒª›†©š…£”¢’{¦–¤”}¤”}¡|œ‹wžy¦•¨—ƒ¡| ‘|Ÿ“} “€›Ž{–‰v”‡t}“†s}m‘‚o˜‰vž| }žy‹wŸyŸx¤”}ŽwŸyœx ‘|ž’|–Št›yœzŸ“} ”~Ÿ“{ ”|¡’{žvœŒss¨˜~¨˜~©˜~¥”z§–|ŸŽtžs§–|ª˜€œŠršŠq£“z¤”{©™€¶ª’œx°¤Œ¨œ„¦š„ªžˆªžˆ¸¬–³§‘¹­—«Ÿ‰§›…¶ª”³§‘ªžˆ²¦¥š„¬¡‹¬¡‹±¦ªŸ‰±¦­¢Œ²§‘´¨ªž†²¤Š²¤Š³¥Š¶¨²¢ˆµ¥‹¯¡†´¦‹±£ˆ´¦‹µ©µ©µ©­¡‡«Ÿ‡¯£‹¯£´¨’°¤Ž¨œ†£—¬ Š®ŸŠ­ž‰§˜…¥–«œ‰©š…¢‘žy¢‘¡|¤•‚¦—‚¢“€›Œwª›ˆª›†¦š„¢–€Ÿ“} ”~›Ž{›Ž{œ| “€œ|­ ¤—„¯¢¦š„¥™ƒ¨œ†›y¨œ†¢–€ªžˆ¦š„£—¢–€§›…¤˜‚£—ªžˆ¢–€¡•²¦®¢Œ¬ Š©‡¢–€¬ Š®¢Œ°¤Ž­¡‹°¤Ž©‡¢–€¬ˆ®ŸŠ®ŸŠ«œ‡§˜ƒ¥–¦—‚§˜ƒ¯£§›…¡•§›…®¢Œ«Ÿ‰ª›†¬ˆŸ{—ˆs¡’} ‘|˜‡s®‰­œˆ±¢±¢‹¥–¡’{®Ÿˆ­ž‡¤•~§˜¦—€¥–¢“|§˜¡’{¡’}¡’}£”›Œwª™…´£± Œ± Œ¬œ…¥•~®ž‡©™‚§˜ª›„©šƒ¢“|œvžx¥–©š…ª›†«œ‡Ÿ{Žy¥–ŸyšŠsv—‡p–†o”„m–†oŸw¤’|¢|ŸŽzœx—ˆq•†qš‹v¡’}£”¡’}žzŽ{—ˆs˜‡s›Švœ‹wŸx¢z¡y¥•~ y¦–¯Ÿˆ°¡Œ±¢®ŸŠ¥–‘{§›…¬ Šªžˆªž†®¢Š°¤Œ±£‰¦–}¤”z° †° †­œ‚®ƒ³¡‰¥“{Ÿu©—«™¤’z¦–}•…lžŽu¨˜±¥‘y¢–~¦š‚£—¡• ”~°¤Ž°¤Ž¶ª”«Ÿ‰Ÿ“}«Ÿ‰­¡‹¬ Š¥™ƒ§›…¬¡‹¨‡©žˆ¦›…®£©žˆ©Ÿ†©…ªž†°¢ˆ® †³¥Š¶¨­ƒ¯Ÿ…§™~ªœ® …±£ˆ¨œ‚£—}¦š€¨œ‚¡•} ”|œz›y¤˜‚¦š„ ”~œz¥–ƒ­ž‹­ž‹§˜…£”¢“€¥”‚«šˆ }¥”‚ª›ˆ¨™†¢“€›Œy¤•‚¤•‚¦š„«Ÿ‰ªžˆ©‡§š‡¦™†·ª—°£}­ ±¤‘®¢Œ¬ Š¬ Š¦š„ž’|¤˜‚¥™ƒ©‡¦š„¨œ†‘{£—¬ Š¥™ƒ§›…ž’|œzªžˆ¯£°¤Ž°¤Ž¦š„¥™ƒ­¡‹«Ÿ‰¨œ†®¢Œªžˆ£—£”¨™„¬ˆª›†¥–¥–©š…¬ˆ©š…¬ Š¦š„Ÿ“}£—©‡­ž‰­ž‰¢“~š‹v›Œw¥–¥”€¥”€¦•¬œ…ª›„§˜¡’{£”}¨™‚¨™‚§˜¤•~¤•~¡’{¦—€žxŸ{Ÿ{—ˆsžz¥”€§–‚¥”€¡|£“|›‹tvšŠs y¢“|žx›Œu ‘z¢“|Ÿ{žz¢“~¢“~žzœv›Œužx¦–¥•~ yœŒu—‡p–†ožŒv¤’|¥“¥“}ªšƒ©›¥–¤•~§˜¨™‚§˜ƒ¨™‚§˜ƒ£”}œ‹wœŒu¢’{v›‰s¥“}¥•~¢’{¥•~¬œ…¯ ‹¯ ‹¬ˆ¦—‚¡•¤˜‚©‡¨œ†¦š‚ªž†¯£‹¯£‹©›¦–|ªš€®ž„®ƒ«™¯…¯…¡w¢x©—¤’z§—~•…l w¨˜¡’}Žyœx¨™„¥™ƒ£—ž’|¢–€§›…¦š„£—¢–€ªžˆ¡•§›…œz¥™ƒ¢–€¤˜‚£—¡•}¬ ˆ±¥¥™¬ ˆ±¥‹´¦Œ® †²¤‰²¤‰«›±¡‡µ§µ§¶¨Žµ§±£‰¨š€¥–¯ ‰ª›„¨™‚¥–Ÿy©š…­ž‰®ŸŠ¨™„µ¦‘µ¦‘°Ÿ¨—…¦•ƒ¨—…ª™‡­œŠ©˜†¡~ª™‡± Ž¯žŒ¡~¡’}­ž‰­ž‰¬ˆ®ŸŠ®ŸŠª›†¢“~µ¦‘´¥¨™„«œ‡±¢§˜ª›„¨™‚©šƒ¡’{£”}®Ÿˆ­ž‡¬†µ¦£”}£”}¯ ‰©šƒ§˜¢“| ‘z¦—€°¡Š®Ÿˆ®Ÿˆ®ŸŠ£”±¢«œ‡¦—‚«œ‡©š…¢“~žz¢“~¤•€¢“~ŸŽzžy {¢“~ ‘z¤•~¢“|Ÿy¢“| ‘zv¡‘zœŒuŸxŸx›‹t y¤”}¤”} y y¦–}§—~£“z§—€ªšƒ£“| y­†¬œ…²¢‹¨˜ªšƒ«›„šŠs¯Ÿˆ®‰­œˆ¯Ÿˆ¡‘zªšƒªšƒ§•} w° ‡° ‡¦–}¢’y®ž‡²¢‹¬†«œ…¯ ‰©šƒ§˜¯ ‰«œ…¡“y£“z©™€§—~¥•|£‘yŸužŒtŸu¡ŒwŸwžŽu£“y¢’y¡‘x¥•|§—~¥•~¦–}¢’{¥•|v•…l›‹ržŽužŒt¢x£“|£“|£“|¨˜¯Ÿˆ° ‰¬†¬†£”£”¦š„©‡¦š„¨œ†¬ Šªž†©›§™¨˜­„¬š‚¨–€§•¯‡¬—‚¨“~­›…ª˜‚¤’|‹užŽu¢’yŽy£”§˜ƒ°¡Œ¯£µ©“¯£¡•¡•¯£°¤Ž­¡‹°¤Ž¬ Š´¨’¢–€«œ‡¢“~¬ˆ¬ Š§˜°¤Œ¿³›­¡‰®¢ˆ°¤Š²¤Š® †¬žƒ§™~¦–|³£‰º¬’·©® †©›µ§±£‰¢“|«œ…¬†ª›„¨™‚¥–¦—‚¦—‚¬ˆ±¢¬ˆ­ž‰¬›‡©˜†¥”‚£’€¥”‚©˜†§–„ }¦•ƒ¨—…­œŠ«š†¢“~§˜ƒ­ž‰§˜ƒ­ž‰«œ‡¨™„¥–ª›†µ¦‘®‰©šƒ«›„­ž‡­†£”}¬œ… ‘z¡’{°¡Š¦—€©šƒ°¡Š¦—€¡’{¦—€¤•~¢“|¢“| ‘zŸy©šƒ¥–¥–¦—‚¡’}¦—‚žz–‡rš‹vœx—ˆs¢“~¡’}žzœxœ‹wœ‹wš‰u—‡p—‡pš‹t¡’{«œ…²£Œ©šƒ¢’{ªšƒ¨˜¤”}¨˜ŸxŸx­†ªšƒ®ž‡£“z§—~° ‡¯Ÿ†®ž‡®ž‡¨˜¨˜¬œ…° ‰³£Œªšƒ«›„®ž‡v­†­œˆ¬›‡¯Ÿˆ¢’{ªšƒ²¢‹ª˜€«™®œ„®ž…¨˜¥•|¬œ…®ž‡©šƒ¦—€ª›„®Ÿˆ£”} ‘z§™¡“yt w¡‘x£“z¦”|¤’zŸu Žv¦‘|¨”|©˜~¨˜~¡‘wœŒr£“z§—~¦–}¦–}Ÿv wžŽu•…l‘hšŠqŸu˜†nžŽw¡‘z y y¢’{Ÿx›ŒuŸy™Šuœxœz‘{ ”~¢–€£—£—Ÿy¢”z¢’y£“zžŒvžŒvœŠt Žxš…p›†qœŠt¢z•ƒm¨–€¨˜«›‚¤•€™Šu¥–«œ‡¬ˆ±¢±¢£”Ÿ{´¥²£Œ¯ ‰­¡‰«Ÿ‡²¦Ž©…§˜¦–¯Ÿˆ­ž‡©™‚©šƒ¸ª¯¡‡¬ž„ªœ‚­Ÿ…­Ÿ…ªš§—~©™€®ž…´¤¯Ÿˆªšƒ¦–±¡Š·§«›„¦–¬œ…¨˜£”}¥–¢“|£”}§˜­ž‡¬œ…­†²¢‹´£®œˆ¦”€¥“¨–‚¨–‚¢|¥“¤’~§–‚«›„Ÿx¡‘z¬œ…ªšƒ° ‰¡‘z¨˜Ÿxv¡‘z¦”~¤”}£‘{£“z¥“{t¡w¡‘x£“zªš›‹r£“z£“z£“z£“z§—~¥•|¡‘x¡‘x w›‹r¥•|¥•|©™€«›„±¡Š©šƒ¡’{˜‰r›Œu¤•~¤•~¬†©šƒ¦–¤”}§•©—§•£“|žŽw¥•|¬œƒ®ž…³£Š±¡ˆ¨˜ªš¨˜£“z¦–}Ÿv•…l¨˜¬œƒ®ž…©—¡wª˜€¬š‚¥•|¨˜©™€©™€ªš³£Š±¡Š¬œ…«›„¯Ÿˆ¦–¥•~­›…ª˜‚¬š„¦”~¥“{­›ƒ§“{®œ„®œ„«™ª˜€§•}¤”{¨˜ªš¤”{¬œ…²¢‹¥—}Ÿ‘w¦˜~¤–| v¡‘wŸuœŒr›Šp–…k”€g–‚iœˆp‰q Œsžq™ˆn–…kš‰oŒr˜ˆo”„k“ƒj’‚i’‚i€g}d€g“ƒj€g”„k›‹ršŠq—‡n˜ˆq’‚kŽh–‡p•†o›Œu”ˆrŽ‚l•‰s™wšŽxŸ“}¦š‚§›ƒ©šƒ©šƒ {£’~¥“£‘}¨“€¦‘~¡{¤’~”‚lª˜‚ªšƒ®ž‡²£Ž’ƒn£”¯ ‹±¢ª›†®ŸŠª›†¡’}±¢®Ÿˆ±¢‹¯£‹ªž†­¡‰±¢‹ y­†®ž‡©™‚®ž‡§—€®ž…´¦Œ«ƒ§™§™¦˜~¦–}ªš¬œƒ©™€¬œ…¦–¬œ…¬œ…¦–° ‰±¡Š¢’{¦–¦–£”}¤•~Žw£”}¦—€©šƒ¯Ÿˆ¨˜¦–©™‚©—¤’~¢|¡{¢|›‰u Žz¢zŸx¡‘z™‰r y yv¤”}›‹t®ž‡šŠs¢zŸw™‡q¢x¡w•ƒkšˆpžs’g§–|­„ªš£“z²¢‰ªš«›‚¯Ÿ†¶¦µ¥Œ° ‡¯Ÿ†­„©™€«›‚®ž…³£Šªšƒ¸¨‘¯ ‰­ž‡¢“|¡’{©šƒ©šƒ§˜¦—€¥•~£“|£‘{¤’|¤’|£‘{¢xŸv¤”{§—~° ‡¶¦­„¨˜¦–}ªš¤”{¥•|•…l£“z¯Ÿ†¨˜­›ƒ¢x¦”|¨–~žŽu£“z¨˜¡‘x£“z­„©™‚ªšƒ©™‚«›„ªšƒžŽw©—®œ†­›…©—Ÿu«™¨”|ª–~¬š‚¥“{¤’z£‘y Žv¥•|ªš¢’y¤”}£“|Ÿ‘wžv™‹q”†l™‰ošŠp–†lŽ~dŒ{aŒ{a|c—ƒj‰qš†m”€g˜„iœ‹qŸŽtŸŽtŒr—‡n‘h“ƒjšŠq—‡n”„kšŠqšŠq–†m™‰pšŠq¢’y¤”{£“z¤”} yžx¦—€£”}ª›„¢–€™wœzž’|‘{¢–€¡• ”|¨™‚­ž‡¥”€¢‘}£‘}¡{£Ž{ŸŠwžŒxžŒxšˆr‹uŸx£“|°¡Žnžz«œ‡°¡Œ¢“~¦—‚§˜ƒ›Œw¨™„¨™‚ ‘z¥–¨™‚ª›„¡’{–„l©—¦”|¢x¨–~¢’y¨˜¯Ÿ†¤”{¥•|¡‘xŸv w¢’y£“|¢’{¦”~ Žx¤’|¥“}›‹tžŽw¥•~›‹tžŽwŸx¡‘zv—‡nšŠqŸvžŽu¥•|¢’y£“z£“z¡w£‘{ª˜‚­›…¨–€ª˜‚­›…¨–~Ÿvªš©™€©™€®œ„¡w¨–€¨–€±Ÿ‰Ÿw§•¦”~›‡o¤x«—£v§“zª–}˜„k¤“w¨˜~¡‘w¤”z¯Ÿ…ªš€¨˜~¬œ‚¯Ÿ…³£‰¯Ÿ…«›«›©™¢’x¥•{¨˜¬œ…²¢‹´¤µ¥Ž¬œ…¥•~¨™‚¥–¨˜¨˜§—€¤”}£‘{¢z£Žy Žx®œ„£‘y§•}«™®œ„°ž†¥“{¡w©—¦”|Ÿu¤’z›‰qœŠr§•}©—¦•{ŸŽt¡v¤“y›Šp™ˆnŸušˆpšˆp ŽvœŠr Žv¢’yœŒsžŽw–†oŸw¥“}¤’|§•¡u§“{«—~¤w¥‘x¥‘xª–}«š€«š€­œ‚©™€Ÿv¦–}­„«›‚¡‘x˜ŠoœŽs§™~©›€°¡„©š}¨—}§–|§“z«—~­—§‘y¤w¢Žu¦’y§“z¡w Žv w›‹r–†mŸv›‹r•…lšŠqšŠq“ƒj’‚išŠqtttžŽu›‹r™‰rvŸy ‘zž’|šŽx•‰s”ˆr–‰v—‹u˜Œv˜Œv ‘|¥–¦•ƒŒzœ‰xŸŒ{œ‡vˆw›‰ušˆt Žxšˆr›‹tv§˜ƒ“„o˜‰tŽy£”š‹vžz›Œw¡’}›Œw™Šs‘‚k˜‰r˜‰rv–†mšˆp©•}§•}¥“{¡w¢x«›‚§—~šŠq¡‘x w¡‘x£“z›‹r™‰r¡‘z­›…«™ƒ¢z£‘{¤”} y£“|¤”}§—€¢’{¤”} wžŽut¡‘xœŒs¡‘w¥•{ªš§—~£‘y¨–~¯‡¯‡´¢Œ¬š„ª˜€ª˜€t¢’y¤”{¨˜°ž†Ÿu©—©—¢zª˜‚ª˜‚«™ƒ£w‰q£v§“z¦’y¤wŸ‹pœˆo­œ‚¤“y©˜~ª™«š€«š€­œ‚«›´£‰¯ž„©˜~©˜~¬›¢‘w©˜~­›ƒ®ž‡¦–° ‰±¡Š©™‚¢’{¦—€£”}£“|£“|¢’{ y Žx ŽxžŒv›‰s£‘yžŒt©—¦”|žŒtŸu‹s Žv¤’z¥“{¢x”‚j•ƒm¡w¤’|¥“{¢‘w¡v¢‘w¦•{œ‹q”ƒižs¤“y¥“{§–|¤’z¦–}¬œƒttŸv¥“}‹sžŒv´¢Š³Ÿ‡ª–~µ¡ˆ´ ‡¦’y«—~¯›‚±„²¡‡³¢ˆ¬œ‚¦–|¨˜±¡ˆ¬œƒ¨˜¦–|šŒqžŽt­ƒ¬œ‚¦–|§•}¥“{ Œt¡u¤x Œs¤w‰p Œs£v‹sžŒt wšŠq–†m€g“i—‡n—…m’‚i“i‘h“ƒj“ƒj’‚i”„k—‡n—‡n•…l–†m›Œu•†o™Šs˜Œtj„l›ŒwšŽx—‹s™u›Œu˜‰rŸ{™ˆtš‰u¢‘}›‰u¢|™‡q—‡p¡y¢’y§—~ªš¥–j¨™‚²£Œ¦–²¢‹¹©’šŠs£“|¡‘z¡‘z¡‘zžŽu¢’y¤’z¡w¤’z½¬’¯ž„µ¤Š³¢ˆ²¡‡µ¤Š²¡‡¤’z«™§•}¤’z¨–~¥“{¡w§•}¯Ÿˆªšƒ¡‘z¢’{¨˜Ÿx›‹r§—~ w¢’y¤”{¡‘xžŽu v¡‘wŸuŸŽt£’x¤“y£’x¤’z¨–~ª˜€©—¯…¬š‚¬š‚² ˆ¢z¢z¥“}«™ƒ¯‡®œ†¤’|­›…£‘y¦”|£‘y«™¡wŸu¤’z¢x£vžŠq Œs‰p«—Ÿ‹s«—©•}«—¨”|¢Žv¡w¦’z¤x£w§“{¡u¡u¬˜€£w¤’|¥•~©™‚¥•~§—€£“| yšŠsšŠsšŠsœŒužŽwvšŠs˜ˆq™‡q Žv§“{§•§•§•¢z¢zª˜‚¬š„¯‡®ž‡ªšƒœ‹w¢’{©˜„¨˜¥•|¥•{«š€ u¢‘užq™ˆl£’v¥”z­œ€©™¨˜~¥•{ ’w¡“x vª˜€›ŠpžŒt¡v¡v¨—}¨—}¥”zŸŽt£’x¥”x¢‘u©˜|­œ€©˜|«š~žs¦•{£’x©˜~¬š‚§—~šˆpžŒv¥“} ŽxŸwžŒv™‡q™‡q™‡q•ƒkš‰o•„h•„j–…k•„j–…k™ˆn—†l‘€f|b“f—†l™…l•„j–‚i‘€f•„j–…k—†l˜‡m˜‡m˜‡ms¦–|¡‘x¡‘x¤”{žvœŒsžv¬œƒŸ‘wž“wž“w”ˆnœvœvŸ‘w¥—}¥—}Ÿv¨˜£“z›s›‹rŸ‘v«‚«‚¯¡‡¡“y§˜¶§±¡Š¸¨‘´¤¡‘z•…n«›„¥•~žŽw¡w¡w§•}¢x™ˆn·¦Œ³¢ˆ¶¥‹± †§–|°Ÿ…«š€¥“{§•}£‘y‹sžŒt¢x¢xŸu¨˜ªšƒ¥•~¤”}ªšƒ¥•~Ÿv¤”{¤”{¦–}¥•| wœŒr›‹qžŽt¢’xœ‹q u¢‘w¢‘w£‘y¦”|¦”|£‘yª˜€©—­›ƒ¯…¡yžŒv¡y¥“}¤’|©—¢zª˜‚¡wšˆpšˆpšˆp Žv Žv‹sœŠrœˆo˜„k–‚i‰q¤z ‹v§‘z©•}§‘z¤xœˆpœŠr£w¥‘yŸ‹s¢Žv¤Žw¡u§‘z ŒtœŠržŽu£“|¥•|©™‚ªš«›„ªš¡‘z wŸx wŸxt›‹tšŠq¤x©•}¨–~§•}¨–~§•}¦”|©—®œ„¤’zªšƒ¬œ…Ÿx›‹t¡‘zŸx w¤”z¤’z›Šp užs›Šp›Šnžs¥”z£“yžŽtœŽstœŽt˜ŠoŸvs–„l–†mŸuœŒs›‰qžŽu›‰q›‹qžs˜ˆnŒr¡’u©˜|¦—zš‰o vŸŽts‹s¢’yžŒt˜ˆqšˆr˜ˆq™‡q˜ˆq˜†p—‡p˜†p•ƒm‹s›Šp›‰q›‰q˜†n–„l—…m˜†n—ƒk”€h—ƒkžŠr¡u Œt‰p˜‡m›Šp™‰ošˆp›‹q¡w£“yªš³£‰¯Ÿ†ªš€ªš¨š¨˜¢”y¨˜§™~£•z¡“xuœŽtžvžvŸ‘w¢”z£•{¦–}¢’yœŒs–†m–†lžŽt£“y£•{Ÿ‘w˜Šp°¢ˆ´¤° ‰«›„´¤™‰rªšƒ¨˜žŽu¡w—…m Žv¡wš‰o¤“y»ª²¡‡µ¤Š³¢ˆ¬›¬›§•}¡w ŽvŸuœŠr¡w£‘yšˆpžŒv¨–€¨–€£‘{¥“{¤’zžŒtžŒt Žv ŽvžsŒrŒr™ˆn™ˆnžsœŒsŸv wŸvŸv¢’y¢’y¡‘xŸvžŽu£“|£“|žŒv›‰sžŒvœŠtœŠt¥“}¤”}©™‚¦–•…nšŠs’‚k¡‘x¤”{Ÿu ŽvžŒt™‡o”‚j¡w°žˆ®œ†«–ª˜‚©”¥“}ŸwŸx¥“{ª˜€¡w¢x¬˜€¦”|¦’z¢xžŽu v£“z§—}§—~¨˜~§—~¨˜~§—~¤”z¡‘x v wžŽt›‹r™‰o‰p£v¡vžs u£’x£’x¢‘w¨—} u¥“{£‘y¦–}œŒs˜ˆo w—‡nžŽu‹u™‡ožŒtšˆpšˆp—†l–„l›‰q›‹r˜ˆošŠqŸv›Œu™‹qŽwšŒr–†oŸy£“|š‹tv›Œu›‹t™Šs£“|œŽt¡‘xžv¨˜œŽs¨˜~¡“x¢’x¦˜}¡‘w¡“x¤”z£•{£“z¢”z¢’y¢”z§—~¦˜~¤”z w¢’{¤“¤“¢‘}žy™ˆt˜…t™†u›ˆw™†u˜†r‹w¢| Žz›‰u™‡q—‡p—‰ošŠs›sv™‹qš‹tŸ‘w«œ…¥—}¥–£—}§˜œvœv¤–|¡‘xt¡‘z™‰rŸxžŽwšŠs y¡‘z›‰s‹u›‰s”‚l‘i“k—…m§™¨š€’„j¤–|´¤° ‰ªšƒ²¢‹ y˜ˆq¢’yšŠq•ƒkŒzb’€hšˆpeŒ{a§–|ŸŽt¥”z§–|—†lœ‹q¡w™‡oœŠr£‘y ŽvžŒtœŠr—…m—…o¢z¢z›‰s˜†n™‡o›‰q¡w¦”|£‘yœ‹qžs¥”z uš‰ožs¢’y£“z¢’yŸvžŽu¢’y¥•|¦–}žŽu›‹r›‹tœŒuœŠtŸwžŒv›‰sŸw¤’|¦–­†¬œ…Ÿx y›‹t¡‘x¦–}¥“{¨–~¦”|Ÿu˜†nžŒt¬š„­›…¡y¢’{¥“}¢’{žŽw›‹t w¦–}ŸvŸv§•}£‘yŸuŸu›‹rœŒst¤”{¢’y£“zŸv¡‘x¡‘xžŽu›‹r›‹rttšŠq˜‡m—†l‰nœ‹qš‰oœ‹qŸŽt u u˜‡m˜‡mœ‹q›‰q¢’y w˜ˆoŸv—‡pšŠsŸw Žx£‘{›‰qšˆp‹sžŒtžŒt¢’{ y¤”}©™‚¤•~§˜£”}žxŽw§˜©š…¢“~¢“~¢“~Žy›Œw©šƒ¥–¬†¦—€¤–|šŒr©›€Ÿ‘vŸ‘v§™~¢”y›rt£•z¥—|¥—|¡“xŸ‘t¥—z¥—zŸ‘tœŽsŸx£’~¢‘} {žy˜‡s”p•‚q–ƒr”p‘k’€l—…q“mŽ|h}fŒ|e“ƒjšŠqtšŠq“ƒj’‚i˜ˆo wŸv¢”zŸ‘w¡“yŸ‘wšŒr¡“yœŒu‹u Žx›‰s¡{ Žx™‡sœŠtžŒx”‚lœ‡tˆsš…pœ‡r˜ƒn”€h›s¥—}’„j‘ƒi›‹t›‹t yžŽwŸx–†o¡‘x™‰p–„lŽ|d“‚hœ‹q“i–„l‹sŸu›‰q~f~f•ƒkŸŽtŒr¡v¦•{¦•{ u›Špš‰o¤’z§•}¥“{¢x¡w Žv¥”z¯ž„³¢ˆ¬›¡vŸŽt¥”z uš‰mžq£“y£•z¡“xœŽsœŒsŸv¥•|¨˜¤”{¢’yœŒsžŽu›‰s¢zŸwžŒv¤’|¡y¤’|ª˜‚¨˜¤”}žŽwŸxvžŽw£“|¢’{ w™‰p•…l‘h˜ˆqvšŠsš‹t¤”}ŸyŸ‘w˜Šp˜Šp›s›sœŽtœŒs™‰p™‰p˜ˆošˆršˆršˆr¡yŸw Žx›‰sœŠtœŠt™‡q—…o˜†p›‰sžŒvžŒv‹u™‡oš‰o‹sžŒtœŠr›‰qžŒt Žv Žvšˆp£‘y§•¡y¨–€¨–€¢zœŠt˜†n¡w Žv£‘y‹s–„l›Špš‰oŒr w›‹ržŽu£“z w¡‘x£“z£“zt˜ˆo¢’{£“|›‹t¡‘zv–†o£“|žŽwªšƒ¨˜vŸvs¡’u ‘t›ŒoœŒr˜ˆn–ˆk™‹nŸ‘t ’uœŽq˜‹kšm˜‹k•ˆh–‰i“…j•‡m“…k‘ƒi’„j‚hŽ~gh™‰r—‡p‘hŽ~efŠza†v]ˆx^Œ{a‘€d–…i™ˆlš‰m–…i˜‡kŸŽrŸŽrŒp£’v£’v s£’v s¢‘w£“z¤”{¡w Žv¡y¡wšˆr—…mœŠt—…mŸŠuœˆp›‡o¢Žv Œtš†m˜Šp ’xœŽt˜Šp—‡pŽ~g¡‘z¥•~£“|¤”}¤”{¤”{¦”|‘g”ƒi¢‘w¥“{¦”|¤’z¨–~¢x˜†n˜†n¢x¤“yª™©˜~¥”z¦•{¥”z¡v¡v ŽvŸu Žv¥“{§•} ŽvŒr uª™¨—}¢‘wŒr›Šp—†l“‚f•„h›‹q›ršŒq–ˆm•…l˜ˆoœŒsžŽužŽu wšŠqœŒs•ƒm›‰s™‡q‹u ŽxšˆrœŠt¢zžŽw¢’{—‡p›‹t™‰r˜ˆqžŽw›‹t™‰p•…l–†m€g’‚kšŠsš‹t˜Špœv™‹qžv™‹q™‹q™‹qžvŸ‘w™‹q—‰o›‹r›‹r¡yŸy‹wŸyžŒx‹w™‡s˜†ržŒx›‰u˜†r—…qšˆtŸy¡{¡{›‰s™‡o‹s ŽvœŠt˜†pšˆržŒv¨–€¢z Žx£‘{šˆtŸy¢| ŽxœŠr”ƒiœ‹q˜‡mŒržs”ƒg“‚f‘€d™ˆl›‹q“ƒi”„j›‹qšŠp˜ˆn˜ˆn™‰o™ˆnŽ~d”‚jŸv˜†n’‚i™‡o”„kšˆp™‰p¡w¤”{–„lt‘€fŽq›ŠnŽb•„j’‚hd“…h–‡j–ˆk—ˆk“†f€a‹~\Œ_“†f‚e‚eŒ~aŠ|_Œ~ad’‚h”„j”„j”„j”…h–‡j™Šmš‹n›Œožrš‰kœ‰kœ‰k o¤‘s£r¢q¦“u¥’t o£r§”v£r£r¡Žp¡t¡‘wŸ‘w™‰pšŠq–†m™‰p“ƒj}d”„k•…l™‡o“ie˜‡mœ‹q™ˆn¦˜~ ’x¡“y£•{¡‘x’‚i¡‘x£“z¤”{¥•|£“z¦–}§–|–…k‘€f›Šp Žv›‰qšˆpšˆpœŠrœŠr‘g‹s£’x§–|¤“yŒržs¡vŸŽtžs›Špœ‹qžs£’x¤“yŸŽt—†l“‚h›ŠpŸŽt sš‰m•„h”ƒg“‚f“‚f–‡j—ˆk–‡j•†i”„j”„j–…k—†l–…k™ˆn—†l™ˆn—…m˜†n–„l™‡o‰qŸ‹s‹s¢xžŒt¢x˜ˆo–†m™‰p›‹rtœŒsœŒs™‰p›‰qœŠr£“z¦–}¥•|Ÿut v£•zŸ‘v™‹p˜ŠožŽtŸušŠp™‰o›‹qœŒs‹u‹w‹w›‰uœŠv›‰ušˆt—…qœŠv›‰u˜†r–„p—…qšˆtœŠvœŠvšˆr–„n™‡qžŒv›‰s—…o˜†p™‡q¥“¨–‚œŠv™‡sœŠv–„p–„p™‡q˜ˆn€c‘‚e‘‚e™Škœn˜‰j•†g‹|]’ƒd’ƒdb’ƒf•†i˜‰l—ˆk–…i“‚f›‡lš‰m›‡n¡v¢Žu’g™…lœ‹q›‡n¡vœˆo¡v˜„k˜‡m˜„iŸŽr¡t—†lŸ‹r–…k–…kžŽtœ‹q—‡m™ˆn™Šm•„hb’ƒf•†g“†d’…cƒcŽaŒ_‘„d–‰i—Šj™Œl˜‹kšm›Žn™Œl˜‹k—Šh—ˆg–…g”ƒg”ƒg™ˆlžqŒpœˆmžŠo£t¡rš†k¡r¢Žs¡rŸŠožqt•‰o˜Œr”ˆn‘…k–Šp’„j‹}cŽ€f‚hgŽ€fdŒ~cŽ€edužv¢”z ’x™‰p‘hœŒs—‡n¡‘xœŒs¤”{žŽuŒr¤“y—†l‘€f•ƒk˜†nŽ|d~f—…m‘gŽ|d~f uŒr›Špš‰oš‰o›Šp›Šp™ˆn›Špœ‹qœ‹q™ˆn™ˆn›Špš‰o˜‡m–…k›Špœ‹o•„h‘€d•„h˜‡k–…iš‹nš‹n™Šm˜‰l˜ˆn˜ˆn˜‡m—†l™ˆn™ˆn™ˆnœ‹q Žv‹s™‡o˜†nžŠr©•}©•}ª˜€¥“{¥“{Ÿu•…lšŠq wžŽu¡‘x¡‘xžŽušˆp£‘y£‘y¢’y¡vsš‰o¢’x v—‰n—‡m˜ˆnšŠpšŠpš‰o˜ˆn˜‡mœ‹q—…m—…mšˆr–„l™‡q–„l–„n‘g‘i’€h“k’€h’€j“i”‚l”‚j’€h{c‘g–„l•ƒk“i“i‘g“kœŠt—…o—…ošˆr}g~h†t\~a…vW„uVŒ}^•†g“„c™Šiš‹j—ˆg˜‰h•†eŽm ‘r›Œm ‘r¥–wžoŸŒnœ‰k¦“u¬˜}§“x§“x¤u™…j¦’w‰nª–{—ƒh¢Žs Œqš†k—ƒhŒp¡t˜‡mžŠq–„l˜†nžŒt¢x˜†n—…mœŒs›Šp–†l”„j‘ƒf’…e‘„d“†fƒcŠ|_b“…h“…h’„g‘ƒf—‰lšm˜Šm–‰i•ˆh‘„d“…j’„i‘h’„i•…l“ƒi’‚i•…k•ƒk™‰oŒzb‘g›‰qœ‹q—…m—‡nˆ|d|rY‹€jƒy`€u_‡}d€t^xlTpdNocKk_GrfNrfNg[AbV<_S9“…jœŽsšŒq•‡l–†mŽ~eŽ~e—‡n—‡n—‡n›‹qšŠp™ˆn›Šp–…ie’‚i‘h‘h}d–†m™‰pf“ƒj–†l‘g’‚h•…k—‡ms¢’xŸu¦•{¤“yŸŽt—†l“‚f•„h—†j—†j—†jŒp£’vš‰mˆw[~b¢‘u s¤“u¢‘sŒnŸŽp sŸŽr¢‘u¢‘uœ‹oŸŽr ŒqžŠo¢Žu£v Œsœˆo£uª–}¦’y¦’y«—~«š€§–|›Špœ‹qžs¤“y u¡v¤“yžsœ‹qœ‹qŸŽt¢ŽuŒr¢Žu˜‡m™ˆlŽq™ˆlš‰m˜‡k s¡r–…iš†k—†j•„h›Šl˜‡k•„f˜‡k•„fc”ƒeŒ{_a”ƒg”ƒe’eacc’ƒfd’ƒf˜‰lš‹n•†i”…h™Šm—‡m’‚hžŽt«›¢’x¦–|¡‘weƒtW„uXŒ}`‰z[’ƒd–‡h™ŠkžpŽo›Œmžp¡’s¦—z¡’u§˜{¨™|¤“u¢‘sš‰k¢‘s§–z¦•y¢‘w«š€›Šp£’xš‰o¡v˜‡mœ‹qŒp–…i|b’‚h“i”„k–„l‘j”„m™‰r™‰ržŽwv–‡p•„p–‡r”…nŽh‹}c‰}c‹e‡{a€t\u]ƒw_€t\„x`‡{cˆ|d…y_‚v^u[‚v\‚v^~s]}u^vbxpYynZ{pZpeQg\Fk^KmbL_R?cXBnaNh\Fh[HbUBQF4PE3WK;K@.L@0OD2I=->3!9-9.=0>11=06)’„išŒq™‹p—‰n–†m€gŽ~ešŠq˜ˆo”„k•…k–†l™ˆnŒrš‰m’e–†m‘h–†m“ƒj”„k›‹r˜ˆo™‰pšŠp–†l“ƒi”„j—‡m™‰oœŒr¡‘w¨—}¥”z¡vŒr–…i~bŽ}ac”ƒg”ƒg•„h’eˆw[‡vZ’e—†jš‰kŒnœ‹mŒnœ‹oš‰mŒpžqŒp˜‡kžŠožŠo•h–‚i‰pœˆo™ƒkŸ‹r¡t¢Žu¦’yª™¡v˜‡me—†l›Šp—†lš‰oœ‹q˜‡mŒrŸ‹r™…l™…lš†m–‚i˜„k“‚fš‰m–…i˜‡k—ƒh‰nœˆm•f˜„i–‚g“‚d˜ˆg—†h’‚aa’‚a‘€bŽ~]–…g•…d•„f•…d”ƒe’‚a‘€b€a“„e“„e”…h˜‰l›Œo˜‰l—ˆk›Œo—ˆk–‡js¥•{¡‘w¤”z§—}¥•{}cscItdJ~nT€f•†i˜‰l“„g•†i•†i’ƒf“„g˜ˆnŸušŠpŸusš‹n–‡j”…h”„jšŠp—‡n¡‘x’‚i˜ˆoœŒsœŒs”„k’‚i•…k•…kŠ|a‹}bˆz`‰{a‰zc‡xaˆydˆyd‡xc‰zeƒwa}p]{n[zmZwjWuiSsfSm`Mh[HcVC^Q>_R?_R?YL9ZM<_R?aTA]P=YL9XK8ZM:ZO;OG4OH5QJ7JC0IB/LE2F>+A9&?7$A9&;3 80807/6.1)5)5)>0#5'3%5'4&3%6(4'5(7'6&9);+6&–ˆm›rœŽsœŽs˜ˆn–†lŽ~eœŒsžŽt–†l“ƒi”„j”ƒgš‰mŒp•„h˜ˆoŽ~e•…l’‚i‹{b“ƒj—‡n•…l–†l™‰o—‡m–†l”„j}cŒ|b—‡m¤•x¢“v¡’uŸs™ŠmdŠ{^‰z]Žb‹|_‡x[Š{^ˆy\‚sV…vYŒ}`|`‘€d“‚f–…i•„h’e”ƒi“‚h˜‡m—†l”ƒi“‚h“‚h“‚h–…kš‰o{b›‡n¢Žu™ˆn—†l£’x˜‡m’‚hŽ~e–†m˜ˆo”„k™‡o™‡o•ƒkšˆpš†m|c•hœˆo‘}dš†m~d–…k”ƒi—†l—ƒj›‡nœˆo˜„k›‡n™…jžq•†g’ƒf‘‚c~aŽ`“„g•†g—ˆk“„ed€a‘‚e“„e“„g“„g•†i“…h‘ƒh’„i–ˆm–ˆm—‰n›r˜ˆn“ƒi’‚i•…lt™‰p–†m˜ˆq™ŠszkVrcN{lUŽh’ƒl˜‰rš‹t”…n‘‚kŠ{dŒ}f€k™Šu‰xd“„m“„mŒ€h„lŒ€h†zb‰}eu_Š~h‚v`s]‡{e}q[ymUqeMthPvjRoeJj`EdZAe[BeZDdYCdYE`UAYN:YN:SH4OD2OD2OD2OD2SH4L?.H8(B2">.=-?/?/:*=0 @3"B5$?2!(J?)E:$HA'C< ?8@9=5<4>6!80;3>6!;06.:/91=2D9%A2A2A1!>.=->.@0 @0 :-;.;.;.;.;.6)1$4)5*6+5*4)5*6+7,6+2'5*6+8-<1?4 E:&F6&=-@0 @0 G6&O>.Q@0UD4XG5\K9bQ?gVDn\HsaMvdPvdP“…j’„i“…j—‰n’‚h’‚h‚rXŠz`ee€f“ƒi~b|`“‚f~bŽ~d‰y_ˆx^‡w]†v\Œ|b}cŒ|b}dŠza‰y`‰y`ˆx_Œ|c€gŽ~d‚e˜ŠmršŒo•‡j”†i”†k•‡l”†kŽ€ed‘ƒhŽ€ed“…j“…jee€g—‡n˜ˆo“…k–†m–ˆn‘j‘ƒi•†o–‡p’ƒl‘‚k’ƒlj}f“ƒj“ƒl—‰o‘‚kŠ|bŒ}f‘…m”…njjjŒ}h~g‘€l}f‘j‘jˆv`‡w`}ffhŠ|bŒ|e‘h€i}d‰yb‰y`Ž|f}f‹zfŒ}hƒta{lWr_‚s^whUn_Jm^KwhS}n[{lWzkX~oZ~o\{lYvgTwjWxkXwjWtgVl_NbUD^Q@eUEcSCjZJn^Nk[L[K/XK:PC3QD3QD3SF5E8'E:&K>-H;*F9(K>-F6&F6&A1";+;.=2;0A6">3!>3!>3!:/7,:/:/>3>39.=26+9/8.8.;18-7,<1:/<1A6 B6 >3?3?5@4C7E6J:#K:&H7#E6!D5 F7"I:%I:%I:%I:%I:%L=(M>)I=%D8 K<%L<%J:#I9"I:#K<%O@)PA*M>'VG0XI2^O8gXAiZCl]FrcLqbMpaLwhSxiTxiT~oZ}lX~mY{jV~mY€pY€pYqXqXqX‚rY‘ƒh‚g‚g“…j’‚h“ƒi‡w]Šz`’‚h‘gŒ|b‘g”ƒg•„hœ‹o›Šn“ƒi’‚hŽ~dŒ|b€f“ƒi”„j•…k”„k“ƒj•…l“ƒjf”„kœŒsšŠp•‡lšŒoŸ‘tŸ‘t—‰l‘ƒf”†kšŒq˜Šo‘ƒhf”†k‚gd’„i‘ƒhŒ|c}d}fj’ƒl’ƒl•†q“‡o˜‰t”ˆpƒm‚l‘…oŽƒmŒlŽ‚lŽ‚l„l…yas[€t\€v]Š~h‰f‡{e…yc„xb…va|mXzkV‚s`‚s^„ub†wbxiVsdO€q\ymWymWk_GsgQuiQsgQl`HhYDgXAiZEj[FiZGiYI\LbRB[K;XH8]M=dTDdTDYI9QA1P@0P@0K>-J=,M@/NA0M@/K>.E8(?2">1!D4%;+=-@0!@0#:*:*7'9,1!5(1 3&6)=09,?26)/# 8,8,3'7+<0D8 F:$H<&OC-QE-ZK4_Q7cU;dV\O*E:$B5"A5A4!A4!A4#=09,1 ;.;0;.;.;.9,;.?2!:-:-<,<,6&7':*>.6)5(5*;04)2'3(* ,! ,! 0#,* +1!4$/- 6'2#8)<-?0;,5&5&6'9*G8#G8#H9"RC,\M6TE.ZK4]N7dU>l\Em]FrbKueLweMtcIxgK}lP}jL~kM€mMziK{kQ|lRzjPyiO{kR{kRzjQ}mTwiOzlR|nTzlQykQ{mR~pUqW|lS‚r[ƒs\†v_‡w`‡w`‰zc„u^‚s\…v_ˆybˆybŠ{d‹|e‹|e’ƒlŒk†{eƒxd~s]xmY€u_zo[zoY„xb„xb€t^|pX}qY|pV{oU~rXŒcŒcŠaŠa‚g‘ƒh’„id‹}b‘ƒh‹}b‘ƒh™Šm“„g–‡j˜‰l™‹p–ˆm‚gŠ|a„v[†x]egeŒ~dˆz`‹}c”…n”†lj“…k•Šn‘†jŽƒgŽƒg’†l”†lŠ|b~pVƒu[e‡y_sYˆz`„v\rcL]Q9XK8[N;VK7ZO;j_KujVh]KLD/RG5SK8G?,92G>-`YGjcQc\JPG6NF3QJ7A:'D=*?7$;3 7/.&<4;0>3!B5$3&) + 7*5(=08+5*2'6+1&0%3(:/<1>1>1/;*>-?.D3!@/A0?0@12E9#D8"H<&E9#E9#@4E6!D5 E4"L;)G6$P?-M<(P@)RB+_O8gW@gW@`P9gW@bR;WG0]M4o_FwgNvfMtdK{kRzkT}nWzkT~nWƒs\qZ€pY€pW†t\{jP{jPpTkP€lQ„qSnPqTƒuZsX|qU}qWznTxlT{oYu_‚v`‚v`€t^s]€t^s]|pZs]„xb€s`s]€s`„xb€mŠk‚ot`‰~j„p‚n‡|h}r`‚zg~we|wd€yi|wdun\zubyr`xfzhzg~we}vc€yf~wdzt^{u_‰€_‡~]„{Z‹‚aŠb‚yZ‰€a‘ˆi‹‚c†}^‰€aŽ…fypS€wZ”‹nŽ…h„j†z`„j…y_}qW^R8vhNŽ‚j„x`xlTxlTu]‚wa€v]{s\wpVpfMqgNlbIg]Dj_Ik_I_S=QE/QD1ZM:WJ7RE2SF3M@-B5$;06-4+5,90=4#B:'B9(928/2+81/);3&5/!-'(""-)82&2, 2,1*6/92 3*80;/:.5)8,?2":-<,?/ 9);+=-8(9)8(2"2"1!3#4$1!1!5&7&6%4#. 2!/5&5&8)5&1" 1" 1" .0 6&8(8(>.F6F6@0E5QA(YI0YI/^L4^L4eS;hV>dR:kYAfTVK5TI5UJ6RG3ME0LD/IA,?7"@8!?7">3<1>3>1;.2%9,8+3&3&1$/"2&4*1'4*5,3*91>6#918080;4"=6&2* +$71%<4)/'1(:1 :.5*/"3&/"* 6&6&.<+;*8'<+?.<+9(3"2!2!6%>-@/A0D3C1D2B1@/K:(N=+PA.N?*QB+TF,VH.TF,SC*RB)WG0]M6bR9l\Cp^Fp`GweMwgMveKxhN€oU‚qUnT€oS‚qWnT}lRnT~mS}lPziOnRƒrX‚qU‚qW|kQ|kQ…tZ€oU…s[{c~h}gŒzd‡w`ƒu[g•‡mg‚h˜Šo’„iŒ~cˆz_‰{`dŠ|bŠ|b†x^Œ}fŒk‡|f†{e…zd†zd†{e‹~k‚wcxkX‚wcˆ{h‚wc„ygƒxfƒxfƒ{f„€e{`~|c€~gzydyxfz{mzznzwn{xqzuoupjunhvoislfngaolcbbVbbVoocwwkqqemmaoocqqgmmc{{s~ynoibd_bd_chbimleihbfe^baY^Z[`\]b^Y^ZUZVTYU[`\Z_[Z\[TXWSUTTXW`XC_WBME0OG2SK6JB-RJ7XP=aVDWL:i^L]R@PE3QF4LA/B7%F9(D7&C6%G:)C3#>.;+?/ D4%=0 :,:. ;/!=1#<0"8,<17,7,9,6)7*=->.<,B2#C3$C3&D4'?/"=- @2%?1$9-;/9.3(6+9.3(8-6+1&:/.% 2&;- - , 3$8'9(;*G6$D3!9(C2"I8&H7#F6F6L<%I9"QA*QA*VF/RB+SC*TD+ZJ1bR9fV=gW>k[Bn^Ek[BhXAk[DwhSvgPteNvhNxlRrgKrdIvhMxjOwiNykQqW}nW‚s\ƒs\ƒu[Šza‡y_qX€rXqX‡w]ƒsZ…u[„t[oVƒsZƒsZ†v]…u[oVˆx^qXqW…u\‰y`Šzaˆx_…u\†v_„t]ˆwc—†rŽj…yc‰}g–Štœx•‰qšŽvŸ“{‘y”ˆpƒk‘…mž’z‘{’†pƒmž“}š{„|gˆ€kކq•ŠvކqŒo„|i‡|j’Šw‘…u…|k~ufvg€vj{m€~oqrbrsevwilnagi^lmeopjvwqvwqqrllmgonirqlmmecb]dfabgcejfglhdiebgcglhotpjnmjpnlrrirqhqpajiU]_R\][diXafWacV`bV`bZdf^hi^hiXbcYcdakl^hi`hkXbdZbe[eg+"/&!*!7.1(6-90=1#8,L@2D8*6*<0"@4&<0 ?2".@0!?/ ;+;+<,;+<-@1G8#L=(K<%G8!D5A29*>1D7&D7&B6&A5%G:*OB2SC3`P@\M:VE1ZI5cS<_M7dR-F5#K:(I:'E6#B5"D5"D8"D5G9QC)SE+J<"K;"RB+RB+XH1VF/RA-O>*Q@,RA-N=)J9%Q@,VE1SC,XH1fV=k[BgW>jZAfV=fV=gW@aQ:kZFvgRxiVxiTvgRƒt]‚r[‚rY{kR~mSpVƒrV{jN{jNƒrX}lR}lR‚qW{iQmU{kQzlQ€rW†x]|nS…w\~pU{mPsV„vY„vYƒvVƒuXƒvVƒvV…xXŠz`”„k‘‚k…v_‡xcŽjŠ~h‘…miŠ€e‰d…{`‚v\…{bŒ€hŒkŠ}jŠk‚o‹€j‰}g‘†pšŽx–‹u„n‚l‘†p‘†p“ˆt–‹w”‰u”‰u™Žzž“˜y„yeŠk™Žz…q“ˆt“ˆt™ŽzŒm‰~j’€œ‘¡–„¡˜‡™’‚Ÿ˜ˆ—€¡šŠ ™‰—€•™“ƒ šŠ§¡‘¡›‹š”„­§™ šŒ~Œ{“Ž{ ›ˆ›–ƒ“Ž{—‘–‚–‚‹…y}r—“ˆ™•Œ—’Œ‚x~{vyxs‚ƒ~€„‡y„rz}muxhpsZbeQY\QY[OWZKSUKUVR\][ef[edQ][HTTM[^Raf\kp`ot]lqUdiQ`eQ`eJY^FX\M^eQbiRcjUhnXkr]pwZjwWgtUfpWhrUfpPakO`hTemXgnTcjUdkXgn[hpSbiVclZip* .#'( ,! ( * -"3&9,4'=0?2!B5"B5$>/E6H9"P@)SC,UE.UE.[K4`P7bR;hX?l\Em]Dl^Dk]Cl^DqcIoaFpbEtfKrdGl\Bm]Co_Em]CqaGscIscJqaHqaHtdKtdKqaHvdL}kSxfNweM‚qWƒrX€oUˆw]†u[‡v\Šx`oW‚r[‡w`„s_…u^ƒsZ‰y_ˆx^†v\ˆx^Œ}`‡x[‚sV„uX‚sV‰y_€pV‚rXŠz`ƒsZ‰{aqWge†x^†x^Š|b‚tZ‡y^‹}bŒ~cŠ|a‰{^d“…h“…h’„g›s™Šs•†q’ƒn–‡tšz”‡tœ‘}š{“ˆr”‰s˜y›zš’}›~–Ž{šŽ~˜~ž“™‘~–‹y›“€¦›‰¤œ‰š’—} ˜…œ•‚™’€œ•ƒš“–„¡šˆž—…–„–} ™‡Ÿ˜†”{ž—…’‹y ™‡–„—~ ™‰–†›”„ ™‰ž˜Š›—‹œ–ŠŸ›•‘…•‘…£Ÿ“£¡”žšŽ ž‘¨¦™œš£¡•˜–ŠŒŠ~•“†š˜‰œ›‰~“‘‚•“†ŒŠ~„“‡Œ…‘‹‹Š†…„€zzx}}{rtqtxyov|mw€`jsWbh[dkXciV_f[fl^iobmscpverxcrw^ptYkoTelVgoYls`qy_ryUfnI\cK\dTgnVipVipas}i}†ey‚XluSgr\p{\o}bu„_r€UhvNaoOaoVht^p|]oyZkuWhr[lvZkuSdnUcnVgq6,:0=3D:MC(QG,QE+RF,\N4bT:gY?n`FgXAdVN]BSeI[oJ_tLbyCYqE[sG]u@VnG[tI_wCWp@VnCYqH^vI_wMc{H^v=Um=Sk9QiF\tC[uD`xFd|B`z=[sA]uC_wA]uA]sD^uJezFavC^qKdxF_sJcwLeyxq^pjTvo\~xbpiVjdNzr_|t_ƒxdujVshTzo[ncOshTylYt`wo\|tayf„|i{s`rjUxmYujTodNzoY‚v`€t\|pX{oU{oWznV‚v`€s`„wd‡zg…xe€s`|q]zo[|q_tb‚we€uctb€uc‚weƒxd‡h€xayb…}f€xa…}f…nƒ{d{s^‚zewb€xcydˆ€k‡t†~k‡~mŠr”‹|—މsƒwš†“‰’Š‘‰~‡~›”Š–ŒŽŠ’Žƒ’‹¢™†}t–„•Œƒ~ul€wn›’‰š‘ˆ‡~ž–‹£š‘™‘† ˜¤œ•ˆ ˜‹ ˜Ÿ—Œ —Žœ“Š•Œ…˜‘‰¢™¦Ÿ•©¢˜Ÿ›£Ÿ”¤¡˜ ›•›˜“–’”™–‘š•£ž˜¥ š¢—œ˜ž—¥¡˜¯«¢¥ š¤Ÿ™Ÿœ—™–‘ž™›š–Ÿžšª¦£¬¨¥’Ž‹zwrƒ€{”‘Œ‹ˆƒ¡ž™®«¦°­¦«¨£§¤ˆ‚xˆ„ƒ~ŽˆŠ›š•Œ‡ˆ‡‚zyt§¨¢ª«¥‹Œ†…†€“”“”£¤Ÿª«¦““‘ŽŽŽž lmouvzwx|tuy‘–š¢Š’Ž“™‘–šz‚…gorfprjtvxƒ…Š•™Œ”cpyTajYfoboxiu`lxJXeN[kXhxViz_t‡[q†Nd{Vn†Tl†Yq‹Jb~G_{F^zG_{KcGa|?YtHb}Rl‡Vp‹Ke€?Yt@Zu;Up3Ni3Qm;ZvA`|Ba}Ca}?]y:Xr8VpA]uGc{HdzGcyMh}E`uD_tFavliZifUjgXnkZlfXmgWwqcwqayrb€yiwp`rk[wp`|uevo_ohXuoaxrdqk]sm_tn`wqazjvo]|uc}vdzq`skXwlZ€ua†{i†{i‚p‹€n‡|j…zh„|i‚zg€xeyf}tcxgxg}tc{ra€wfƒzizh{vb}xb„kˆƒoƒ~j€{g†n„l„lzg€ygrkYvo]ƒ|j}vd~we‚yhŠp“Š{˜€“‰}†z‡}s•‹†|¤œ‘†}›”ŠŸ™Œ†z™•‰—“‡–Œ€yo‹„|œ•£œ”˜‘‰¡š’£œ” ™‘œ•‹ž—˜‘‡’‹’Œ€£‘ž˜Œ˜’†œ–Š“Œ‚ƒ|rtme{r ™¡’“„–”ˆ˜–Š››‘£ ™˜—’‘Œ¢¡¤£¡‹Šˆš–“§£ —”’Š£žš±®§›˜‘–“Ž”‘Œ‹Š‰…––”¡¡Ÿ§§¥ž›‘ŽŽ‹‹Šˆ–•“¢¡”“Љ…‘Œ‘‹{zv}|w˜—“œ—£¢ž—–’¦¥¡¦§¢‹¯°«³´®†‡¥¦ œ—¡¢’“ާ¨£§¨£ŽŽŒ‹””’‚‚‚}~‚swzz}‚orw‚…Š…ˆlovlovrvz…w~„†Œ|…Šoy{juw`kogq}gpVbpP\h]iu_ky^lyky†`p^oex‰_t‡\s…Pf{IbvGbwLfHd|GeA_y=[uEc}Jh‚IgBb{=]vCa{Db|=[uDb|CayJh‚Hf‚@^z9Ws6Tp6Tn8Vp;Vq9ToXqB\sHby?ZoA\qB]p@[nD_r]b\MRKUZT^c\Y^Xcf_mpieha_b[]`Wbc]fi`rsmhkbqrlmnhab\jkeijbef^kldophprgvxmvvlvvl{ym}{o{wltpeok_ok_{ugƒ}o~o|yjyvgurcrpatrcqo`sqb{yjp€~qxvgtpdurc€~owvd{yj„‚s}p|zm}{npna}{o}qqobqma}q{wk…u’Œ~’Œ|Šw“Œ|”}yl†~qˆ€u‡|š’‡ ˜¦ž“Žˆ|—‹›˜‰‚p„r››‘•’‹€€x|yr“’›˜“–•š—’šš’¬©¤ŸŸ— –••‹”‘ˆœœ’““‰¥¥›››“ˆ’’Š}}uroh……}““‹Ž†’“‹ž˜”•}||~}Ž‘’“—|}‚†ŠŠŒŽŽŽ––”“’މ‘Ž‹ƒƒƒƒƒˆˆˆ‡ˆŠ|}}~€‚ƒ‡…†ˆ—–›š›——™–˜—¤¤¤›œ¦¦¦•—”›’”‘””’”–“††„‡‰†~ˆŠ‡œž›‘“Ž~€{z|wމ‘’¢£ž·¸³¬­¨Ÿ ››š˜¢¡Ÿš™————š›”}~‚z{€}}…rrzƒ†‰Œ•„‡†Š“‚†‚‰‘†•Š‘‚‹’†™qz‰it†ep‚an]m}ar‚dw†bu„dyŠ`w‡VmWq‚XrƒVq‚SnKhzFgzBey@cw9\p8[o?bv@cy=aw>bxBf|Bf|?bvBe{Eh|Hk=]r?[s5Qi6Pi>XqD^wGazE_x>Xo?WoJbzPh€>Wm>WmG`tF_s>Xi_hgFONOXWYbaHQPENMRXVRXVQWU_ecfljbhfV\ZY_]cigfljdiedieejf\a[Y^Xchbglfejcjmfjmfopjstlqqilldoogxulyvm€~r‚v}}qzzpzzn||r~€s€‚wy{nwyn{}p}t{{owwmvvjywjxvixvi~|o‚€t‚€t||pppfnkbolc|yp{ym‡ƒz„€u~zo|xm„r‘Ž‹•‘…‹„zއ}œ•”…”…¦Ÿ—®ª¡žš‘‚‡…x˜–‰˜–‰––Œ•  ˜Ž‰–•œ˜–•‘ŽŠŽŠŒ‹‡˜—“œ—©¨£¥¤Ÿ  ˜žŸ—Žˆ†‡€{…†–—’•”Љ…”•š›•Žˆ‹‹ˆsutmonyz~quxmpumpupsxz{‹ŒŽŒŒŒ†††””’––”””’ŠŠŠ‘Š‹ƒ‡ˆ‰Œ“…‰Œx|ˆ‰”—ž¢—›œŽ‘ŠŽ•—–™œ¤¦£¢žŸ¡ž©®ª¤¦£šœ™•—”Œ‚„šœ™¬®«ŒŽ‰‘’€{klg„…€wxs}~y~}{‘Ž…„‚˜˜–žžž¤¥§›œž‘’–›œ¡€€ˆwzx{„€ƒŒ‰Œ•‡‹”ƒŒ|€‰~…{‚Šmu€lx†o|fs„Zjz\m]pUj{Qhz\s…e~’Zs‡_zTo‚IdwLg|D`uEezDg{Gg|=`t;^t?bx@cyBf|Ik„Jn†Gj€Dg}Cf|7Zp:Zq3SjYnD_tD_r?ZmYdhOZ^OZ^Q\`Q\`OZ^MX\U`dXceNY[BMOCNPBMOMXZGRTCMOT\^QWWW]]bhh]ccRXVSYWY_]W[ZUZVXZW[]Z]][]][bb`jieutpsrmpokjkehidmnhrsnsvoy{v}€y}zsvohjehicqrmyzr~~t„‚v{ym|zn„x|ypuriyvowtmzwpŠ…}yp†{„€wzsk|xoˆ…|||rˆ…~“‰„|„|–’œ˜•zvsІƒŽŠ‡˜•›˜“””Œ««£¤¤œª«£‘‹¦§¡žŸš™š•––”——•ˆˆ†ŽŽŽ€€€……ƒ››™››™‹Ž‰„…€Ÿœ‘“’“•”šœ›–—™‰‰‹ˆˆˆ™™™ŸŸŽŽšœ›”z~|†‚…Œ†Œ€…‰zƒy}€‚†‡ŒŽŽ‘€„†…|}“”‘•˜~ƒ†y~‚v{uz~„‰›ž£‚‡ŠjnqnttrvwkqqŠŽ–”†Š‰˜žœœ ŸhnlDHGcgfƒ‡†qut…„‘–’’—“™žš¨ª§”–“ac`ŠŒ‰™™—žžœ˜˜–ƒƒŽ‹¢¢ ¤¤¢¦¨§Ÿ¡ ›œž•–š‘–‡hhr…ˆ‘€‚Ž{}‰€„…„‹•…Œ–iq|>JXBRaK[jL]mQduYnTnC^qLgzIezHdyC_tA]sC_uB^tC_uA_wBbyCa{;[t;ZvBa}DcDf@_{Eg‚Dc>]yCb~Ba}?]y]z@_|9VtEdNmŠOnŠIh…Cb~Ba~?^z=\y?^z:Wu=\xBa}FeHhCc|Ee|=]tCT^FWaM^hO`jL\iGWd?O\>N[?Q]P\7IU6HT7IU?Q[=NVDR[@OVBQXKZaR_hN[cYclP[aW`eT^`U]`Zbd_dg^cfchlmrvfkoiqtv}ƒˆ“y„iqtckn[cfQY\QY\[cffnqqy|rz}owz~ƒ†mqprwq{€|x}y~ƒ‚‡ƒwyvxzwikhfhekmj„†ƒŠŒ‰~€}ŽŽŒŠŒ‰ƒ„†‰‚‡ŠŠ’Š“‘–šŸ¤ª–›¡†Š}‚†ˆ•˜ˆŽŽ€††syw€†„”“œ Ÿž¢£Ž’“ˆŒ…ˆ“—š“—šosv{‚‰ŠŽ‘ˆ‰}~€|}z{}lotruz~ˆ‚‡Š–‚†‚‡„‰”™Œ‘•‡Œ†‹zƒƒŠ ¥«š¡§†“kuws}†Ž‘u}€}…‡’šœš£¢¥§š¢¤Ž–˜•˜ˆ“pz|gor}…‡•›™‘—“‰Œ’…‹‰x~~s|{r{z}†…‰’‘‹“rxxlps~‚…ˆŒ¥ª­¯´¸˜ £{€ƒ‡‘«°³«±±‘——{’–—¤¨©~‚ƒ’–—–š—›žŽ‘––™ž£§ªˆ{€ƒ‰Ž’‡’‡Ž”‰’—…Ž•vˆhr{_iranvboxfs|boxaoxdv‚\o}k~‡š©†œªt‰šby‹Tn?Xl5Pc7RgA]rB^t;Wm5Qi1Me8Vn?]u=[s@^xPnˆUsDb~2Pl3Rn@_{CbEdEd>`|Ba~Ba~9Xt5Un2Pl0Nh3Qm >X;W,Jd6Qn4Rl9Wq.Lf0Nh9Wq8Xq2RkN`nPdoL^l@SaBTbFYgGXhJ]kRetK^lBUd;Q^FYh?UbFYgRfqTfpUgqXisPakTdqLZeWepYfoTagOZ^\gkmwyjsx`inZagPY`FOVENUPY`Zcj`ipbkpPY`QZ_YbgU^c\ejmv{mv{clq`inakmfllhnlmssw}{z€€y}€„…ƒ‡†ŠŽ„ˆ‡~‚ƒtxwmqrnrq}‚{€otxX`cailqy|^ekbioW^fY`hSZ`,39'.408;BJMckmrz|‚‹Š––†‹Ž†‰rwzbgk[`dX]asx|sx|„‰“–›„‰qtyeilrswrvyvy~€…‹“œ‘šŠŽ™€‡‘gnvz‰‡Ž”¤ª¡©¬˜ £„‹‘~…‹ˆ•{‚ˆ|„‡ƒ‹Ždlobjlbjm^fhs{}{ƒ…ltv_giyƒ˜ ¢˜ £ƒ‹ŽŒ”—𢤕ž›†Œˆrxvnwt–œœ–•’šœž¦¨€ˆ‹ailV[_W\`_bg‚…ŠœŸ¦~ƒ‰int_fljruempƒ‹HPRGMM_eeX^^x~~~ƒ†šŸ¢”™‡Œv{kptƒˆŒ‚‡‹uz~ltw{‚ˆˆ‘––‹–œz„gt|cpx€–›¤{‰’ev~\mwhz†j}‹x‹šyŒ›h~Œav‡XoI`rOezKdxKdzSnƒ[uŒTp†Hd|D`xGe}Nl„[y‘i‡Ÿf„žKiƒ4Rn0Nj/Nj5Tp;Zw>]z1So%Gc/Qm<^yBa}Aaz>^w;Ys:Xr6Tn7Uo]yGf‚EdGfƒEgƒHj†Jl‡OqŒVx“Tv‘Hj…9[v2To<[wBa}Dc?^z9Xt6Tp,Kg0Ok;ZvDcDcIh„Gf‚Yp€D[kBYi@Wg7N^>UgF]oAXjCZlH_qNewKbtJasLcsG^n9P^=Sa@SbPcrSfuBScQcqN`nFVcEV`UdkWfmUbj`muo|„s}†nx‚blvWakPZd_ir[eo\fodnx\foblup{v€‰p{iryoxoxV_fMUX\t<\u9Xt6Uq>]yLk‡On‹Fe‚=_{Bd€@b~CeNp‹Ik†;]x:\w5Xt8[w7Zv<_{;]y;]y9[w@b~A`}:YvIh…Dc€<[x:Yv4Sp+Jg+F[0K^0K`2M`C^sIdy?Zo=XmAZpE^t=Vl6Oe1J`/H\3LbE^r>Ti]y3Ro0Ol*Lh:\x>`|9[w<^y9[v-Oj-Oj8[w9\x;^zFi…Ik‡Bd€<^z@b~Cb<[x>]z7Vs:Yv6Ur-Li.Mj2Nd1Mb:Vl@\q=Yo6Rh2Nd6Rh.H_/I`-G^:TkGaxGbw:TkHR5?IBOXPZfZfrco{MYeKWcanwdnxŠ”‰“œ˜£©Š”s}†`mv_mvmy…ky„ZftZhuXfsYgr[ir]jrq~†gt|S`hcpydnxFP\R\hnz†r~Š|ˆ”yƒt~ˆt~ŠQ[eKUa`lxamy`lxco{cq|\jwev€t‚fwbp{bs}]ktWenKYbO]f=JSKX`TaiHSYU`fZek{†Œ”¢‡Œ’…Š—œ¢ƒˆŒty}„‡ ¥¨Ž“–§«¬ ¤¥—›œ–𛕙𔕠¤§œ £«®³£¨¬•šž¤©­› ¦‰–{‚Šsz‚lu~`jseoyly‚iubp{ZhuZjwos„”[n_rƒi{hzŽh}’PezTjawŽay‘Vn†Tl„ZrŠUm…F`yDb|Gf‚Fe‚Ba~:\x4Vr7YuAcBd€7Yu7Yu@b~Gi…Df‚:\w>`{Jm‰<_{7Zv9\x9[w2Tp5Ws;]y=\y>]zA`}EdFd€@^zGeEc>Zp;Wm8Tj;WmEawD`v;Wm>Zp;UlRj>PfASgGXjK\lN`nXjv`pUetRbqcs‚[kz\l{\jwVfs`n{w…’t‚m{†]kvQ_jKTLYbWdmfs{mz‚hr|cmwmwgq{`jtboxcmydp|Q]iMYeXdpeq}ht‚_mzam{[guUamNZfEQ][gsco{o{‡pz†eq}Xbnfp|“©mwhp{]gp{ƒŽr|†v€Š~ˆ”†’ž…‘Œ˜¤‡“¡” ®—£±›©t€ŒŠ–¢€–‚˜„Ž—yƒhu~`nyao|jw‡mzŠz‡—u‚’_l|KYfLZeaozv‚Žz†’iuVbn[dsht‚m{ˆiy†fv…jz‡o|Œw…’rn|‰]jzhx‡{‹šzŠ™n~ev†bsƒXjx]o{^oy^n{\mwWhrp‰x†‘v„o|…u‚Šgt|p}ƒmx~eptz…‰Œy€†qx~sx~y€†ƒˆŽ©±´¡¦ª–›ž†‹ŽŽ””¢¦©–œœ˜œŸž£¦‹’•šžšŸ£”œŸ†Œv}ƒkrx~…‹†•[dk_irdqybox]ktbp{~™†–£u…’z‹›du…`s„Xk|N`tH]pDYnLbwJ`wPf}OgQiQi@Xp)AY9R)Gc7Vr@_|Dc€Hj†Gi…Fh„JlˆDf‚4Vr7Yu<^z<^zAcBdDfCe;^z@c=`|9[w8ZvAc;]y9Xu2Qn4SpBa}N^Qapaq^n}^n~]n~gxˆk~atƒZm~^q‚^q‚ZlzN`ldv„w‰•fvƒZku[kxL]gZhs[irWdmr‡lyz‡s€†ny‹”›w€‡|ƒ‹‚‹lsys|†“\dgs{~~†ˆ‰Ž’“›‡ŒŠ’•“˜œ• ˆ•ŠŒ“›š£ª„”†–†–}ˆŽŒ–ŸŸ¬´‘ž§}‹”x†‘l|‰]mzk}‰v‡—^or…–n’[pƒcxcwawŽQg;Sk&>X$K[4AQ:GXCN`;HY?P`BUcRet_qSdtM]lEUe=M]FVfL]m5FV,?P8K\GZkYl}TgxRcsWhxct„o€}œ}œqoŽjx…x†“y…‘o{‡Yfohu~lyq~†¤®·š ¬µ¾‘š¡v†ajojsz•ž£’› y‚‡Œ“™š¢¥x…„ŒŒ“™…Ž“‘š¡Ž˜¡s|…`kq]fohsykv|w‚ˆgt|cpxsŠlz…breu‚k}‰l~Œev†wˆ˜j}Ž`r†j”WlZp‡Kc{AYqE]wD\vA[tG_yIc|Ia}Ga|GeDc€<[x?^{Fg†HiˆFg†Ef…Ef…@a€9Zy/Po,Nj8Zv4Sp/Nk8WtBdEgƒ?a}Cb;Zw3Ro5Tq9VtK^\i|kx‹`r€I[g>P^J\hXhw[ivTaqcp€iv†EUdr‚‘zŠšN^nEVfRcsk|Žu†˜p“ar„WhzTcv[j}gt‡]j}]j{u‚“‡“£Œ˜¨jv„gs^jvgs…’›r‡lv€YclYclQ\bS]fŠju{v‡^gnqz“œ£— ¥zƒŠw€‡|†s€‰`jtKX`R\fbowbowUbjXenq~‡`nyN\gcs€[myDVb8JX4EU*;M:L`OauQf{YnƒPf}IayAYsIc~LfB]x6Pk1Lg>WuNi†Jg…Kj‡EdA`};\{4Ut9ZyFg†Bc‚>_~;\{8Yx2Qp8Wv4Qq*If$C`$C`4Sp>]zA`Cb0On ?^1O6T%C_;W8S+Fa,Gb;Vq,Ge2Mj.If*E`3NkZr?Zu=Yq;Vq;Wo8Ri;Tj9Qi6Nf7Me4Jb2H`4H`DYnF[nBWjI[oOau@Rh6F]ASg3HY7M[I\mRetTgxXkzVixResHYiGYgZlzew…^n}Zjy\l{]m|_o~dt]m|aq~^n}FVeGWfaq€WgvTdsRbqHXg@R`CUcASa3ES5GUcuƒt†”|Žœdv„[m{brk{Š_o~M]lIVfCP`AO\Vdqv„‘ao|gslx†VcsQ^nN[k,9I7GWCSc=M]UeuVfvTdtdqIVf(5E3@P7GWP_rfuŠl{[jbqˆQ`u^m‚s‚•y‰™†–¦y‰™lyŒo|iu‹hwŠoi{‡s…‘oao|gu‚cq~^lyS`pboiv†o|ŒanFVfDTdEVh9J^5FZ1BV&7K'6K-JVR^jiurˆkxVclLYb?LUUamWep?O\HZfN`lWiw\m}k|ŽXj~:L`OdyPf}E]uPjƒMg‚Ni„Fa|:Ur=XuKfƒPkˆJh„@]{4Sp.Mj6Ur;\{?`De„AbOpMnCdƒ?`5Ts7Vu9Vv6Ss5Ts8Wt<[xA`@_~Ba€?^}JiˆDa9Vt1Nl9WsD_|E`{A\w;Vq;Xx9Vt5Rp2Pl1Nl-Kg-Kg3Qk>\x=[u8Vr5Sm:Xt=[u;Yu;Vq=WnB\sA[t:Tm6Nh6Nh9QkBXp5KbKT *6,6@DNZV`j{…ˆ’œmwx‚Œ‰‘œ‰•ƒŸŽžz†–t€Ž~‡–lv‚jt€|†™£”¡ª”¡ª›¤ž©š«µ‡—¤u…”_p€Xi{YkUg{NcxLby[s‹Rl…MhƒGeDb~A^|:Wu3Pn3Pn6Sq;Xv=Zx=\y>]z8Yx3Ts2Sr.On Ab%Fg&Df.Ln8Uw?\~=Z|XqTlQg~J`x]zA_yGc{Je€C^yD_zHc~=Xs5Oh5OhD^uOgKc{?Wq8Pj@UpJ_zH^uJ`uDZqDZoSi~Uk€LavOdw[p…]r…`rˆdvŠi{‘l~’l~”k}‘^p„]pew‹Zm~RdxObsSdxWhzYj~bs…j{m~l}gxŠXi{fw‰n}gv‰WgwP`pS`qbo€]j{_l}iu…]iy]iy`l|]fwU^oU^oT]l;GUNZfu–¢°‰–¦‚Ÿš«š«x‡šgv‰bq„l{Žx…–w„•w„•†“¤~‰›r}Zgziv‰p}{ˆ›bq„y‰™”¤´žq‘žu…”|Œ›xˆ˜TeuQfwOdu]|Li‡Vs‘LkˆGfƒMl‹JiˆEf‡Ij‹?`<]~@^€3Qs6Su4Qs5Or3Pr7Uw6Tx;\>_‚<]€<\‚@`†:\<\‚3Tw8Yz0Qp,Ml0Ol5Tq6Ur*Hl#Ae,Jl4Rt*Ih$Cb,Kh2Qn,Nj+Mi&Hd)Kg1So-Ok%Fe&Hd-Ke6TlB]x>Yt8Sp5Pm3Ni:UpA[tE_x@Zs5Oh6Nh?WqC[wAYsAWoNd{Zp‡Yo†Yo„[q†WlSh}NcxF[pN`vOawL^tI[qCUkCUk?Qe=Oc;MaFXlDVjEWkDUiIZnJ[oGXlARdHYkO`rQbtGXjL]oZi|Udw_ocsƒq~jwˆ`m~R_pUaqNZj]iylxˆpyŠhq‚S\mr{Šmy‡y…‘ht‚kw…[hxR_o[hyt’ds†KZmKZmIXkkx‰…’£vƒ”s€‘_j|Vasfs†jwŠ`m€KXk?O_K[k[kzdtƒ]mzbr\l{N^m@P`6GW1FY4K]G\oNcvFWkk|޲€¤O[sCOg>MdCRiZjƒn~—hx’fvgt…iw„cp€gt„t€nzŠnwˆ„žˆ‘ ƒŒ›jv„q}‹z†’q}‰iuv‚Ž}†•bkzajyHQ`MVgHQbDM^MVg`izox‰‚‰›nu‡lsƒ`gw\cs^gxQ\nEReAL^FQcU^ojs‚€‡—Œ”¡”œ§‘™¤š¤ˆ’œs‹x„x†‘p€eu…at…as‡by‹\r‰Sm„Tn‡Hf€OlŠRqŽUt“Ml‹>_~@a€JiˆMl‹OlŠLi‡A`}=\y=\{?^}@a‚?`?`;\}MkCaƒFc…DaƒE_‚ +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "tim/vx/context.h" +#include "tim/vx/graph.h" +#include "tim/vx/platform/platform.h" +#include "tim/vx/platform/native.h" +#include "vx_lenet.h" +#include "vx_mobilenet.h" +#include "vx_resnet50.h" + +template +static void printTopN(const T* prob, int outputCount, int topNum) { + std::vector> data; + + for (int i = 0; i < outputCount; i++) { + data.push_back(std::make_tuple(i, prob[i])); + } + + std::sort(data.begin(), data.end(), + [](auto& a, auto& b) { return std::get<1>(a) > std::get<1>(b); }); + + std::cout << " --- Top" << topNum << " ---" << std::endl; + for (int i = 0; i < topNum; i++) { + std::cout << std::setw(3) << std::get<0>(data[i]) << ": " << std::fixed + << std::setprecision(6) << std::get<1>(data[i]) << std::endl; + } +} + +template +void print_topN(std::size_t size, std::shared_ptr handle) { + std::vector output_data; + output_data.resize(size); + if (!handle->CopyDataFromTensor(output_data.data())) { + std::cout << "Copy output data fail." << std::endl; + } + printTopN(output_data.data(), output_data.size(), 5); +} + +std::vector> load_input_data(std::vector filenames, std::vector input_size_bytes) { + std::vector> Data; + for (std::size_t i = 0; i < filenames.size(); i++) { + std::ifstream fin(filenames[i], std::ios::in | std::ios::binary); + if (fin) { + std::vector input_data; + fin.seekg(0, std::ios::end); + int size = fin.tellg(); + fin.seekg(0, std::ios::beg); + char *buffer = new char[size]; + std::cout<<"File "< executor) { + executor->Trigger(); +} + +auto context = tim::vx::Context::Create(); +std::pair, std::shared_ptr> generate_executable( + std::shared_ptr executor, + std::function, const char*)> construct_func, + std::string weight_file, + std::vector input_files, tim::vx::ShapeType input_size_bytes) { + auto graph = context->CreateGraph(); + const char* weight_file_c = weight_file.c_str(); + construct_func(graph, weight_file_c); + auto input_data = load_input_data(input_files, input_size_bytes); + auto executable = tim::vx::platform::Compile(graph, executor); // compile to nbg + auto input_handle = executable->AllocateTensor(graph->InputsTensor()[0]->GetSpec()); + auto output_handle = executable->AllocateTensor(graph->OutputsTensor()[0]->GetSpec()); + executable->SetInput(input_handle); + executable->SetOutput(output_handle); + input_handle->CopyDataToTensor(input_data[0].data(), input_data[0].size()); + return std::make_pair(executable, output_handle); +} + +int main(int argc, char** argv) { + (void) argc, (void) argv; + auto devices = tim::vx::platform::NativeDevice::Enumerate(); + auto device0 = devices[0]; + std::shared_ptr executor0 = std::make_shared (device0); + auto device1 = devices[1]; + std::shared_ptr executor1 = std::make_shared (device1); + auto device2 = devices[2]; + std::shared_ptr executor2 = std::make_shared (device2); + auto device3 = devices[3]; + std::shared_ptr executor3 = std::make_shared (device3); + + auto root = std::getenv("TIM_VX_ROOT"); + assert(root != NULL); + std::string ROOT(root); + std::vector lenet_input_files = {ROOT + "/samples/multi_device/lenet/lenet_input_1_1_28_28_uint8.bin"}; + auto lenet_input_bytes = acuitylite::lenet::input_bytes_list; + auto lenet_weight_file = ROOT + "/samples/multi_device/lenet/lenet.export.data"; + std::function, const char*)> lenet_construct_func = acuitylite::lenet::construct_graph; + + std::vector mobilenet_input_files = {ROOT + "/samples/multi_device/mobilenet/mobilenet_1_224_224_3_uint8.bin"}; + auto mobilenet_input_bytes = acuitylite::mobilenet::input_bytes_list; + auto mobilenet_weight_file = ROOT + "/samples/multi_device/mobilenet/mobilenet.export.data"; + std::function, const char*)> mobilenet_construct_func = acuitylite::mobilenet::construct_graph; + + std::vector resnet50_input_files = {ROOT + "/samples/multi_device/resnet50/resnet50_1_3_224_224_uint8.bin"}; + auto resnet50_input_bytes = acuitylite::resnet50::input_bytes_list; + auto resnet50_weight_file = ROOT + "/samples/multi_device/resnet50/resnet50.export.data"; + std::function, const char*)> resnet50_construct_func = acuitylite::resnet50::construct_graph; + + std::shared_ptr lenet_0, lenet_2, lenet_3, mobilenet_1, mobilenet_2, mobilenet_3, resnet50_0, resnet50_1; + std::shared_ptr lenet_0_outhandle, lenet_2_outhandle, lenet_3_outhandle, mobilenet_1_outhandle, mobilenet_2_outhandle, mobilenet_3_outhandle, + resnet50_0_outhandle, resnet50_1_outhandle; + + std::tie(lenet_0, lenet_0_outhandle) = generate_executable(executor0, lenet_construct_func, lenet_weight_file, lenet_input_files, lenet_input_bytes); + std::tie(resnet50_0, resnet50_0_outhandle) = generate_executable(executor0, resnet50_construct_func, resnet50_weight_file, resnet50_input_files, resnet50_input_bytes); + executor0->Submit(lenet_0, lenet_0); + executor0->Submit(resnet50_0, lenet_0); + + std::tie(mobilenet_1, mobilenet_1_outhandle) = generate_executable(executor1, mobilenet_construct_func, mobilenet_weight_file, mobilenet_input_files, mobilenet_input_bytes); + std::tie(resnet50_1, resnet50_1_outhandle) = generate_executable(executor1, resnet50_construct_func, resnet50_weight_file, resnet50_input_files, resnet50_input_bytes); + auto executable_set1 = tim::vx::platform::CreateExecutableSet({mobilenet_1, resnet50_1}); + executor1->Submit(executable_set1, executable_set1); + + std::tie(lenet_2, lenet_2_outhandle) = generate_executable(executor2, lenet_construct_func, lenet_weight_file, lenet_input_files, lenet_input_bytes); + std::tie(mobilenet_2, mobilenet_2_outhandle) = generate_executable(executor2, mobilenet_construct_func, mobilenet_weight_file, mobilenet_input_files, mobilenet_input_bytes); + auto executable_set2 = tim::vx::platform::CreateExecutableSet({lenet_2, mobilenet_2}); + executor2->Submit(executable_set2, executable_set2); + + std::tie(lenet_3, lenet_3_outhandle) = generate_executable(executor3, lenet_construct_func, lenet_weight_file, lenet_input_files, lenet_input_bytes); + std::tie(mobilenet_3, mobilenet_3_outhandle) = generate_executable(executor3, mobilenet_construct_func, mobilenet_weight_file, mobilenet_input_files, mobilenet_input_bytes); + auto executable_set3 = tim::vx::platform::CreateExecutableSet({lenet_3, mobilenet_3}); + executor3->Submit(executable_set3, executable_set3); + + std::thread t0(executor_trigger, executor0); + std::thread t1(executor_trigger, executor1); + std::thread t2(executor_trigger, executor2); + std::thread t3(executor_trigger, executor3); + t0.join(); + t1.join(); + t2.join(); + t3.join(); + + print_topN(1 * 10, lenet_0_outhandle); + print_topN(1 * 10, lenet_2_outhandle); + print_topN(1 * 10, lenet_3_outhandle); + print_topN(1 * 1001, mobilenet_1_outhandle); + print_topN(1 * 1001, mobilenet_2_outhandle); + print_topN(1 * 1001, mobilenet_3_outhandle); + print_topN(1 * 1000, resnet50_0_outhandle); + print_topN(1 * 1000, resnet50_1_outhandle); + return 0; +} diff --git a/samples/multi_device/multi_device_demo.cc b/samples/multi_device/multi_device_demo.cc index fd5bdca..7aebab2 100644 --- a/samples/multi_device/multi_device_demo.cc +++ b/samples/multi_device/multi_device_demo.cc @@ -1,3 +1,26 @@ +/**************************************************************************** +* +* Copyright (c) 2020 Vivante Corporation +* +* Permission is hereby granted, free of charge, to any person obtaining a +* copy of this software and associated documentation files (the "Software"), +* to deal in the Software without restriction, including without limitation +* the rights to use, copy, modify, merge, publish, distribute, sublicense, +* and/or sell copies of the Software, and to permit persons to whom the +* Software is furnished to do so, subject to the following conditions: +* +* The above copyright notice and this permission notice shall be included in +* all copies or substantial portions of the Software. +* +* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +* DEALINGS IN THE SOFTWARE. +* +*****************************************************************************/ #include #include #include @@ -11,7 +34,7 @@ static void printTopN() { } -int main(int argc, char** argv) { +int demo(int argc, char** argv) { (void) argc, (void) argv; std::vector input_data = {}; auto context = tim::vx::Context::Create(); diff --git a/samples/multi_device/resnet50/resnet50.export.data b/samples/multi_device/resnet50/resnet50.export.data new file mode 100644 index 0000000..d79ff42 Binary files /dev/null and b/samples/multi_device/resnet50/resnet50.export.data differ diff --git a/samples/multi_device/resnet50/resnet50_1_3_224_224_uint8.bin b/samples/multi_device/resnet50/resnet50_1_3_224_224_uint8.bin new file mode 100644 index 0000000..099cf6f --- /dev/null +++ b/samples/multi_device/resnet50/resnet50_1_3_224_224_uint8.bin @@ -0,0 +1,550 @@ +Y5 ?@3—{7¡„uJ{˜{Tq–t_[—œ¨¨²°¯«ª¯±±°®®®¯­®¯¯­¬®®°°¯®®®®®¯±±®®¯¯®¯¯¯®®®¯°°°¯°³²¯­««¬­­®®¯¯®®¯¯¯­¬­¬­®¯®¯±­¬­¯®®¯®­­¬¬­­¬¬¬¬¬¬­®®¬«¬­­¬«««««¬¬­­®®¬­¯±±±°°°°®­­­­¬­­­¬¬¬¬­®®­­­­¬«ªª«¬®®­«¬­­®®­¬«ªªªªª©©¨©©ª©¨§§¨¨§¨©©§¦§¦¥¥¤£¢¢¡H:œN`,’V]&pk=v€^A[ˆaOM†“®©ª®®«²¯°°°¯¯°°¬­¯®­­¯¯¯¯¯¯¯¯¯¯°±±°°±±±°°°°°¯¯¯°±°¯±±¯°­­­®®¯¯¯¯®®®¯¯­¬­¬­­¯®¯°¯­¯±¯¯°¯¬¬¬¬¬¬­­­­­¬­¯®­«­®®®­­®­­­­­­­­­®¯°°¯¯®­®¬««¬¬¬¯¯®®­­®®°°¯¯¯¯®®¬¬¬¬¬­­­®®®®­¬«ª¨¨©©©©©©ªª«ª©¨¨©©¨©©©§§§¦¦¥¥¤£¢¢H'˜f{”nf3ti;o|bCX‡l^NŽ–¦ª¯²­­®¯±¯¯°°¯¯­®®®­­¯°¯¯°°°°°¯®®¯°¯®®¯°°°°±±°®°±°®¯¯¯²¯¯¯¯¯¯¯¯®®­®®®­¬­¬­­­¬­®®¬®°¯¯¯¯¬­®­­­®¯®®®­®°¯®¬®¯¯®®®¯¯¯¯®®®®®®¯°°°°¯¯­®¬¬¬­­¯±±±±°°°±²²±±±±±°°­¬««¬­®­­­®®­¬¬ªªªªªª©©ªª«ª©¨©©«ªªªª¨§¨§§¦¥¥¤££w8­cu3˜ru>‚xhHg€cLCŽJU8~iRBk›c3WŸi[L†–¬ª§²­¬°±±±°®®®®¯®®­­­­­­­­­­®®¯¯®®°¯¬¬­¬¬¬¬¬­®®¯°¯®°°¯±¯¯¯¯¯®®®¯¯¯¯¯¯¯®­­®®­¬­¯®¬¬®­­®­¯®®®®®®®­­­­®¯®­­®¯®®­­®­­­­­­­­¬­­­­®®®­®°¯¯¯°¯¯¯¯¯®®®®±°¯®¯¯°°¯¯¯­¬¬­®®®®­­¬¬¬¬¬­­­­­¬¬­­­¬¬¬­­­¬«ªª©©¨¨§§¦¥¥¤}7žnmAŠsoJ|}mFf¥pOVž{eRŒš©¨«±¯®­¯±±°®®­­®­­¬­®®®®­­­­­®®­­®®®­­®®®®­¬¬­®®®­­°°®®®®®®®®®®®®®®®®®­®®®®®­­¯¯­¬®¬¬¬«¯®­­®®®­­­­¬­®®¬¬­®®®®¯¯¯¯®®®®®®®®®®®­­­«¬®®®°°°­«®«­ª¬ª¯¬­ª­«®®¯¯¯®®­­­®­­­­­­­­­­­­­¬¬¬¬­¬¬«¬­­­¬ªªªª©©©¨§§¦¥¥l6ŠOV3ue`RplUDh±…M\¢l`YŠ¢¥¥³²¯¬ª­®®®®®««­«¬¬­®¯¯®®®®®®®®¬­®­­­®­¯¯¯®®®®®¬­¬¬¯¯­­®®®®®®®®­­­­­­­­®®¯¯®­¬­­«¬®¬«¬¬®®­­®®®®­®­­­¯®­¬­®®®®®¯®®®®®¯¯¯­­¯¯¯®­­¬­¯¯¯±±¯¬«¬«¬ª«ª­««©ª«¬­¯®®®¯¯®®­­¬¬­®®¯®®®­­¬««ª«¬««««¬­­¬ª©ªªªªª©¨¨§¦¦c6Qs^}\\Rp†cRdÔS\›}rP™œ®¨¬®®©¯ª¬­®®®¬¬®¬­¬­®®®¯¯¯¯¯®­­¯±±®®¯¯®®®®¯¯¯®®®¯®®°°¯¯®®®¯¯¯®®¯¯¯¯¯¯¯¯¯®¯¯®­¬®¬ª¬®¬¬®­¬®¯¯®®¯°®®®­®¯¯­­­®®­­­®ª««¬­­®®««®®®®­­­®°¯¯°±®­«¬¬«ªªª­¬«ªª¬­­¯®®®¯¯¯®®®­­¬­­®««««¬«««««¬¬««¬¬¬­¬©©ªªª«ªª©¨§§¦‘@f9[x —Ean‹tM•jWM•seI‹¦«©­¯­ª¬®¬¬¬¬¬¬­«ªª­®®­®®¯¯¯¯®­­¯±°¯®®®«­­¬¬­­¬­¬«¬­­¬«®®®®®®­­®®®¯¯¯¯¯¯¯¯®¬¬¬¬©ª«®­««­¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬­­¯­«¯­®¯¯¯¯­¬®­¬­®¬­¯­­®¬®¯®²¯°¯¯®±±­¯±±°®°°¯±¯¯¯®®®®®­®­­­®®®««ªª««««ª««¬¬««ªª©©©©©¨§§§§§§¦¦¦c/p5N}¶¸KT'XgS`FJ‘eRGŒˆª¬«®«¨­¬®¬¬¬¬¬¬­«ªª­®®®®®®¯¯¯®­­¯°®­­®®¬­­¬¬­­¬¬¬«¬­­¬«¯®¯®®®®­­­®®®®®®¯®®®¬¬¬¬ª««­­¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬­­¯­¬¯­°°®­¯­­¯­«¬­¬¬¯¬­®¬­¯®²¯°¯±®³±¯°²±±®²¯±±¯®®®®¯¯¯­­­¬­®®­«ªªªª«ªªªªª««ªªª©©©©©©¨¨¨§§§¦¦¥¥i•‚Œ4o´–XSmeDE—l`G—~r?}¬©§¯«§®¬¬¬¬««««¬««««¬®®¯®®¯¯¯®­­®®­¬­®®¬­­¬¬­­¬¬¬¬¬­­­¬­­­­¬¬¬¬«««¬¬¬¬¬¯®¬¬¬¬¬¬¬¬¬¬¬­­¬¬¬¬¬­­­­¬¬¬¬¬¬¬¬­­­¯­¬¯­°¯­­®®­®­««¬¬¬®¬­®«­®­¯­®­¯¬°¯­®°¯¯¬°­¯¯®¬¬¬¬¬¬­«««ªª«««ªª©©ªªªªªªªªªªªª©©ª©©©©©©¨¨§¦¦¦¦u/‘wmI{sb]]´{hDª^L£ŽpJ„•ª¤¦¯­©­¬¬¬¬««««««««¬¬®¯¯®®¯¯¯®®®®­¬«­®¬­­­­­­­­¬¬¬¬­­­¬­­­­­¬¬¬¬¬¬¬¬¬¬¬®®¬¬¬­­­¬­­«ª­®¬¬¬­­­­­­¬¬¬¬¬¬¬¬­­­¯­¬¯­¯¯­®°¯­­®ªª¬¬¬®«­­«­®­¯®¬««ª¬­©¬¬­«ª¬¬«­­¬¬««««««««ªª««ªªªªªªªªª«ªªªªªª«ªª««ª©©ªª©¨§§§§§^0ŽpQP{…fkF¼~fJ¯…hDš­„H~‘¤¦¬®««©¬¬¬¬¬¬¬¬««««¬¬­­­­¬¬­­¬¬¬¬«ªª¬­­­¬¬¬¬¬¬¬ª«¬¬¬¬¬¬­­­­­­­¬­­­­­­­­¬¬¬­­­­­¬®®«ª¬®®­­­­­­­­­­­­­­­­­®­¯­¬¯­°°®¯±°®®±­­¯®®®¬¬«©«¬«­¬ª©ª©««¨««¬«ª¬«ª¬¬¬¬««ªªª¬­¬«««««ªªªªªªªª«ªªªªªª««¬­¬«ªªªª©©¨¨¨¨¨s7{‚oNe”poL°{rK¥…hF˜˜‚Ty—¥¦­ª«¬§¬¬¬¬¬¬¬¬««¬«¬¬­®­­¬¬­­­¬­¬«ª«­®­­¬¬­­¬¬­ª«¬¬¬¬¬­­­­­­­­­®®®®®®®®¬¬¬­­­­­­®®¬««­®­­­­­­­­­­­­­­­­­®®¯­¬°­°°­­¯®­¯±­­¯®®®­¬¬©¬­«­¬ª©ªª««¨¬«­««¬¬«¬¬«««««««­®­¬«¬¬«ªªªªªªª«««««««««¬¬­¬¬«««©©©¨¨¨¨¨]D}djQc‡bh\¼{xT³–dN¡—x_|›©¨ª«¬ª¨¬¬¬¬¬¬ªª««¬¬¬¬­®­­¬¬­­­­­¬««¬®®­­¬¬­­¬¬­ª«¬¬¬¬¬­¬¬­­­¬¬¬­­­­­¬¬¬¬¬¬­­­­­®­¯¯¯®®°­­­­­­­­­­­­­­­­­®®¯­¬°®¯¯­­®­­¯±­®°®­¬¬­¬ª­®«­­­¬®­®®«¯®¯®®¯®­¯«ªªªªªªª¬­¬ªªªª©ªªªª©©ªªªªª««ªªª«««««««ªª©©©¨¨¨¨Ls^C‘KcŠofI®wkJŠ«ƒEŽ…nM€ˆ¥ª®®«¨«¬¬¬¬¬¬¬¬ª«¬¬¬¬­®­­¬¬­­­­¬¬««­®®¬®¬¬­­¬¬­ª«¬­¬¬¬­¬­­­­­¬¬¬¬¬¬¬¬¬«¬¬¬­­­­­¯­¯°°®®°­­­­­­®®­­­­­­­­«¬®®­ª°¬¯®°®±­®®±«®®®ª«¬­¬ª®¯¬­­«¬®­®®¬¯°±°­¯®­®¬«ª©©©¨¨«««©©©ª¨©©ª©©©©ª©©ªªªª©©©©©ª«««ª«ªªª©©¨¨86_*g8WyTCH€ZEAcQO7…jdAvz¦¬­­ª¨©¬¬­­­­¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬­ªª¬®­­­­­®­®®®¬¬­­®®®®­­®®®®­­­¯®­­­­­¬­¬««¬¬¬¬­­­®®®¯¯¬¬¬­®®­­®­¬«««¬¬¬««ª««¬«®¬­«¬«­¬®¬¬«¬««¬¬­¬¬«¬¬­¢¥¢¦¥§¤¨¬®ª«ª¨¨©ª©©©©©ªªªªªª©©«©ªªªªª©©¨ª«­¬ª©«¬«¦©§«©¬¨ªªª©¨¨¨©jjzg:S}UMJ‹]_;l^?|~p=p¦©«¬©ª«¬¬­­­­¬¬«««««¬«««««¬¬¬¬­­««¬­­­­­®®­®®­¬««¬¬¬¬­¬­­®®®­­­®­­¬¬­­­®­¬¬­­­¬­­­­­®®®­­­­­­­®®®­­­­­­¬«««««¬¬¬¬¬¬«««¬­¬¬««¬¬¬®­­ªª¯¨® £¨ ¤¦¦§²­­ª©§¬­ªªªªª«««««¬¬­­­«¬¬««««««ªª«««ªªªª§ª¨ª§«©©ªª©¨¨¨¨€+s‹kNQ—md>¤Œ…O•›‹U‚ Œ`p§©ªª¨«©¬¬¬­­¬¬¬¬«««¬¬«««««¬¬­­­¬¬¬««­­­®®®­­®­«¬««««¬¬­­­®®­­­­®­­¬«¬¬­®­¬¬¬­¬¬««¬¬¬¬­­­®®®­¬­®®®®®®­­¬¬«««««¬¬¬¬¬¬¬¬««¬¬¬«¬¬¬¬®­«­©­­¤¤©ž¡–œœš¢¥®¨ª¨®§ªªªªª«««««««¬¬¬¬­««ª¨¨©©©¨©ª««ª©©©¬ª©§ª¨©©©©©©¨¨g0pŸZGT±la@¬‘ŒK™œ‘\‡¡ˆjj’§¬­ª§ª«¬¬¬¬¬¬¬¬­¬¬¬¬¬¬¬««¬¬­­­­¬­­«ª¬®­®®®­­­¬«­¬¬««¬­®­­®®­­­­­­­¬««¬­®­¬¬¬¬¬«¬¬¬¬¬¬­­­­­­¬¬­®­­­­­¬¬«««ªªª«««¬¬¬¬««««««««««««­««­ª§®¦”h]zfddjqt€—±§«®«ªªªªª««««««««¬«««ªª¨¨¨¨©¨©ª««ª©©ª­¬©¨ª©©©©©ªª©¨r=^ªnRG¸}gC¨ŒŠ5 ™„Z†¥Œ`h”¦ª¬ª©ª©««««««««¬«««««««««¬¬¬¬«««¬¬ª©«­¬­®®­­­¬«­­¬«¬¬­®¬¬¬¬¬¬¬¬¬¬¬«ªª«¬®­¬¬¬¬¬¬­­¬¬­­­­¬«««¬¬¬¬¬¬««««««««ªªª«««¬¬¬¬«¬¬¬¬¬­­¬¬««¯©¯§ª§¦¡WY¾½º·²¬œz©©¦«­­¬«««©©ªª©©©©«©¨©©©©©¨¨¨¨ª««ª«ªªªª©¥¨ªªªªªª««©¨aDk˜dSL®qfB¥‹BœŸŒQƒ©‘]k•¦©ªª«¨§««««««««««ªªªªªª««¬¬¬¬«««««ªª¬¬¬­­­­­­­«¬¬¬««¬¬­¬¬¬¬¬¬¬¬¬¬¬¬«««¬­¬««¬­¬¬¬¬¬¬¬¬¬­­¬«¬­­­¬­­¬¬¬¬¬¬¬«««««¬¬¬¬¬«««¬­¬¬­®­¬¬«­¬«§¦©©pdÄöòóóóññöð‘­­©¬­­¬««ª¨¨©©¨¨¨¨¨¨§¨¨©©¨¨§§¨««ªª««¬ª§¥¡¦ª«««ª««ªª©bE^‘t[K²yfJœˆ‡GއN…ž\q¤¨«¬¬¦¨««««««««¬««««««ª««¬¬¬¬¬«¬ªª«¬¬¬¬¬¬­­­®­¬¬¬¬­­­­¬¬¬¬¬¬¬¬¬­­¬¬¬¬¬«¬«««¬¬¬¬¬«««««««¬¬¬¬­­¬¬­­­­¬¬¬¬¬«««««¬¬¬«¬«««¬¬«¬­®¯¯®­¬¬¦ª¤©šR·ûîåììòöìð犭®®°­««ªªª¨¨¨¨¦¦¦¦¦¦¦¦¦¦¦¦¦¦§¨««ªªªª¬¬¨§¡§©ªªªªª©¨¨©qrR~l~P”c]7{‚1‹qX;}‰mCfƒ «­¬­©¬««««««««­­­­­­¬¬««¬¬­¬¬¬¬©©«­¬¬¬«¬¬¬­®®­­­®¯¯®®­¬¬¬¬¬¬¬¬­­¬­­­¬«­¬««¬­­­¬¬¬¬¬¬¬¬«¬­­¬««««¬¬­­¬«ª««ªªª«««««¬¬¬¬««ª«­­¯®­­­¨¬¦§¥oh÷ñæéïóíæè÷ä•­«´ª­¬««««©©¨¨¦§§§¨¨¨¨§§§¨¨¨§§ªªªªªª«­¬¬¤©©©ªªª©¨¨¨©TeJ?O‰JƒLX8gi5€XQ4z~i=a…ž§ª°¯©«¬¬¬¬¬¬¬­¬ª«¬ª«¬«ª¬¬««¬«ª«¬ªª­­¬­­¬¬¬­®­­«®¯­¬­­«­¬«««¬«ª¬¬¬¬«ª¬¯«¬««¬­¬ª¬¬¬«««¬¬¬¬¬«ªª«¬­ª®­­°¬««ª¨«¬®ª¯­¦­­«­«­¯¦¨­°®¯®¬¯œ¬•J®øïäåíå‰q Š©©¦¦²«¬««­¨ª¨©¦«ª¦§¢£­¤¥­§©ª§§«­¬©«¯ª«®«¢®¬­«¯«¬§«¦­bD?vva1›io9–ˆm<€‘sFwª‹Pf’ ¨«­¯¬ª««¬«««¬¬¬««¬ª«¬««¬¬¬¬¬¬««¬«ª­­¬¬­¬¬¬­­­¬«®¯®­®®­­­¬¬¬¬¬«¬¬¬¬«ª«­­¬««¬­­¬­­¬¬¬¬¬¬¬¬¬¬««««¬«¯­¬­«®ª¨¦©®­­©­«¬¬ª¬¯©¥¨«¨«¯±¬¥ª¦¬kMïóéåæîÏF073Oƒ­¥¤¦ª°°­§¨«ª©ª¥¦¦¥«ª©§¨¤¥§¤¨©©©¨¬°¯«¬¨«²¢©±£«­¬©®¨¥­ˆg@Ãi]=±[mFŸ†Oƒ¯d|ÆŸ]b ¨«®±¯ª«««««««¬¬«¬¬««­««¬¬¬¬­¬¬¬¬«ª­­«¬¬¬¬¬­­­¬«­®­­­®­­¬¬¬¬¬¬¬­¬¬¬¬««¬­­«««­­­¬¬¬¬¬¬¬¬¬¬¬¬¬¬««­¬­¬­¬©­«ª­«ª¥¬§ª¯«­­§««¨¥¬¨­¬«®«¡¥¨—T‡öèÞÞàâ©FXf`bm{y¡¨ª««¨¨©ªª­«ªª¨ª«¬¥¬«¦«ªª¬««¨¨««¨«ª®¬¥¯ª©±¤¬ª¬¬¥Šr;º_b:±dhI¢§’F„°_mžxUgœ§ª±²®««««««««¬¬«¬¬«¬­¬««¬¬¬¬¬¬¬­««­¬«¬¬¬¬¬­­®®¬®®­¬¬¬¬¬¬¬¬¬¬¬¬¬«¬­®­­­¬¬«««¬¬¬¬¬¬¬¬¬««¬¬«¬­­­¬­«ª«¯­©¨¥§©§«ª¬¬ª¬¬­«ª­§ª¢«¨¯ª¨®£ª¡¦sTÏîáÜãêßpCV{oljogiŸª£¥§©­ª¨¥ªª«¬ª©ªª©§«§§ª§¦¦ª¬«¨¨©­¯®¤°¦¬«¨¯¤¥©¬¤šz8½pd?¤‚€8›­žG€ª‡^q–`MgœŸ¦©´²«ª©©©©©©©ª«©ª«©ª«ªª©ªªªªªªª«©©«ª©¬­­­­­­­®­®¯®­­­­­«««ªª««ª©©«­¬«ªªªªªªªªªªªªªªª©©«ª©©ª««««©¨ª¬ª©¨¦¦¦¦¨©¥®­¦­ª¥±²¢¦¤«¨¬¬«­¡©Ÿ—U~öêåéçíÓSNnÊËÎÝè§m¤¥¨¨­©¤®¨«¨¨¨©©¨©¨¬¥ª¨¨£¥­ª©©ªª«­«¦«¨‹Ÿ¤­«¢®‘ ”©w€A¸dYaB\V[¤zeI’FR‘𥣦¥¦§©©ªª«ªª©©©ª©©©©ª««ªªªªªª©©«¬¬¬¬¬¬«ªª«¬««¬¬¬¬««««¬¬ªª««««©ªªªªª¬¬ªª©©ªª««ª©¨¨¥¡Ÿ œ §«¨Ÿ”…‹|xwmmommkjneaahg`U]e`ccfV_f`NNåðíìðôêÞ‡GN§íàññïÜ~LLOVUTOKMPLPMNMIJKGC>>@A?ABC9?9=77<;7=6=96954/45320he“z_7\A}@fh4:<>>=A>>:<6>:393741-,/3%27.373'$>SÍîäæêïóë´;E|ìãäñíïËP,(%*$%*)$#&&'%$'(&$!#"& '"#$#$%&%(!'#'#&"+'&^c‰wt.p|u7anW8JpV=lZ<ˆ¨¡©£©¨¨©©ªªªªªª©¨©«««©««ªªª©©©©©«««¬¬¬ª«««¬¬¬­««««©©©©ªªªªª«««ªªª©©¨¨¨¦¥¤£££¢£§§¥©¯±§™ƒa?86?C0'2,'2-+(+.'.*/'%,+),,('0&K}ëãäåïñìé~>Bªíäâñðí¼C&%(9?4##*)%()&#)+'&'#&%'+0++*/,---14-64/53+2*3/4117ev†a`"v‚i<`sK;JhR>ˆkQC’©¦¤ª­¬«ª©©ª««««ª«ª©«®­««¨§©©ª¬¨­¨ª­¨®ª¬¯«©ª®¬®®ªªª¨¨«¨°¥¥«¨¤¯­¨§¨§¥¤¥£¥¥¨ª©ª«¬®°¯¦‘}iSC9<55-($#"$($"#$&&+',%(*'(),'*("..%*7JÅìæßïâìíÕO8OÕéãðññí²<87F[kT8;7<9D=7:8=3:=5?@8?96BB=B>6=CHCFHDKOCFMAC:<@Guj/‚e0t’e?bmKBLbN<“nLDŽ¥¡§«­¨©ª¬¬¬ª¨§ª­¬©¨«©¥§§¦§ª©©«ª­©¨«¨­¨«©¨¨©¬¬©·§¨®®¤¯µ™®«¢¥§§¦¦¥¥¥¢£¥¥ª«­®­­¬¬°¦¬©N;>6*.'%$'%&/+(2*21/038452696899;5<94.0I`êééåéæíñ´5@rìäæñîñå—=<@JTTIAB=@<@?DABIKOLcST[aaRTFPG_Jm_[YQzh-€{Bmžr>K|XI7iT8yRFŠ££¥©§©«ª©©¨§¨«­ª«ªª¬««­¨¦¦§ª©§¨©¨«¨¬ª­«¥¢ª©¦¥­ª«¨®ª©§¡?z¢¤¥¢¡¥¡¡£¤£¦©ª«¬­­­¬¬¬¬°ª¨¤}D&)!"#&)+2>;6;<9?7>8;=A=zU„vZ>’YA†ž«¥š¡¢¦©©©©©©§¦ª«©¦¨¬¬¨©¨¦¥¥¤¤¨¨¦©¨¥¨§¦£¢Ÿ££žiy§›¤’Wj`¡¤ž§¤¥¥¨ª¨©ª¨¨ª¨§«¬«¬©¦ªª¥«¨Z:@C=7DE?Imvpuz}~vaNPozzZ\IY~rm[CDN@EÀòíòçíïèëÈ?J\åîèíôôóÒZf_YT\]Xc[O[k}ˆ}xH`“‡‡f=*j€rZ=8=H*!:9K*)7?>I:;5@'-E]=no@EV9ECVYDv^2‡q[?zФš€}†¡ª©§§¨ª«¬©¤§­®«©¦£¤¤¤¥¤£¦¥¦¥ª¡§¥¡¡¥£¤¢££¯y˜¡§˜©”\di§¥§§«¥¥¤¦§¦§©§¤§¤¡¦§¤¥ž¤žœž•Ž›OGNO?DGETs{zwtwvrg\RjlchXTRUZ`WKKQ8E_ñóêðæìèèï“JG‰íçïôöñôÄWtcKCPYQIBSSY`|z{@^Œ‰jE?[E2):?."'FKOG)&2<=@$Lb'rok4Q[EHzŽ•š:‚o_/fWH{†¢šŠ†©¦©«¬¬¬ª©«¨°³§ž¢¢§¥¤¤¦¥£¤ £œ§›£¢Ÿ™˜—™™› w™Ž‹–ƒdqwŒ…‹Š‹‡ˆ„†…ƒ‚€}z~|y||wxuqqrkkopjdaX_^[YV_\Zd_^h_YbhZ_a^Xk[kgSl_BHL=2¶ïêèêëêæìåZMK¸òèðôõóô¥Mriglsjqrp[UWl\tTbi^d\:46 %55%  '=,'#u~Šnv†{„xˆ`tvkpsmcjf\fi^fnceahc_ika\gdXeg_ekVUWRXcdWYUh]V[O^?;N91/+1£çëéìóóìçìÅDPC¡T(2FæñÊK&/:7-2./5>EEBEFGC>GMCXGI7! '7"! !4JKqbegbmkhivwm}u\? 4C=5Eeimkupzmtnrvtsxonth1&„„tlzr|mynYNUQQWUL;WGCF"&%/2FFuz|gh„y}btsifojc`]a`]fe__ZUbaY]a_ZZYfwnim^PZQJJZZB[IWUGNHEIMK'4$>6êêîðìñóìëð•I>RëË}5,9oµ¬1-&)#,'&"/Kauoeorecq}lioV72 ,(7( $-) +%+/@ptowbggbjor_„n{nX.$*(19>„}imnowtnuuhglsqrtsB s‚sTosygukwekgKRYcQ^JbTCF;?19ATQ,^s\_\cfpirksoiaka]TRTJIRKDHBGOKFMO@AOWNEIEE<;FB=7@<6H@/57D?4;6=*89ïìæñçñéðíð`M3†æäÚO=FK\3(%*$#)%4MSCQdaWF9J\]X. 83%'/$  $'&9#=;uuj|m{f|iedet|d7'&($EPK:€qrhjieil`U]]`elkc="Gc[CVZ]VYXbdO[RPQQG8=HRK\VR]UXKMLFO?GDBMIPMNJFGESDB=@99>:74A=A@BEJ1>IHKC:XP=GME?AF=:@<3,3<1589:/.57?@515&%980/<;A6AF8I9@@F=JFEPRSTUTXaQB@<025)%'297=P_aIHIAMXXk_KOJD657<521---89*21::,5;|ëâïðèñçñìðž@=RÞçÙèéì×”B?,)&%).# $(*4A $,0+ #%*0:.>#/  ,'.ZMQPKNRKOSGHHE=LQd\>G?=8;9:@9B=8G@8:A;=8C8=0MN39?9*.';8=O[niovtzrrojdjT\f^PQ[aTPL:85+)-,+$0'*!&4BD0"096=DM1B@+2&*!%0&1#!,,#)*-2-,BÑëèæïðïðèîïgQ,{ñéïëíçìæ²60)3( #%).*&"#'(#(!$,* +#"&?4#0'(..-+-CIPKNMNSVMU^_^__r‰sMBKSLPCUljl_]gegPK[RMF?ANGIVWXWQESO@8L?FO+;'1(13HJO\[cffdS[RE@A>??;78AD:(#:-*-($,(*,&%2+.8-*7'$#'" ".'+)0xïçäëéëâèæðÒT_.©óíðïêêìîË85.7 %'()$$*&!"">A .'*11& !,@)&*/$01ƒ‡‡…ˆƒ{€†z{sjpˆdi\[IJPBSe]QQMDB;>K;-:0+12=92242+433&031!%.!2$5=7FE4DH16:2,,6+#+916,*2&$"0)#":1+"'$/- '#+  %,4!-$3BÍðääåëçåïæñ¢NMBÜôññïðïðí±02)-! ()&"# #35&**2B@0!&)0-))!38,(--"!)2f`ZZa^_T^TQN[TKGCM=>U@49;?63873=.&$$%52'!(%+"&)/" 2'( .%3244$10-&')(3+%"(%0&)0"!'$##.&" !(-%*.#)&(20)1( $0/',+ ,8qíââèåèãéîãñt^?kéôòóìñðòè”1/ &!!# ')*& +3+%:) &))"& /)(!"!.+GSHALAFN=EA_†BX:[_;&"!) #! '$ ,# #$" ! #$('"! "&!&#  /!1j”ñêçßääèæèèñ×Im>œúûûúúøøöôåy.".  / #% "(-% ",&($(.",('%,4 ,1E+L:G:J' )S-)/F5,($!#(!*6$# !/#,%#   "%&1'%( &!"&# +* #T^Íðòóãåèéèéçò£[UHÐúøûûúõõòðÝW9($+,#0(%$ !$&&+0))&$#  (0!!34.7,CB1OB-;71.P):L#%'") %%&# +    $  '  + 4& " "" *.( /k€êèéðäèäèêçëòsGReúùøûúúøóõôÓK>/  #% +"!*%#(1%" $ %!.5- *=-11(1.576 &(" &$& ! &  ")-+  &"2% " # #$$##+"'2#aH¹îóîòäêèèêçïô6_p¯õñÝØÐ¿°­’p@% %!""$,'"! + '  6&-+'%'$14('5.'* -* !/'&# &    ) !!0 )!#.' + -$)Tbæêáóóçéìåèêéï‡02Ljm^Z\WG@;,+$!&+ + " #"2$ + ! +(1"'-6!&$-*+%,'$' '$/ !    +  + +% .   /"!-, &% "# !;Z½æóóàñäêëäêéèåêxˆD155%%$$   $$-'#!(-))$  &A#& +&$ +8!#'"")% '( %  #(  $5 +!'%!! +"! #*!!"      &8AyÚðé«“ÕéèèìãîçêÄ .5$%*  +* + ""!# *1$ )'.)5 $)  + +"# + + """#)"$7 +?! +#    /+%   !(  $-- S™î´]vb½ëìèäçåäèâðH%!# !     '" 0#" + +!#7"-%)& ' +3&0,!   +!'#().0 + %!  4 !  ")(    ) T¬ëÞ©ËåêåéëíåææîíÃ( $  !##"   +" ')"1#  +  +  D(= )10,'--$! $#! "%'" + +  #,% +- &   #$  +"!( + ' @ÅîßòïñâãáêææâçÝìæðT:"*7 7  +,'!   %#B?(6$($&" +$1$-- &*&. $   # * #*"+" (8%" + !  ! DµëïçèáØæçêåãåèâßçíðíëíz     !#-%;!")  + + ++55 (SG)!#.#"#" !$&% ("   '# '#!( +    ( !    .$O«ëäæßêãëêäêéæãëóîîååâèE% ! + +  $,   + )#3+&%+(%*1     +  + +")%-!!%&)"/-) +'!%61       +G—òåïÞëîèêäéçæßèïéêãçðæ + + % + ! #(   +.&( $$0F!  +"!#"      ).* + ++")9'!>\_C((IJ! + +  + +  HœîëñåïêçíêêçìééòôôêöðŸ!, +  !  ' "# *9F +  )-   $& #   +%%#1 ) 8/ + $ &03B;'.; !*)   ?éêéçëîëèèêçéîíôîôô¸MH:& + +#  # ' +$# +&    + +8)$6 (&'+!*       +  ,1# + $&*0)     + +5‚âëæáëìçèèèêéççíëÉQ%"'$$  +  +)" 1  +0 $$ 06- $#% +!&  + +  +$-"  '01&+86 !$\o0  ++|àæãéêëëéèæééíñâz9B/  ")    , $1" !& + & +!! !3"9 ,  &  +  $""=(   +#%GE1/ , !wéåæêèèææææèæèï?:- + '   !#  9$3 +-$!" " #   +       &$ !$  1  ++P   ++#01 gàäïëíñæçéëíéêîG20 &)% &+ " !    C%! -".&'- +  +  1(3COYMJSPc^Q]RKSNOOXNGRLQIJNY\\]Y]^NX[KYJDE@?=FL[U^Y^hKPSVbOBHoMUkwuoof`]Y[^\Wa`eekh`beib]beoz˜À¿ÑØÔÏÎÎÎÐÒÐÏÔ¡x\B)("+#@7" "    +  &$"%$* #+$( &^‡•Ÿ²·ÆÑûƻ¼¿³´¶º½µ¸·´³­®¥ª§ª¬®´³µ³µ»»»»´·¸Á¼½ÄÅÊÇÂÄÆÇ¹ÀÁÄпÁÇÅнÄËÂÇÆÉÊÍÅÄμž”«ÇÏÏÌÄÂɺ¼ÁÇÍËÌÁÆ¿¾»Â¿¿»½½ÀÃÿ¾ÌÏÍħtZ0*/(! +& )'4_L" J> +-  + +  2     +  (  +!I~˜—·½´¬µ¹Ã¿»ÃÀÁƺ¹¾°¹·»¶µ²³³³²±ºº¿ºÀ¸ºµ´¶¹¯·°·´¶µ¹Äù½Á´¾µ·»À¸²¼Â¾»¼¶»··µÂ¾¼Âèhf°Æ¼Æ¾¼µ¼´·¹»Á½ÁþÆÂÊÉÈÁÃÃÅÇÇÿÅÇÀÀÃÄÀ¯ƒB%*0%  + %$' +  +  0+  0"84'  ,&#%.6[zwƒ¯¦¨²´ÁËÉÌÊËÇÌËÍÊÊÉɾ¾ÃÅÃÃÁÂÉÈÊÈÌËÌÎÈľ¾È¿ÂÁÄÉÄÈÇÈÈÇÄÁÆÈÆÊÈÅÓÅÄÆÀÄÿÈÈÌÄÌÌÐÌÔÖ¿ ¬ÎÊÇÆÅÂÉÍÅÎÏÌÁÁÇÇÆÈÌÈÆÇÃÁÂÄÃÁÊÆ¾Â¼³½¼ÓÓ’2#6+,!!!   +  /4)  ('<9 ") %"$ +$#   +% %?ITdz~v‡¢¥®µ¯¸¼ÅÉÍÙÕÓËÃÏÏÅÇÅÅÅÀÄÃýÁËÁÅÈÇÇÊþÄÊľÂÁþ¼ÄÀ½½¾ÃÄÂÇÂÆÈÇÇÉÇÃÁÁÀ¾½½¿ÄÅÆÅÈÉÈÆÇÒª[v¼Å½¿¾ÀÃÂÅÇÉÇÈËÌÈÇÇÅÆÈÈÅÃÄÆÇÂÁÇÇ¿¼ÁÅÁÆÖÂ5$ ($   +     +$04 -"  )!  !&.9Q[coxˆ —¨­³©··¶¹ËÁÀ¼ÓØØÑØÒ××ÎËÏÏÌËÍÒÇÅÀ¿ÃÇÇÇÉÄÇÇÉÀ¿¿ÃÈÄÃÁ¾ÀÂÂÈÄÆÈÊÊÌËÉÉËËÈÈÇÆÉÊÊÈÉÌÎÏÅÄÓ¬‰µÌÊÑÏÍËÍÌËÉÊËÎÌÊÊÉÆÊÌÍËÉÇÇÆÄÄÈÊÌÇÆÁØËÆßÄ  + ))     44%! -# + +  0 %27Sl_piJ=55GN<71HHSK.´æØÜÐÕÔÔØÒÑÔÔÔÓÒÏÄÀÄÈÆÅÉÉÉÍËÍÇÈÈÊÍÊÊÉÅÅÆÆËÈÆÇÌÌÌËÊÊÏÐÑÑÒÎÍÍÑÏÏÎÏÐÕÆÒͪÂ×ÊÐÎÍÍÑÓÑÑÎÏÐÏÍÌÍÊËÍÎÎÐÏÎÍÓÎÈÆÍÎÐÎÌ×ÖÖÚ   !!#"  + + + $&<%#$&  +   #)'TqcdA$' JaNN6_i51Á×ÔÐÙ×ÛÏÐÍÕÙÚÓÍÔÉÉËÌËËÌÏÔÒÎÐÒÕÓÐÐÍÎÒÒÒÏÌÎÍËÉÎÎÍÏÌÍÏÒÒÕÖÓÎÎÒÒÓÑÐÍËÎÌÖźÏÒÒÒÒÒÑÒÕØÓÕÕÓÏÒÓÐÐÑÑÑÔÖÖÕרÔÑÔÖÖÙÞáÙÃãÇ +/5  +   /.   % /: %-  +)" ( " > '($ +'"*  $').HX;5F37<2(7^eUVo;Zda`:3«ÓÐÑÓÑÍÌÕÏÈØÜÒÓÖÙÚàäâßßÝÞÝáÞÝßàââáäãÝâãåãÞàâßßÜßÝÚÚÛÛÜÝßâáàßâãÜÛÝÜçÎÛßàáßÝÜÝÞáÞàããàãåãääâááßßááãáÞßàÙëçáßÙÕÐÚÒ³Á®¿¯Ây %RD   +  # 6 $   &:9,0+:\cLOilx{„ ¦ŠtgYfQGr`d…¼ÔÉÐÒÐÑÍÆÕØËÍàÊÕ×áäâÞÞÝÞáàáÞÞßàããßàåäßáàßßÝÝÞßßÞàßÞÛÛÜÜÝààÝÜÞÞãáÜÝßãÏÔáâàâÞÞÛÜßÝÞßàÝÞàÞÝßßÛÛÝÝâáâßÞàãÜàÓÐÉÇÇÆÅÁ°¦±­¦µÐ°b, +PT    2- !  +*DL[edyž¤¤«±±¬¢ ¯ÀÈÌÅ´¢Œx^x¨×ÞàÓÒÒÇÊÇÎÍÕÕÐÐÛÌ×ÝßÜâàÝÞßáâßÝÝßßââààãâÞßßàßÝÝßàÝÝÞßÞÜÜÝÛÛÜÛרÜÞâàÜÞÝáÍÎááÞàÞßÜÜÞÝÝßßÝÝßÞÝßßÜÜÞÞâââáßááÞÙÐÏÎÕÖ××ÙÜÞÞÝèã×íëw "8P( ,#  +  + ++1'     )BN]€¦¥¤¨¯°·®ª­°±±±²¶¸ÅÖÇÛæäÜÔÆÑÒÊÈÎÔÐÕÙÜÚÞÑÔáàÙââàààáàÞÝÞàÞàáàáâàÝÝßáàÝÜÞßÝÝÞÞÜÛÛÜÜÝàßÜÜßáâßÝàÞáÐËßßÝàÞàÞÞÜÝÞáàÝÝßàÞàßÝÞààßàáàáààáßÖÚÛÞÝßáàå×Ä×Ã×ÄÜÑ(7M,#""'#   + +  ! l\NHIML`9$?Cd‡•››››£¨ª´º¯®³¸º¼Áȼ·»¹ÃÌÃÒØÒÐÊÍÐÏÐÙÙÖÝâäáæÙÎàäÝãâåáßÞÞÝÝßáÞÞàáâáßÝÞàááÝÜÜÜÝÞÞÝÛÚÚÛÚÛÞßÝÝßÞáÞßãßáÔËààÝÞÜàÞÞÛÝßáàÞÝßàÞàßÝßàßÝàààâáàäÝ×ÝÝÝÚßãàã¼;GšUŒy§.!0=)" -     3BBuäëѼ¶»³©7?=@952..20KgŠ—˜§ ¤©²µ¶¹´³´µºÆÈÀ¼ÅǾÆÈÅÁÏÉÏÎÌËÎÐÜÝßßåãâÞåàËÝâÞâãåàÝÜÜÞßàáÞßàáâáÞÝÞàáàÝÝÜÚÜÝÝÜÚÚÜÜÝÚÚÛÛÝßßàÝàâßßÔÈÞàÜÜÚßÞÞÜÞáâáßÞßßßàßÞßàÞÝßÞÞáßÞâÜÖÝÝÞÜàãâäÁ[¢hªy¤˜· ""$   %   + +  + + #2LebfŒ¬¿˜…‚~x…‹xk[SOLBVo€Ž«  ©±´µ¸º´³¿ÂÀÃÃÁÄÀ¾ÃÅÇÎÑÌËÏÔÚÕÙÚÝààÞßÜáÜÞâÏÞÞÙàãáßÝÛÝßááâßßàáááßÝÝßàßÝÞÞÜÞÞÝÛÙÚÜÜßÜÝÞßáâßàÞàáßÞÔÅÝàÝÜÙàààÝÞàáààßàÞÞààÞßàÝßàßÞßßßààÚßßâààÝÞæáÚàçâáïì»$!+!#$     +!Wbkfe`[Dš dd_XWRWPLR]_]M[z~Š¥«¨«®±´´¶À¿ÁÁÂÄÆÈËÈÄÍËËÑËÕÓÒÐÛàÜàæáäßÙ××âÜÛàÓáÝØÝäàßÞÞßàááâàààààáàÝÜßàÞÜÞßÞßßÞÛÙÚÜÜÜÛÝáââàÜáàßßáßÕÄÝâàÞÛááàÞßßßßàáâÞßáàÝßàÞßßàßÞàáÞÛ×ÞÜàààÝèÙíéðëáàÝßœ' #"!     )ieidsjlpqfcdcbacfwmnraZevƒ’Ÿ¢¥§°±±³··½ÅÅľÄËÆÄÉÅÌÈÏÌÐÕÖØÔÛàÞäÞßàßÚÙÙØàÛÝÞÔãáÚÛäâßßàááàáãàáàßßáàÝÜßàÞÜÞßßÝÞÝÛÚÜÞßÞÜÝßßááßááÞÞãáÖÅÝãâàÜáßÞàßÞÞÞàâãßàâàÝßáßßÞàßÝáãÞÝÜãÞÞÝáááèåѲ¨˜‰g/  !$# "  +fhkfsmmpVd[YWYYW]elneY_t‡•Ÿœ›£­´±¯³¾ÅÇÄÂÂÁÂÇËÌËÈËÍÍËÒÕÙÝæèçâåàäßÞÔÓÔàÛÛäåØßÞÛÚÞâáãáÞßààáÞááßááßÞÝàáßÜÞàáßÞÞßÞÞÜÚßÛßÞáÞãâÞâÞáÝãÜÃâæãçßâáâæåäåãìæìäéäæäàåãÝÝààááãâßÛæãâàãçÞ¶œy`\p`0 0$#(   kih\sjjnMYSUPKLRQ]qdO`{„ŸžŸ¥®²±¯¶¾ÄÄÃÂÀÀÂÄÅÇÌÑÑÌÑÕÖØÙÛßçáßçãßßåÜÛÛÛßßßâåÖÝÞÞßßàáãáßàààáàáàßâáÞÞÝßáàÝÞßàÝÝÝÝÝÝÜÚÞßÞàâÈÂÚÞâÞáÝãÜÃàäçßßåáèíæââéàçåäâåáäåàãàßààááâßÚÓÔÖÛÒǼ¡ehZbci7 $!% *&   +   kn^Rnpl_O[XUQOMNPY`QWy‹’ ¤ª¯¬­³º¹ÁÇÅÃÅÈÈÃÈÊÆÆÌÔÕÒÒØÝßáàÜßÛìàÜãÔ®ÓÝÞâÞßàãâÔÜÞßàßÞáââàáßßâààÞßâáßßÞÞßàÞÞÞßÝÝÝÞÞÞÝÜÜàÞâåÆ¿ÝßáßáÝãÞÃááâãäãë¼­ÉêæçãæçæàëàßáåáâàßßâãáÝÒÊŽ¾¹®y^cjY\E +  $) + +  $#+  onUbqli_IZVNHKNO]SKPu’ ¦¨«®­°¾ÇÃÆÇÄÄÊÍÌÇËÍËËÐÖרÕÚßàãâÚàÛ×ãÞì®L½àÜÞÚáàâÝÓÝÞÝÜÝÞáââááßÞâßßÞàâáßâÞÝÝàßÞÝÞÞÞÞßÞÞÞÝÜÞàââÛÛãßàßáÞãßÃÝçàáäêã_CéëæïççéáàèèàâßàßÞÞáâáßäÛØÇÈÕÇK(%'   + +%& $$!-*pmfqlgeaIXXSKIMXTANm‡š¤®¬¬²··¼ÆÈÃÃÄÆÊÍÊÇÊËËÏÓ×ÚÝÞàååßàáÞÖØäÕÝò›:«êÞØ×äâãÞÕßÞÜÛÝÞáãâááßÞâßàßàáßßãßÝÝààßÞßßßßßÞÝÜÜáÞßàÞäæßßÞàáÞâáÃÞêçàâìÑQ~»çèìßÜîÑÓèÙÛØàÝÞßßÞàáãàØÜèÚâêÕ- +$"   $ + + !njyidlc\GTXYUSJLBHm˜¤°±®³¿ÃÀÀÅÃÂÂÅÉÌÎÌÌÐÍÐÖÜÝßáåçèáßÞßÜÞê䇇”l8¨ïÞÜÞáÝæä×ßÞÞßßÝáãâààßßáàâáààÞÞâáßßàààààààáàÞÝÝÝâàÜàààÜÞßÞàáÞâáÄäçãåàç¿_šä±´¹‹ˆßˆz× ·íâßááßàáãáÞßäÕÞÞÔ<   # ###% )+oeqfimdbLXYZY]NENq‘¢­³¶¸½º½Á¼¿ÄÁÆÇÉËÌÏÓÖØÙÛÜÞàâãæèäÝàââáëÓ‰PEBQ;¦îÞââÝÜæçÙÞÞàâàÜáäâÞÞàßßàâáßßßßáâáàßÞààßàáááßÞÞßßàÜâãßÚâáÞáàÝàáÂâéääáñ¥[L³…‚ŒfUÄ~I¼[n²ìáßâäáâãäâäàáÙãâÓ>    +  +! /  dlkgipphMSRPMLKQk“¢ª³·¼Ã¾º¿Ä¾¿ÄÆÅÉËÌÐÕÙØÜâãâáãäåãéäÞßäéïÍ}MJUTV=ïâßÞáãßåØßßàáàÝàäâÝÞáàÞßâàÞßááâââáÞÜÞßÞÞßààÞÝÞßÝàßãßâàáâÞâáÝßàÁáäìâáíŠh¡•j“u¨o\®IJÖëáßáäáàáäâáÞáÜØâÙ?% # fjlnf][WEEBAHGRr‰’›ªª®º¹»¸¼¾¿ÂÇÈËÉÑÎÔÛÚÜäéêíæìçäåîãêííá¿uMMUQ^W>•íÞÝàäÛááÕÞßßÞááàââÞÝÞßßáàßßàáááàßÝÝÞÞÝÜÝÝÝÞßßßßÞßßààßÝÜàáãááàÞÂÞéàåäê|¢k££e†ªkdS¢Z>âêÝàßßàààâàÞãÞÜÛßÜC    # !! +  + % lqboS),, )3FUjšœŸ¢ª°²µ¹º»»¿ÈÊÌÏÒÓÖßÛßâàíéëãëãÞçèéñÝßì¦cRSONHUVA‘íÚÝÞæÜâáÕÜÜÝÞáàÞàáßßàáàààààáááàßÞÝÝßàßÞàßßààÞÝÞÝÞßàáààßàááßáâݽßåèæáén…w“ƒf{iƒb_‹‡WéßáàßààáááááâàÖÛáØG + +  +     !, " mngi\EDD?N?ETZ”¨›¨´­´·¶¼¿Á¿ÂÐÓÓØÝÞßÜÝåàäëéÞ×çáíîðöÔ‹`RVQJ\PQWDŠíÛÝÚäÚâãÖÜÜÝßàÞÜÞÞÞÞßßÞÝÞßààßÞÞâáÞßàáàààßßâàÝÜÝÞÞàáâââáááàÞáåÝ´ââáßáâj\„¬gb“P‘Ç]ˆ¤®éàäàßÞÞàááàäÜßÜÝÜÞZ +    +    !!&$(.pmogfkejglZOh‚ª¬«®¶·½º»ÄÄÅÃÆÓØÛààáæãåèÜÝÛßâëéîéÜìÈUHMWWSTQZNOX@ìßàÝâÝãã×ÞÝÞàáßÝÞÞÝÞÞÞÜÝÞàààßÞÞáàÞßààßßàÝÞáàÝÝßßààáááàààááÝáæÚªÜéâåãæ²¤Æä£wu¢Ùã¾Ø×ÙÔäÞßàßÞÝßàáààßßÝÛáÝO +  + +     + & +" +lojkiemomSPg–ª°³¯¶»ÁÁÀÉÉÊÉËÎÕÜãäâãäáâÞÞÛÞâïÖÈߨˆ¨lLSMU]OOVSKQVUAwëäßãäàääÙßßßßàßßÞÞÝÝÞÝÜÝÞÞßßßßßÞÝÝÞßßÞßàÞÞááßßáàààààßÞÞàáâÝßå×£ÑêàáÚßääìÌheÀíçèã×ççââàááàÞàáâáßààÞÛãÛB5      & +mofjW9HTgfT@JCCFDEE?CKHORHMIIGMOMPVSVTWSVYWWUONS[XPS÷öêï³cDM×íäèêçãäããåäâãæáäæççäáãâàààâããââäãæåèæéåäßàÝÞÚØÑÉÀ¼¾¹®´»Á½ÃÁÅÁü¿¾¾ºµ±¸·¸µ´¯¶µ¼ºµµ²¶±¸¸¯¼¼·½·žŸžŸ‹ƒƒ„Љ€‡…zyrt€ymsqfdcfkaXW]NRSNFLSRLjjjgkk; + $/>:<9J=CEDHNECIA?FGCGPMIKGHHHMNJMXX]YWQVXTSTOMRWVSQòôô¢[ONG>xóâèêìâäãááààâãÞààßáãâãääããääâçæãàÝÚØÖÕÓÑÏÏÏÎËÈÌËÈÊÍËÈÌÊÇËįľÅɾ¿Ã½¾¶¹´¯¸»·²¹²¼«¯±®ª²©­¶¯§®©°  £›ž›š“Š‚|„~†y~yrx~‡‡xmmfadYWUTTQQFGQHIE@;09:7<=BC@khkgmh. +:;?IDFEJHGFAEKFBEFCBFHILIKKMMMKOZ^\VYTTVUNRSPRVVURï€SMQMMBFßåðåçåãßÝàßÝÝÞàæéåäæäßááÞÝÜÛ×ÔÔÕÖÙÚÚÚÛÛÜÝßáßÝããÞÖÐÆ¿»¸¶´©†uvy•¨©°¼µ¶¹¸¯´ÆÀ©±·°©¨ŸªŒ„‹’xy{redfYZMHbŽ€tR<8MiW:4:?,"!%280&)123/,+.1/4,--46+,A7)224:4=Fkmohld0 + + +/7=>>@E@CCA@A>=AHE@GBDMHIJJMMMJOWaa[[UWVQMSWSQUVTQTeGK[PQBU?µõÞçèåâàãêëêëææååäáÝÔÙÚÙÖÓÐËÇÏÌÉÅÁ¼¶²±¯ª¤ž˜‘‹{ob\UKGJKCEC@9B@>FOIQRVsxŠg?HPlSWH]‰‚nA85LC6?=4.712246iƒqZ3)5WW3#5F=(  '# $'*&*7127?=I?EAorqhgcA  +174485=B?;=>B?ABG@JFCIDDIIMJJKNWafa\V[XLNRWTQXZSJLG^G\GNJ>=ªïíöôïåÙÐǶ¦ŸŸš‹ƒ‚yzywtqolifda_^ZVRNMLIFEB?=5/10.-.//0/52870/<333/Ecyb%%.9D7/-uhx62)2C-/4&'2,01(!O}x]0#&CP4&'>?$$       #&/15Gtogjc]M  + +!3/463<4<:?+NaxA%)*;//-*$,.&")%,UX8+/    + +   +  +mlngkb[P  -757797:=AEFGFDHHJJKKKNTUROQRV_ea`ZXSORZ]XVOSUXTQDS[`UJ[^Q€žkhYSbY\kvfMPau]NHOMIFFFFEFHHHGFGHE@CCBB@?>AED?><;?74467:;<:;459937\|jA$,+J9<-:fbL#%! +  +      +]ijhb^_I  $$',1269<>BDGGHGFFGEGNPRRSWVXbdbb]UNQY_a^ZRSRUXMBNRhYWcPUmtcgYQg]`j{piHVpfWEFHGCDCBACDFFDBCDB?>?BA?=?@DC?@>>B:66:<<=====5<908#CaW%"!&' 3%    $*260;DKBKOaQu‹{uwx‡ŠŒ„”h`fe`cO* +!"$*,.15579=@85113562/-*$ )! +  + +   -BV`Tm˜°‚B0Zœ£¤ª¦®§³²‰’Ÿº®©±¥¬«µª.1"$%9G7  + + + +  !"#%,/,*..07?EBAGF??DD?9=DIIGC@A@@BEGIHRHJPD*@)0--+#**+&.0(*(+(,,-,,,+-,,./.,*+,,())%#"$%%#!    ! +   +  .*7?@>DJ9 7LYp„ž¤®¯µ¼©–©Èƒ?=T¯ª¥ª¡©¡žœŸŸª¢¥˜¬Ÿ•˜" $:7-     "'% "! (+)##//0.(&$)*()-(//B  + + + +      + + *)7!-HPXEMZV`^biyx€‹z€”‘‘“‹•‘‘“Œ¤¡—¤£©vGHWy£ž¢£ˆ«–—ž®†ªˆ›­t²  K@<,02%   +             + +  !'1)(Rqkics„©½ÎÆž‰‹›‘¶®›•Ÿ ž›™£“¤¢•š™­Â‚TD\¬¢°™° š£¨µÆ…¨š•ºuÀ + ?BI$.5%    + + +   + + +  +    +  +    +  2XC\™ ‘˜ÌìêïÅ‹¥˜»·¦ž¨¦‘ª¨¥ªŽ¡¤š¡Ÿ´Ç~OL]ˆ¯¦´©–±©¡Ÿ©®“dž³”™¿~Å=550"8C9I9& + +  + +  +        +  + +   +L$+4%5PU‘éÝÚ‘ˆêðñï´‘¤´¤š¢££˜–¥’ªª¢£Ÿ°Ã†PFWŒ²ª¶¦ Å©­¡¬É¢Ë‘¯—©ª†´ + EF:6$?7"U;,,=;  + +  +  + +   +  + + +  +  + + +  oˆ‡„¹" +.r­Už¨{Åñâç½€’”¤ Œƒ›˜‚œ•žœŽ©ª¡˜£»Ô€RPI‡¤ µ™‹­ƒ~‰™‚drKrKRO3' ?OC,0A6 $P ##,70%-     + + + +       #%   +%žª—5n.bN3)[’§;}Åq•ØäÝÕ›ŠŠ¯­Ÿž¡¡—›ž—¬§›¤”nuR@AA5?. '.%   + >Q;.:@8%)M#',25-')+   +        Jn' 6 "m )šœƒŸ^[k "™„!_Äq„§êÝÝÍ¡”¬«…¢•‡›–ž…¨¬¨ŽB  &   ! +   +@T8:>0-@&1@8!&$.  +      +'  + +     8Jt=Nƒ*L"7  + + +—¢…£DGV ,‘>\Êű¼À~}‰Êààä²z ©”‹’Š ’•‹® ¨Š2 * + ,  + >S/(+>F%./?<"% ", +  "!R   +   ?bBKy< Zr*At6=,S0  + + + &¢˜„š(AFN[d»ÇéäæßÒ…y‹àÞåÉŠž³™‡›“…šŽ™”ˆ¡¤ƒ, !:$,)&$*$%   >].61 #;YSTSUQHH?;>. +  <1  c   .&; K[B@zU"QL 0­†` !!&;{KzÃã×àÞÍœ”‡’ÇìéÞµ“®–ƒ—‡‹¬“š™Ž¸­¨­X    v + %386>)$!$J12&/HF2"9Ua[K"  +59: %¢™€G,"-19˜3LÑñâãäÚˆ^{w™æâèͪ¨›€–Œy^sqQZjirR( ""*&21(INEONQH&*)WNMd`]VTJQJJ?4  -#  4;  $ f3.. +-3&"")*% % !" +IFD2 +  +2Ÿž‡N8~3¸ñôóí>£™ŸÙêì໡zˆk1%*110)$$%/HpPjŠœ¥œ˜”‘“¢¤šˆ„}~~‚‘Ž“‘–š“Ž™ž¦–•Ÿ•™›Š’Œ‰Ž‰†ƒ‰w{“’„‰€~SLNCGC+"! !FJYPWGHMJOGC=3)# +4%']   %C  + .rrobx|kfmkrq}‚ˆvku…€ˆ‡—‹Œ˜’‹‡”ŒŽŠ‘„x‡”‹”Ž‹‹‰Œ˜‰ƒ‹ŽŒ•••ŒŒ’…‰…Ї…ˆ…‡†wyvˆ€ƒ}‡‡KKNIGB<4=*+.'M\M4 FF;OOI>5,#  +! dB ' 9^ <<#.:COONYdfg^gstq|qu‚…‘˜”‡„ˆˆ…Ž’š• ”ˆ—˜“¥˜’•…“ƒ–Š™‚‰ŒŒz‰’”‰•‹•”‹ŠŒ‰†…„‰‘‘…››—’”•Œ—–‡ŽŒŒŠ”ŽŒ‘ƒˆw€‚…~z{ux]^\[ZSW_J6#0 6K  7J1IA<;6'  !S3 Ng2/Z  -89>9:1('%$# %*%2'244:ERTZYYWfiit}„„”œ•Š“Ÿ’¢˜’’——Ž™ŸŽŒœ…}ˆ†‹“††Ž‹‹‘–•”—˜’ƒ‡‰Œ‰Œƒz‡„‚‰†‡y{wŽŠ‹Œ‰–Š{zŒ‹‰Š†‚~€‚|}|{zrkqifjhdeigffe]hedcdfkjkoprlmfgfmlnpoinflor}uoqx~vxytwnolc\[ZPADCA?=:74./))+*&(-0.+,26;9:?@=FV]\\krmklj{‡‚ˆ’€†“““Šœ™– Œ•šž‘—–ˆŠ†„ƒ‚Š‚…‰zz‹†…‹‘ˆ…Ž‘Š•š‡ˆ‡‹“—…‡ˆ‹˜ œ‹’š‘Ž‘‡~‰Š‰Ї…|v„€xosmvlc_]ibe^bdcg_bg__`_]da^[fhlnrrvyx~~~}ywyvvrrwyssmtrpkcde^QOQCFF>?B7B;4-,$!$#*/)&363?@9>MXY[gurrx…ƒ‚ƒŒ‘Šˆ•¡ •–š’šŸšŠŒˆ…€}†{x}w{ƒjuv~tŒŠŽ‰Œˆ‰ˆƒ†„€†ƒ‚‹‰›‘‘”–Ž˜–’Ž‘˜˜’‹ŒŽŠŠ““Žš¢–“–šŒŽŽ“‰Œ„‰Œ…ƒT[[_aef\gmiknusme_glw|qryvxoqsqkeefac`^ZTW\XSUUNK?:3721,-.)$%!&#'$").2.6B79=ERbinoz„‘ Ÿ”—–šž›’•™–„Š‘Œ…ƒ—–‡ˆˆ‚Œ–”‰†Œ…‡‰ƒˆˆz}|z}Š…|€~€†‰€{|ŠŠŽ“”Ž—ŽŒƒƒ‡Š„’•“‡‡Š€‚•Ž’“‘ˆŒ‹Š”‡‘ŒŽ™˜”‘‰“š–•š”Ž’•—‹ŽŽ‰ƒ†ˆ{€„g_nrsmyieqprqm_UURRKC84;B944-(%## "!$ %'$,-+4987=??9B;8=DD9100-,/0/.("!%!#!%   $&--47;<9:978::8:::=BDFCFGIIGGDDEHMMKYXW\\_febga_c^ZZ\[Y[\^cfffhjkfdkkbgllsvpnhddgjlgjmlhilmmklmkebcgfbcd_YQUWWZchgXYXH@R[ZZOQH48?G<9?><7.12?<904+(''*$"!!#%$!""$" !  + ##",6.47>EFKLMIKPLMMKQRPORRQTORTQQRUWS[\_``c^\_bbdeelked]Y_[Ybb^XYVUXccaaghidbhbhmgjlpmga[]eged`cnljknjggllbV[e_Y`\L98;7;KVK/58,-GQJ637'*$ !$ !#"&##! ")$-()+8@@9@;04FNMKRTWTW\ZYW\PPTPQSPTZXUWTTY_``^]^]Z]b`]`bmko`jpnh`gedid\b`fhgecfd^__]ZabZaic^afSZnhj`j_W8Nj`TT]a]\VMNIDII=/1:723-$#'(&!&  "    (0/44;>:A<;?8DCIJJLJNKMUXSQSV[Yb^VZZ]^\[U^fbc]Wbaa]]U^^]]]__^`efhlkklkiknka\[ehidbbnsl]W^jksna\dkh`eec_Y]dYFLSOVX^\`XOT]`QMGN<52B>55630/,"!"#"&%)  (+.*+,.,*)069CFGMMKNUUTSWTRTSPORXUWQQZU[chgd`[gmghoic_`dbb^fkfeddekcXchcgfffe`cgdfmnnqojhifacVVckeacgcsyi__blheaZ\^ZVU\[[WTWCB026-7=D:L@34/%(&%)# %  !#"#$&'" %$  $!"&#%"**/+*+19=>BEBADSPNNRKIMONQWW\\[a_XXX]Z[[VZZ][V^XW\`a_\_]crjcgtxqv{ypkmz{pm}{gkqvqoijwukfgjmobeia^ejqqlgile]acfhechpmnrqpi_]ifcbbfiicdlikdeg#2*"& "$# ""%%')' !"!$$!! #(%!&&&%*23@:15<7A==@:FRVTR][YRSVVNNXRRWQUQQW]S\UPVYYVXVVX`kk_cjhmied`\bhkjkojgpxunlpptwuuzyekzqttzmj€„‡‚ˆ€Š‰€ƒŠ‘‹„™Œ~{{ˆƒ{‚‚yrˆŒŒxvs~‡„}xse\[ZUV]fd[T^fptqiee^\eijnrwwtprpkhmnjknpilp  !"$"),..47;?EDDCDIFEKGBCECGIJHHKKHLSNMWXU][\`W[`_^Z_^\^`[VXV_VX`ZaWge^^bZ^bca^dhhgssqntzt}{rsyz}~{~~~y€‰‰}…‚€ƒ„ˆ…„}‡†{…y‡„~‰†„‰Š‹Š……“”Ž‘™•Š~†‰‰~‚†~„‡…‹†€x{qy|€shkiflosvxwtolosyyncdnpp}†‚ur{}„€voot|yurvunnq(,+,4:?FAt€jK\ŠoaQ•¢Ÿ ¢žŸ     ¡¡££¡¢¢¢¡¡ ¡  ¡¡¡¡¡ ŸŸ ¡ ŸžŸ¡¡¡¡¢¢¡Ÿ¡¢¡Ÿ   £££££¢¢¢¢¡¡ ¡¡¡ŸžŸžŸŸŸžŸ  ž ¢¡¡¡¡ž ¡   ¢£¢¢¡ ¡£¢¡Ÿ¡¢¢   ¡¡¡¡     žŸ    ŸŸžžžžŸŸŸŸŸŸŸžžžŸ  ŸŸŸŸŸž ŸžžŸ ŸŸŸ  ŸžžŸŸŸŸŸŸžžŸŸ Ÿžžžœœœœš™š™™˜——–••v7«as1˜rxA…}mOn‰mHa—qdL–›ŸŸ¤¤žŸ  ¡¡¡¡££¢¢¢¢¡¡  Ÿ  ¡¡¡¡¡ ŸŸ¡ žœžŸŸ  ¡¡¡ ¢£¢ ¡¡¡¤¤¤¤¤¢¢¡¡¢¡¡¡¢¡ ŸŸŸŸ ŸžŸ  ž ¢¡¡¢¢ ¡¡¡¡¡££¢¢¡ ¡¢¢¡ ¡¢¢ ŸŸ         žŸŸ  ¡¡¡   ŸŸ  ŸŸ  ŸŸžŸŸ  ŸŸŸŸŸŸ¡¡ žŸ žŸŸŸŸŸŸŸ¡¡¡  ŸžžŸŸ ŸžžžŸžžœ›ššš™™˜——––x9£ŠjdE{{¢ Ÿ¢ŸœŸ ¡¡¡¡          ¡¡¡¡¡¡¡¡¢ŸŸ¡£¢¢¢¢¢£¢£££¡¡¢¢££££¢¢££££¢¢¢¤£¢¢¢¢¢¡¡ ŸŸ    ¡¡¡¢¢¢££   ¡¢¢¡¡¢¡ ŸŸŸ  ¡¡   ¡¡¡£¢¢¡¡¡¢¢££¡ Ÿ Ÿ¡¡¢¡¢¡¢¢¢˜›”™šœœ›™ŸŸŸžžžžžŸŸŸŸžžœœœžžŸŸŸžžŸ ¢¡ŸžŸ  ›žœ ž¡žžžœ››œu!tƒnAZ‚XNMŽ]_:žshI„pAw„¢œ¡ žŸ ¡¡¡¡  ŸŸŸŸŸ ŸŸ   ¡¡¡¡¢¢  ¡¢¢¢¢¢££¢££¢¡  ¡¡¡¡¢¡¢¢£££¢¢¢£¢¢¡¡¢¢¢¢¡  ¡¡¡ ¡¡¡¡¡¢¢¢¡¡¡¡¡¡¡¢¢¢¡¡¡¡¡¡¢¡¡¡¡¡¢¢¢¢¢¢¡¡¡¢¤£¢     £¢¢  ¤¥šœ•¡¡ ¤œŸž ž¡¢ŸžŸŸŸ       žžžž        ŸŸ   ŸžžŸœŸŸœ žžž››šš„/wlPSšmdA©Ž‰S™ŸZˆŸ‹buŽ£ŸŸŸŸ  ¡¡    ŸŸŸ  ŸŸ   ¡¡¢¢¢¡¡¡  ¢¢¢£££¢¢£¢ ¡    ¡¡¢¢¢££¢¢¢¢£¢¢¡ ¡¡¢¢¡   ¡  ŸŸ    ¡¡¡¢¢¢¡ ¡¢¢¢¢¢¢¡¡ ¡     ¡¡¡¡¡¡¡¡ ¡¢¢¢ ¡   £¢ ¢ž¢¤ž¢–™’š™•š›¢  £œŸŸŸŸŸ         ŸŸ¡  Ÿ  ¡¡¡ žŸ  žžž¡ŸŸ žžžœœ››i2rŸYFT±laC±•O“_ˆ ‡ll‘£Ÿ ŸŸžŸŸ       ¡         ¡¡¢¢¢¢¡¢¢ Ÿ¡£¢£££¢¢¢¡ ¢¡¡  ¡¢£¢¢££¢¢¢¢¢¢¢¡  ¡¢¢¡     Ÿ      ¡¡¡¡¡¡  ¡¢¡¡¡¡¡  Ÿ  ŸŸŸ   ¡¡¡¡         ŸŸ ¢  ¢Ÿ£Ÿf[zghgmpr{‘©Ÿ £ŸŸŸŸŸŸ        Ÿ   ŸŸ    ¡ žŸ  žžŸ¢¡Ÿž Ÿžžœ›r=]©mQG¸}gC«ŽŒ6¡˜„Z…¢‰`j“ ŸŸ¡   ¡¡¡¡¡¡¡¢¡¡¡¡¡¡¡  ¡¡¡¡   ¡¡Ÿž ¢¡¡¢¢¡¡¡ Ÿ¡¡ Ÿ  ¡¢¡¡¡¡¡¡¡¡¡¡¡ ŸŸ ¡£¢¡¡¡¡¡¡¢¢¡¡¢¢¢¢¢¡¡¡¢¢¢¢¢¢¡¡¡¡¡   ŸŸŸ   ¡¡ŸŸžŸŸŸ¡¡  ŸŸžž¢¤œŸžœšV[¤ÈÈÅÁ½µ£‘z¤¢Ÿ¢¢¡¡   ¡¡¢¢¡¡¡¡ ¡Ÿ   ¡¡    Ÿ ¡  Ÿ   Ÿ›ž  ŸŸžžŸŸœ›cFj—cRJ¬qfA¥‹€@šŠO‚¦\k” œžŸ£Ÿž ¡¡¡¡¡¡¡¡¡        ¡¡¡¡     ŸŸ¡¡¡¡¡¡¡¡¡¡Ÿ   ŸŸ  ¡¡¡¡¡¡¡¡¡¡¡¡¡   ¡¢¡  ¡¢¡¡¡¡¡¡¡¡¡¢£¢¡¢£££¢££¢¢¢¢¢¢¡     ¡¡¡¡ŸžžžŸ ¡¡ ¡ ŸŸŸ¡  ¢ jdÉÿÿÿÿÿýþÿ÷‘§¤Ÿ£¢¡¡  Ÿ  ¡¡      žŸŸ ¡  ŸŸ       ¢ ›—œ ¡  žŸŸžœiLb•w\J°yfF˜†…Aˆ‡L„š[qŽžŸ ¡Ÿ ¡¡¡¡¡¡¡¢¡¡¡¡¡¡   ¡¡¡¡¡ ¡ŸŸ ¡¡¡¡  ¡¡¡¢¡    ¡¡¡¡ ¡¡¡¡¡¡¡¡¢¢¡¡¡¡¡ ¡   ¡¡¡¡¡       ¢¢¢¢££¢¢££££¢¢¢¢¡     ¡¡¡  ŸŸŸ   ¡ ¡¡¡ Ÿ¡¡¢¢‘Lµÿ÷ò÷öúþ÷øê…  ¢¡  ŸŸŸ          ŸŸŸŸ    Ÿ ¡¡  ŸŸ¢¢ž—žŸŸŸŸŸžžz{X‚qO“d_3Œy€+…pY;|‡mDf‚™ ¡ ¡ž£ ¡¡¡¡¡¡¡££££££¢¢  ¡¡¢¡¡¡¡žž ¢¡¡¡Ÿ   ¡¢¢¡¡¡¢££¢¢¡¡¡¡¡¡¡¡¡¢¢¡¢¢¢¡ ¢¡  ¡¢¢¢¡¡¡¡¡¡¡¡ ¢££¢¡¡¡¡¢¢££¢¡   ŸŸŸ         ŸŸŸ   ¡ ŸŸ¢£  Ÿjeùøòõúûóìñÿ噢œ¡¡    ¡¡   ¡¡¡¢¢¡¡  ¡¢¢¢ŸŸ    ŸŸ¡£¢¢šŸžžŸŸŸžž^nPEWŽK„P\6‰fh/}[U6|j@bƒšŸŸ¢¡ž¢¡¡¡¡¡¡¡¢¡Ÿ ¡Ÿ ¡ Ÿ¡¡  ¡ Ÿ ¡ŸŸ¢¢¡¢¡   ¡¢¡¡Ÿ¢£¡ ¡¡Ÿ¢¡   ¡ Ÿ¡¡¡¡ Ÿ¡¤ ¡  ¡¢¡Ÿ¡¡¡   ¡¡¡¡¡ ŸŸ ¡¢Ÿ£¢¢¥¡ £¢ £¡£Ÿ¤¢›¡¡Ÿ¡Ÿ¡¤œ¢¤£¡¡¡•¨˜¨“H¯ÿûóôùëvˆ¨ž„˜–˜§ ¡ ¢¤Ÿ¡ ¡ ¥¤ ¡œœ¦ž§¡£¤ŸŸ ¢¡žŸ£Ÿ £ —£¡¢ ¤ ¡œ ›¢kKCz~i2œnu8–‰q:–{Jy®Sgœ  Ÿ¡¡¡  ¡   ¡¡¡  ¡Ÿ ¡  ¡¡¡¡¡¡  ¡ Ÿ¢¢¡¡¡   ¡¡¡ Ÿ¢£¢¡¢¢¡¢¢¡¡¡¡¡ ¡¡¡¡ Ÿ ¢¢¡  ¡¢¢¡¢¢¡¡¡¡¡¡¡¡¡¡    ¡ ¤¢¡¢ £¢ ž¡£¢¢ž¢   ž £ž›ž¡Ÿ¤£¡›¢¡š¬jOôÿüùúûÙN8A>Tƒ¦›™œŸ¥¤¢žŸ¢¡ ¢Ÿ  Ÿ¥¤¢ ¡Ÿ¡ž¢¡¡ž¡¥£Ÿ¡ §—ž¦˜ ¢ ž£š¢Œh>Äpd=²cwJž§ŽRˆ¸˜h€Ì¥`c›œ  ¡¤¡       ¡¡ ¡¡  ¢  ¡¡¡¡¢¡¡¡¡ Ÿ¢¢ ¡    ¡¡¡ Ÿ¡¢¡¡¡¢¡¢¡¡¡¡¡¡¡¢¡¡¡¡  ¡¢¢   ¢¢¢¡¡¡¡¡¡¡¡¡¡¡¡¡¡  ¢¡¢¡¢¡ž¢£¤¥£¢¤ŸŸ¤ ¢¡›Ÿ ¡ž¢¡¡ £ š¡§—Wÿü÷øøô·Setonu~xœ¡  ¡žžŸ¡¡¤¢¡¢ ¢££œ£¢¢¡¡£¢  ž› Ÿ£¡’™£ž¥™¢ ¢¢›‹q8¸cf7±msM¦±œNŒ¹•co¤~Xhš˜žŸ ¡£¢       ¡¡ ¡¡ ¡¢¡  ¡¡¡¡¡¡¡¢  ¢¡ ¡    ¡¡¢¢ ¢¢¡    ¡¡¡¡¡¡¡¡¡ ¡¢£¢¢¢¡¡   ¡¡¡¡¡¡¡¡¡  ¡¡ ¡¢¢¢¡¢ Ÿ ¤¢ž Ÿ¡ Ÿ¢¢£¤Ÿ¡¡¢žž œ¢œ£ž¤žœ£š£ž¦tZ×üùøûÿñQeŒ€zvvljž¤›šœž£Ÿž›¡¡¢¤¢¡¢¢ ž¢žž¡žŸ¡ ›œ¢¤£˜‘¤šŸž›¤™šŸ¡š™y5»th<¤‹‹<Ÿ¶§N…²^qšfPe—˜Ÿž£¡ £       ¡¢ ¡¢ ¡¢¡¡ ¡¡¡¡¡¡¡¢  ¢¡ ¡       ¡ ¡¢¡    ¢¢¢¢¡¡¢¢¡  ¢¤£¢¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡  ¢¡  ¡¢¢¢¢ Ÿ¡£¡ ŸŸŸŸŸ¡¢›¥£¡Ÿ™¦¦˜Ÿ¢Ÿ Ÿ¢—£žšZ…ÿùúþùýß_\|ØØÛæð¬l¡ž¡Ÿ¤ž™£žœžžž¡šŸŸŸšœ¤¡žžŸŸšŸ›~’—Ÿ —£†‚•‰žx>¶j_9eU•5–¡’Oƒ±’WfžpV^”˜¢ž£¡ž£       ¡¢ ¡¢¡¡£¡¢¡¢¢¢¡¡¡¡¢ Ÿ¢¡ ¡¢¢¢¡    Ÿ ¡    ¢¡¡¢¢¡ ¡¢¡ ¡¢£¡  ¡¡¢¢¢¡¡¢¢¢¢¡¡¡¡¡£¢¡¡¡¡¡¡¢¢¡¢ Ÿ¢Ÿ£œ¥££›¡¢¡ › –£¤ŸŸŸ  ž”«vMÔÿð÷ýöøµKV§ÿýÿÿï§¡™œ†’j” ¢™œ¡¢¡ ¡¡££¡¢ …Œ‘™ž››•Š–¢denŸ †l|j‰Ku`§“‹?g_”3’‚Fwž‰VdŸzVWŽ‘£Ÿ   ¡ ¡¡¡  ¡¡¢¡¢¢¡¢£¢£¢¢£¢¡ ¡¡¡ Ÿ¢¢ ¡¡¢¢¡    ŸŸ  ŸŸ ¢Ÿ ¡¡ Ÿ ¢  ¡¢¢¡  ¡¡¢¢¡ ¡£¢¢¡¡¡¡¡¡¡¡¢¢¢¡¡ £ ¡¤Ÿ ¤™š‰‹ œ–£Ÿ¥ž¨‘œ›œ›¡™žš”¤IvÿõöüüõïKZÌÿþÿþ똨£“tm[£„Žšœœœ››™•“ŽmrfyŒŒŠ‡…‡{€fVaOQ|{g{s]F/O.­›¬8Œ’–>ylk3o|hGcŒgBQˆˆ¡ žŸ¤Ÿ¡¢¢¢¡¡¢¢¢¡¢¢¡¢£¢£¢¢¢¢   ¡¡ Ÿ¢¢ ¡  ¡¢ ¡¡¢¡¢¡¢ ŸŸ¡ ¡¢¡  ¡£ŸŸ¡¢¢¡¡¢¡¡¡¡ Ÿ¡£¢¡¡    ¡žŸ¢££¢¡¡¢žž¤¡££‚}‹Ÿo˜ž¡¤¤‘ƒ}|›¤žrs’Ÿ~HÀÿüöõýüåTSwëÿÿÿÿ烇’’‚t}yu…ƒxhr~}}|}}}sxxyilagmnjggjpqhhmc\ZYRVCjkP5jc«Œ¥-™š˜9~uh;pŠxD[”mKO’¤ ¡¡¢¤¢¡¡¡¡¡¡¡  ŸŸŸŸžž¡¡¡¡¡¡¡¡¢¢¢¢¢¢¢¢    ŸŸ¡¢¢¡¡¡¡  ¡¡¢¢£¢¢¢£¢¢¢¢¡¡¡¡¢¢¡¡   Ÿ¡ žŸ¢¤¢¡¥¢§¥ ¡£¨¨¦¦¦ ˜™ˆ~‹vh‚zw…{„‹lrm‘“‰l{‚ƒ{pOeøøùúðõþÊD]œøÿÿÿÿÝpmjonuxsnlgjnnjgddllmkknnnwtumroqppkoshwwrstsijgb\S{^,‘gi&m]0ƒw_:lyKW¨„KS˜—¥  ¢¡¡¡  ŸŸ   ¡¡¡¡¡       ¡¡¢¢¢¢¢¢¢¢¢¢¡¡¡  ¡¡¢¢¡¡¡¡    ¡¢¢¡¢¢¢¡¡¡¡¡   ¡¡¢¢¢¢¢¢ £¥¤ ž £¥§¢£¨£Ÿ¡ž›”——™~€‰€{}v`\VYb\P†}nuturomSO¯ýôùùðüö•RaÇúÿÿÿÿÆoykpsurstttprqpomnrlponponqlpjkjdonkqkjnlojomitrslpmU*“VQ4ŽaY4pzdQ`£ƒPV¶OK˜›¢ž ¡¡   ŸžžŸŸ ¡¢¢¢¡ ¡¡¡ Ÿ   ¡¡¡¡¡¡¡¡¡¡¢¡¡¡¡¡¢¢¢¢¢¡¡¡¡¡  ¡¡¡¢¡¡¡¡¡¡    ¡¡¡¡¡¡¢¢£ŸœžŸ ŸŸ¤¤¥¡™“•’™™¤­«¢€zyvlffsqoncelrqipqqqiok^Nbòüõýûòûãi[qíöÿþÿü²n{grsmkniflkhhihhihgkkgfea`^`][_Rfdgfac`_c]`_ca`f^`uf(‘en,nc7iX…gT|WP{JL’™ŸŸ¡¢¡ŸŸŸŸŸŸŸŸ  ¡ ŸŸŸ ¢¡          ¡¡¡¡¡    ¡¡ ¡¡¡¡    ¡¡¡¡¢¢¡¡¡¡¡¡¡¡¡¡  ŸŸŸ ¡¢£¡ ¡¡ŸŸ ™””•’‘˜§ ¢–’…yqkZ^cbda^be]df_bdcagddojTL˜üòøùöóïÄ]]ûðþÿÿó ff]jida`\Z_^ZZZWXYVUVUQNLJIHGHDI=KNOIMJGIFHGILDGKHC_]&Žg_/ƒm}@cD^X\£xcG}DPŽ—¡¡Ÿ¡ ŸŸ  ¡  ŸŸŸ ŸŸŸŸ   ŸŸŸŸŸŸžžžŸŸŸŸŸ ŸžžŸ ŸŸ    ŸŸŸŸ    ¡¡¡¡Ÿ ŸŸŸŸŸ  ¡  ¡¡¢¢ Ÿ  ™–˜’“‘•ž¢ž˜Š}yrqmccebbbae\ZZ`_XOW]WXY\LV`]OSìùöôøþõê—Zaºýðÿÿÿê‰RIINLKFBDGCFDDC?@A>?<<<;989806373384/5.4003/.)./-,*jg”{`9^CBhj6>U¥^C›‡JIŠ¡œ¡ž  žŸ ¡¢¡ Ÿ        ŸŸŸŸŸŸŸ ŸŸŸ     ¡       ¡¡¡¡¡¡¡¡        Ÿ ŸŸŸŸŸŸ ¡¢¡¡Ÿœ˜—•••–—˜™Ÿ¥¦—€n^HCORSUVOXIQPMMKNFIHDGFG@BCEJ?LE?N†ûê÷úö÷øçdYlçøóÿþÿæq>306.151./-..-,**+),(),+))),"*&*-$)"%$#+"'$*.!-%+%#ks"Š„v+nOc1epR?P‰yR=•sT@‡ˆ¢š¡œ¢¡žŸ ¡¡¡    Ÿ ¡¡¡         ¡¡¡¡¡¡¢¢¡¢¢¢¡¡¡¡¡¡¡¡¡¡¡¡            ŸŸŸžžžžœš™˜”˜š™˜œ ¢ª”nQ;736888<995:6<9170440.-04(32'.45-+I_Úýòñõûÿ÷ÃKXÿóôÿüÿÛ]3)#+%&+*%$''(&%'(&&%"#$##%"'!(%&)#'%&'(+&,%(.(-'1,,af!‹{x1s~w9cpY:LƒpV=ŒjX:Š…¤œ£ž¢¡žŸŸ      ŸžŸ¡¡¡Ÿ¡¡   ŸŸŸŸŸŸŸŸ    ¡¡¡   ¡ŸŸŸŸŸŸŸŸ     ¡¡¡   Ÿžš™™˜˜˜™š ¨ª ’}[:33hy ‰ed&z…l@dwO?N‚iS?‡kOAŒ¥¡Ÿ£¤£¡ŸžžŸ    Ÿ Ÿž £¢¤¤¡ ¢¢ ¢ž£ž £ž¢ž¢¨¡Ÿ ¤ ¢¢ž  žž¤¡¨£¡¥£žž›šš˜™™œžž¡¢£¥¦ŠvbM>5924+($#$!&+'%&%'',&*#&(%&*,'*(".0+5*G\Øÿùïüïøùá^HbèüôÿÿÿÿÂJ@9G\lU9<8=:EA;==B8?B:EG?F@=IHCF?7=<:>[sýüùõöòùýÀDP…ÿôõÿýÿ÷§KGEKUVKC>DBOr\IhhC>@CGBGCJINKJPOQLcSS\`bSXLVMePteb`X}k/‚F#q£wBO€\M;”nY;‘yPE†žœž¡ž ¢ žžœ ¢Ÿ ŸŸ¡  ¢  žŸ¢¡Ÿ ¡  ¡Ÿ¢ œ¤¡ž¥¢  ¥¢ ¡šx8s›žœ™ššœ›ž¡¢ ¡¢¢¢¡¡¡¤¨¡¡v>"&"#%(+,5A@;@AAE=E?@BD@@J8EAF@<>B;BJHFBSÍÿñ÷óðö÷ø–DPÿóú÷ûÿì‰\KDQNPX`D78P‡y]…~;[kprI2-Zuv‚pfUdLcLBECGGIGGHHJKKIHKLPQY^RMIOdchRFI]?Pxÿ÷óôòõøöíaXWÌúõøûÿÿåtl^[jpmq}R(:c|‰…Š{@l—Ž’d6!nž˜‘„gOd1.:PQQM=/IT?9;Ipg/R[ƒlx›eJa‘_‹aUE\Šz^B“W@‚˜¤“˜™žžžžžžžœ›Ÿ ž›¡¡Ÿ ¡Ÿžž¡žŸŸ›Ÿ—šœœ—–aqˆŸ’‹RbZ™–— œŸ¡Ÿ ¡žž žž ¡ ¡ £¢ž¥¢W9?D>:FGANp{v{„†~iVWv†abPb‡{ucJMZMRÌþöùîô÷ñ÷ÔJThóý÷ùÿÿÿâktj^Wab]h`T`p‚Ž•‡‚TlŸ““oG6vŒeHCEP2)$CCR10>FEPDGCO6&>G_?p‘sDI[>IG]`†K…zb4‡rZ=v‡ž“yv—ŸžœœŸ ¡ž™œ¢£ žœœœ›Ÿ›œ› —›šš¡œžš››¦p˜Ÿ£ŽV]c¡ŸŸ £ž››œžœŸšš—šœ™š•š–•˜Š™MEOOAEHFXu}zx}|xmbXoqhl\ZY^cibWX^GTnÿÿó÷íôóõü UQ•ûöûÿÿýÿÒenPFS\TLEVV\e€‡…Jj˜œ•vOIeO:1&BI8)'(+.MQUN21@KNQ7Mc(sso8U`JL~•œ¡A†ra0€eUFwƒœ•…ˆ¡œŸ   žŸœ¤§›’–˜Ÿžšœ—›“Ÿ™—•š—““’’”˜o†…‚|_kq†~‚‚‚€}|{yxvsrvrorrnokgikeeklhb_W]\YZWb]^fa`jaYbhZ^`]Yk\olZrjPZ^RFÊÿùñóõôòþ÷lXUÄþôüÿÿýÿ³[€rjm~rgnomZTXm_yˆ[jtjqgB:=%,=@0%&(>/,&Hc`kv*i{u:R…_q¡˜—†?ƒth2v\Dy•®œ‘•¡š—”‘Žu]j†Ž‹†„†„‚}u„qzyvvptuts||gŒq`clfeuumjokop_]^``_]Y[a][__XYbXX]\\`cehllkia^ci]df]edfXdla`ga`}ltxohODBG[Zÿþþ÷ïøòòøáKYK½ûøøûÿÿú¥U_etƒ‚~€uwguxwpwpgnigfD/  ,0:-73>%"AxzzCaxeRN_mŒ†moMxhdWmZQ>RZUO|–ˆ€}xvvxnurtxG"R‹€zzsowymxkugstmo_ymtk{vin‰r^fjZbh{{f€tusi\hgZdgZbd^bghjbmf_ia^dim^kjajg]bic``c^iidbiga`[[rirv_97?5=C­ÿ÷ÿüûûð÷õžKK0\ˆÛùòíÿðŒJNTeDWr‚€zw{{€}uzryonN /&5'6%%#'$4&:<&qs|jhv`\nrdxssnrijtob|gm^dNO]pˆ‚ynUQmutqqlhyRO‹z{tqyrrsupv€fztmoSaMSKUVms1D@;=S{}|rq†muYilbmoeajf\inaeobaig^`m]`fgbeh`_dm_amcficaenbYiZax\@:..90NXõÿ÷üþöûõúîiWH9/5{Äýõúìp?RPKBFQalghlbdf`bieZZ][]S. ,**?/01#.5:F0^p\lopoKgyd€f„mwxrt_9hxxql^gujwttnnepttqkjr|]%=}wsvz}|v{sgQJGNmB+0:2!!+=="3; u€Œow„zr€Ykncimj^hdZfi^fnefbjd`jlb]ke\fkbhoZ[^Yajm^a]pe`e[jLJ]H@>:@²õù÷úÿÿøóöÏO[N­c7AUœóÿÞcBKTL?B<;@FMMIKMMLIRXN`OQA$"*"5D "-)'%$(:$!(&UVm`ce`ljg€ivul|r†Q4):92Eiptowrznuotutrxlkqe,!€uo{s}ozoZOVUTZWQ@\JDD! &,BCv|€kk‡y}yz^nndbkhdb`dcbkiff`[gf^bec^^]j{roseYe]VWiiQjZhfXa[X]a_;G5MEùøüþúýÿø÷úŸTJ^úÜH=H~ÇÁKI:B>7@982=Yoƒ{r{€sqŠwsx_?$ 8&%75F8."&&%&,!31$/7:Kkqlt_dd_gmp]‚lyiP%!"-9@ˆ„ptrqyvpuvhhiqmnpo=n€vZuz€n|r~lqoSZam^kWn]KK>>.6?TR/cybfbhkumtlroiakcc[Y]SR]VQULQXTOVWHGU\SKPNMFGSQMISRL^WFOQ^YNRMTAN,HŽþúôÿõÿ÷üùülY?˜úùï²cNW^sOFCH;)42:>:IahUcvvkZM\ihc8%A=')24?2..'/0&%.B,'I%Hsshzkydzgcbcrzb5#"#!BOL>…†wxnnmimncX`^afmhcILASFNRXP][YceededipbTTOEFKA<>IMLRcrs[ZYOYddwkW]ZUHHMSLLKGHHUTFLIPM>FK‹úñýþöÿõÿúþ­OLaðüîýþÿè§WXIJG<729F>JM;<;39@>++?A>FP, '0MXZF9ELILPY=PM;B8=69G=2J=;GG=@@@D=;Pàú÷ôýþýþöüýv`;ŠÿûÿÿÿûýùÇOOLV82(,%>?:>OU\WYXY^`W^ghghj~—]R]e^bUg{yyllzzzc_ofb[WXgbfstutkbol]Ui^dmI=[IBWOXZkhgnhlmnm]kh_\][^]YVU[^TC57>VHGH;>G=9.4AICFHB@LAAH;8E4439.,51+797731+A.7:5=†ýõòù÷ùðöôÿácn=¸ÿûþÿüüûÿÞQTQZ?)NÛþòòóùõóýôÿ±]\QéþûýýýþüüÄIQLPD8=A;CMNKHIE98FSUC/-8@=CRQE,*-=@CHC*2@@8INB.=BB76>Gke__ebdYcYWTaZSPOYLQiVMQUYPPUVQ]NFABBROF@;AMKSIMMPFCV>BJ?DOB8G:@@@[RCZURN8.?=,=9?ECPIC?FCKAAH:3C;;B@6>5/3??9?524)A-)%3<*D}ûððöóöñ÷üñý€jKxõüúþùýþþõ¥HLCID=<:2<>BGDJD;;EJLJD;&$3H?;QB8+<:@BB3*;@:GA@7287D(A3FUHBMBDONKSMOEJB@KAFIGAPB5G<@AWYIGTXMIIHCHPNK<ERF<44NME.3F.2=3;;6,09=-04(=SÇüóïòõöõöîþé\qG ûüûþùüùþð‹J?5?6.8<5=@CIDIC=;HSPD?5'$6G5-AHB;=;?;E;0>;=6'F88>M/6346-33(80-89(0BIKcEL;DIHJHC9BB065:JFMK:D;IPFHG3=?I:=?AVEUVLNPSVWHOWINL6NBA;DD=B3>JN=;JEF6@B@686>DD?JJKM@8=G>>97:C=..6+)936$60%//1-<3Qxüö÷õóöóöõóü½[`^ÖüýýÿüüøÿéuC2*/)(4*384=LJBEGACKFDQM>.?J@BK9?DE>2';LGBDGD?C7:5<>6/Cc€‹H\>CFFMF85IHAHGCCA:;CB753:39HE=JDGUP8A=4:JG?HEIEUK;AD@HA9>0?@?<8D:GE<@DFTl€š’ZL2&*6:$//;B8FO58FI31=4,()/09@IOH>>GE=D=,LAJLIEVGCVN96:?8::;2095.7B@8;DDE:5:@BJ=6=C<>56;3I0.'!%#)'0.6E#)&U]üÿûóóöõøöôöñViU®ýúþüüÿøýúÁU35<.3::0.5663+8;84;D@:=@GIMEAF<;D@?95E<(7::;FD9=BEME::3`S[[RNL>EUKVt†t~—UF>@)18%+1833@AFRDC<8.%%$/9;E?EFIHHPEH8.AAATDBNMPHA?@8EDC=1@@>8-10+4.$*6:722<@8///.115>637@96=CAE97=;E;34-#"!"%-20$%:R©ÿôíý÷õôõøùù¿OiXãþïÿýúÿ÷ÿø°H/6E9307+%+#4KDI==CHB;9:F@CGE=@ACGOGJJ@A>()5+*63E=;4>LJEGD<+APU>KN@GJA1EK==6=G5C>B6/-281*-23565<1.:>6(('98;>=9545BC569=;640&"%"()>;OSçþýõüì÷ùó÷óùwgetÿÿÿÿÿÿÿÿÿû¢>6A[A44',&*37=DIA=@?:@>BG@CIEF?;=B@CA9/FL7Q931!1A:06V4IGrZKn—RJ‚£¦†‰’šdPnOn“rQA>-;8/3G25=7DPG@;9,64#4?>/,%6ID>CFHDB@GC@GC@;:@5;?41,C=2695-++-+($.--9>@9924;6$+21%#&;,% %@y¡þõôïôôøöõôýáQsD¡ÿÿÿÿÿÿÿÿÿó‹HB@??L5*&"$02B;49?HNFD<5I>HD8&!/3BMY1NS%,S<_/-HSCP-)4b@AGYH('8H5-C?5AG@L3BHNT9/5>>49.58537<;31:8;8AT;IR7:>04DB>6,>:98(717=04+%,8/9F=>?:@AD:ECCF=;''=5+/@@')."D:$+SD3EHCNC.TP;WJ6GGEFi?Pc*0?;;@D>@=5(&0569*!(--534.829D?00,33+5z÷öõüñõñõ÷ô÷ü{OXkÿþüÿþÿÿýÿÿà]SK>B90)-"#*8=6&*-%*,498C?57<87/9=C8,#,5+/!6('+42HDDNE34+"=M:<<4A?55PML)%)0:545GBN?4E:1<6-916?A8?JIG7#'0><,+.:1!)<@)&!3>;7*5-2=0nUÆúÿúþðöôôöóùþ>g!v´úôàÜÕǺ¶ž}R::9D6'+"'-#'%/3+.7=''9%)/-.5<>1)A:33 4<3)$R?JP8E+DA!C;*(@C76FA<698@%..4GE*=D6+FUONG*#0<@?;>BO4>5 .+'(.//75"/$-1#/64%2E;&)*356>78-'."'B,$-)#-4/&,-.+>6)/421/0',7;8D2.8)&9/4aoôöíÿÿóõøñôöóù‘8; Sorc^aaSMH;=/>5/2(#.2(.@$ %>8,())'!$,19.).4B4.'-&,!28MB4K@Q:S>DA6D0-;/%;7@4+202)+@)(74,5HL6BELF@5*=LCDOXILD>B>78<6&)6>.0&"-'# ( #1A8(!/K-%(%%+(0?(,4!'4!//C@30+%#-&+0<;$".2)/54&,'EfÉòÿÿíýðö÷ðöõôñö‚“&J8<:,13&*")0;9(&("#.:3@L:;E:3:&+"%*14;@<9))&2-%&!%5#T2*AH<.JA'U>,31.,57$35?=5+/0#(,7*6JC9CUPEE=22MHJLKC8ECII86:.)324/1+$:J&%1 ,9CA=3:>',10 ,3:(!#+045&)* &$ ! +/(-/$053.',1BKƒäüö¸% áõôôøïúóöÐ9@-!.1( ($?3'*.)&(/.-:7<;.0/53'13+#/'''-1- ;#+52QF=4-40&@4="%2%##A=!'1! !'*/)11'/2"%5'*-66[£ù¿jƒpÊúúöòõóòöðþT1- ((&.:!("8-&7 !" "-022=6$%#&,"$3.,<+!/.# +49T?M2A66>52<86.(:A7C2-/=(,'',(8A>;==:;B@CC>B5,;GCFD#(I#6&A>@-;AU><>362)" $$2+.9 #1! )-)+,"*#"+5$!'%\´ôé¶Ùòùó÷ùûóôôüûÏ)4"0%55 $(+,8874( &$!*4><@@9F3%'!()%&(!#.8808a=AV"?D+=828'-:32+#)433-  *9:BIOL?64()57,/7;8@=:@?99C<552;9/ 5::@9KF0PD9:N"(--8<! /20/(-*"#!"-7-)%+3& "!$FÎ÷êÿüÿñòïøôöò÷íúôÿcG/7D,165V4$).3..&##/C<.1.$,)#.99(XU BP@C=582(/<0(:<.7*<$4=)*++)"97EC2612>>97=4)-/)7IHC,49@?4IS=C%&>+;I/5B@?KRF$#1!" 3D32+%&!!#+,0+#+'& $! !%(!H»ôúóõðçôõøóóõøòíõüÿúøú‡"9;@231>"")$*/0310"-0160:0$3'78KEF903::48*"3FA>A186<8/@Q,F@'-D=88;HD;BJ@DM+5 7#) %&(,,&&$(*.,%!*5+ +S±ôïñëùòùõñ÷öóñùÿúúññîôQ/4F/2. #02-"+5--,8;3A0"" !&$%"091!C=9G6HB4-2&()*"*;"-C.%1/'0 /((+=0&...(+./-;*#&069*-6<46.:CO@6>?>)K8:MFJE2ZMJM//5@E5<7@94" *$"*$C@$!")$#!# K›øðûíüÿóõïöôóíöûõöîóüò 32=?"1-(#( *:,)'*8>/'.0-;=0/# !"*$:0"&62IFN_7.(#%(,/556$0$,6%"&/5(#'/04*('% %)8*.71&/89>.:EMS*>@)8:?PGYYF;JIE7-'E6>FTA-$*)% +&A_aH04WY,"$&*! 0&*)  ! JŸôõýôÿûòöóõò÷õõüþÿóÿù©-7I5$.))))#$  &/29AA0=@12'5$$5, #3% .P8Yb/-&,,&%2645.)$$BG90*1$*+$'0##())8=9&0A&"0427879/3OJ>M731):G7VRSIBPBY(C)%8;RH00 !(28JE5>J& &!"' -65"" A’ñôõöüþøóóõòõúùþøÿÿÄYQF*0A7+ $ 05A.2;=3AI-!+.27-51'5'  + !> *9K4CT)%-,,&0B<<>,) ;D1%*""(')*-+1,-",$163444B72/30+2@FG2:Y<=((3H=/6)'+  %-27=6 "      9ˆêõòïûü÷øööø÷óóù÷Õ]1."647)"40 (*'#$ /;M7)#$)1$ +"%   &;--'7=/PU:-// ->9=>2+14,#4;>*)#(*(.'09!&!)&2439.49?=536&!@P[E6:!+9@7!/.)&$  + "0;<27GE$**e}@++   +1…êòï÷úûûûøö÷÷ùýî‰HQ>0 6=!#$.".4&!$.G=5ESJ?XC%1>5+8')7,4++!$** '5.#0=O:0,6M67F:(-$5?0)3( !1)#%.. "1*&')3"!-.32(0+B;+:AC65?J@PTPNA<;_.!,+6A%1&-()7+13(+UT ,A?*+!  8* .,*)óñòøõøöööööô÷þNK= /,'! $&*57!>3.87AD>;BC;+A1+9>#6-*," D )/J+2&4<:G=9<55+',:8=447)'+"-.!%)#&(%"&(++4(&40,/E13398C:LQPJJG>B#7,#42705D)!0"$'9^ ),  ((>4A@ qêðûùúþö÷ùûû÷ùÿXEC :?0+>'!( $$128@@$,&*:9*5@5?9;C6* :331 (  + N .  %/%*4'$L=7?J@*3',&5-+A5D&."! $,"%&! ,6FA#+4%2/%8,:B;2'>1)!#(6)/n—£«½ÁÒßÓÎØÏÐÖÌÍÏÔ×ÏÓÓÑÒÊÊÃÈÄÇÇÈÍÊËÆÆÌÌÎÎÇÊÎÔÏÎÔÓØÓÎÑÓÔÈÒÒÕâÏÏÖÔÝÊÒ×ÎÓÒØÚÝÕÔÝÈ©Ÿ´ÍÕØ×ÑÑÚØÓÒ×ÙàÛÚÍÒÊÉÆÍÌÌÈÊËÎÑÑÏÑßããÚ¿ŽtM37&7BA:=/ 8:5BmZ00\T.:&(5,79-!1A1  +A &+&72AA.-05 2!21&0.(6860#4>-'$I~››“£ÀÉÁ¼ÄÈÑÏÌÖÔÕÙÎÌÓÆÏÐÔÌÊÆÇÇÇÅÄÌÊÍÈÎÅÆÄÄÈÊÃÈÂÉÄÄÃÅÐÐÉÍÒÄÎÅÅÉÌľÉÏËËÌÉÎÊÇÅÒÎÊÎͲpn¸ÐÆÒÌÌËÔÉÍÊÍÑÍÎÐËÓÏ×ÖÕÎÐÐÒ××ÓÑ×ÚÕÕÚÞÚÉZ3$38'2G>13/!"$,%%&#&!'1997?/%:;, B+#; # 'D96YSH/0$ "!+0,(,0$"'@@:221Omso~𱫲¾ÁÍÖÔ×ÙÚ×ÛÜÝÚÚÛÜÓ×ÑÔÕÓÓÏÐØÔ×ըרÙÔÓÏÎÙÏÒÑÔ×ÓÔÓØØÙÖÐÕ×ÕÖÔÑßÒÑÖÒÖ×ÕÜÛÜÔÚØÜÖÞàɪ¸ÚÖÕÖØ×ÜàÖÝßÜÎÎÔÔÓÕÙÕÓÔÐÎÒÔÓÑÜÙÑ×ÑÈÔÓëë¥E3F1BC9*,%!,*3*..,-#-7)!$*' &*+4@C4 + +)'<<&PK&7<$5286(@;@65#! -#!($868FDDNbie{š °¼ºÅÇÏÓØåâáÙÑÛÛÑÕÕØÙÑÔÑÑÊÍ×ÍÔ×ÖÕ×ÏÊÒÖÔÍÒÐÒÍËÐÌÉÊÎÓ×Õ×ÒÓÕÒÒÔÒÎÎÑÒÐÐÒÒ×ÕÔÓÔÕÔÒÓÞ¶iƒÉÒÍÎÎÑÒÑÑÓÕÓÔØÙØ××ÕÖØØÕÓÔÖ×ÑÒØÚÒÏÔØÔÙéÕI %(60!5@+)5-#*4( ."2+)$" "0!#9EF:'%/6-*(%&6B26!& "+%-# $1899EDHS^u‘Œ¢«¶°ÀÀ¾ÂÔÌÌÇàãäÚâÜäæàÛßÝÙÖØÝÕÓÐÏÓÖÕÔÖÐÔÔÖÐÏÎÒÔÐÐÎÎÐÕÖÛ×ÖØØØ×ÖÔÔØÛÙÙÚ×ÛÚØÖÕØÚÛÑÒẖÂÙ×ßÝÜÚÙØ×ÕÖ×ÛÜÚÚÛØÚÜÝÛÙ××ÖÓÓ×ÛÛØÕÒèÝÙóÚ5&+B@%&"(,#&*++  1K(H"3 :)#C%#((!4633%(+##%"((;+')&9QGYW<2./FSB=7NO[U7¿ðãæÚßáãéâãäãàßÞßÔÒÖÙÖÕÖÖÕÙÙÛרÕרÕÕÖÕÕÙÚàÝÙÚÝÝÚÙÕÕÙÜÝÝÞÝÝßáßÜÛÜÝâÖâݺÒä×ÜÚÙÙÛÝÝÝÚÛßÞÝÞßÜÝßàààßÝÜßÚÔÕÚÞÝÞÙçéêð· $#(9721 %  + '9#'=P3"7998!2-" ).0 ;YNU5  NfTT=dp=9ËâÝÙãäéßàßäèæßÜãÚÚÞßÛØÙÚáàÜàâåàÝÛØÙßââáàääßÞááÝÝÙØÙÜÜßßßÝàââàÞÝÝÛàÞè×ÊßßÞÞÞÞÝÞáäßáäâáäåââãããäæåäãäàÝáããæëñì×úÞ0#AI086-'' +(# !;(=%3! 1 .;!FQ/!#'6>&#'&""4*!,8CQ[D9QF;x¥yx=,_ks'HØçåØáëçààäééâÜáãâÜÝåçäèåçåæåéççãßàåèèèèëìçæèçåççäãäãäæåçåãããåèéèæãðóÐÞéêêéçææèëèéëêçêìéëëéèçèèçèîïííìëïôôóòìô†( 0?A<#$( 6A&# ,-  '?6!5;+>M."*'$2>(.%)'A@**!! ! -&' +)7PbT6DPA5w†‘YOdl\oØÝÝäâëäååèççâÝâèâãíïëñêìêìêîììíëêêçéîïïðîíîïïððïïïííííðíééëíðñóñõîøàÜòîìêëíïïïííïïíîðïíîîííîíìïòñííïðòøðôöíó³ +1D9"%NQ +.  .5.-Q)#) +#&#'$6B.-'6>*!+ $!$'XU9FP:?* &~¡ƒ‘Š#5hkeY‘ÔãÜáíåäáåâáæãâêííîîíðïîëîîóîíïïïíêìðïïððñîñôóññóóññòñïíìííìíîñòôèõôØèôòñððððîðîðòðïññíïññññòñïðòððòñì÷ÿóïíôØdhiofceI69#!RJ  - # (J#)650*+*&9*2809$(&&*-#!=R;?>5-BpyeczEbljkE?¸ààáæãßÝæßØèïçèìììððîíïíðíñîíìîïðñõóíðïññîðõòòñòóïðððïîðñðïðóöññóïùàíòóôòðïîïòïñôòñòôóôôòððððòòõôñóóíþúôðèáÜæáÂн˻Έ0.& 0_R#    !/A')$ -2/<-4+.2#1/"(%4XbOUqv‚‹©²™ƒxjt_+U~lp‘Êâ×àâàáÜÕäçÜÞñÝèéóôòîîìíðñïììíîòñîïõóîðïîîîîïððññòðîíîìíððíìîîôôïðñõâæòóñóïïíîñïïòñðïñðïññííïïòñòñîòóîðæâÙ×ÕÔÓÑÀ¶Á»´ÄáÄw@( (`f2)$!'  $ + +  +;!!$D7-9/;&&/ ! .>ANZ^vŒ§©°¸º·­¬»ÌÔÛÕDzœˆn†¶åìîáàà×ÚÖÝÜääßáìÞéíïìòðííîðñíëëíîññïðóòîîîïîîîðñîîîïðîîïëëìëçèìîóñíïïóàáððïñïðîîðïðòòððòñðññîîððòòòñïññîéàáàåæççéìîîëöòèÿÿ‰/Jb<52/A3$  +  4: %7$+1$)**/)  !.CEQt†Œž§¨©­¶¹Âº¶»¾¿¿¿ÂÆÈÕäÕèóñéáÓÞß×ÕÝãßäèëëïãæñðéòòðïïðïìëìîíïðïñòðíìîðïîíïðîîîîîííîìíðïììïñòïîñðóãÞððîñïñððîïñôóððòóñòñîïññðñðïðïïðñèìíðïïñðõçÔåÑæÕðæ¢ 6$+I_A8:5894     ++%'(*zk^Z[\\nG (AA[~Œ•›ž ¨­±½Ä»¼ÀÆÇÊÎÖÌÇËÉÑÚÐßåßÝ×ÚÝÜÝèèåìñóò÷ëàðôíóòõðîííëëíïííïðòñïííïððîíííîïîííììíêëîïííïîñîðôñóçÝññîïíñððíïòôóñðòóñòñîðñðîñïïñðïóïéïïïìïóðóÌK›U©f ¹$<- 'BR?0/:8.0'/;%    3BDyéòØÄ¾Ã¼°‡?C?@7+%!,,Ic„‘”¥£ª±¹¾ÁÅÁÀÄÄÊÕØÏÌÕ×ÎÖÕÒÎÜÖÜÚØÚÝßëéëîôòñïöñÜïôîòóõïìëëìíîïíîïðòñîííïðïîîíëíîíìììîîíêêëëíïïðíñóññæÚïñííìñððîðóôòðñòððñðïðñïîðïïòðïóîèïïðîðóòôÑk°v¹ˆ¶ªÉ&+$!0496//83.53 06#+  +  .Ha^aˆŒ©¾–†„y…‰}rbMA;:6Mk~‹š«¤¨³ºÀÀÄÇÁÂÎÑÏÒÒÐÓÐÎÓÕÔÛÞÙØÜàéäèéìììíîëðíïóàððéðóñîìêìíïïðîîïðññïíìîïîîïïíïïíëëìîîïìíîïñòïðîñòñðæ×îñîíëòòòïðòóññòóïïññïðñîðñðïðððññìññôòðíîöñêîõñðÿþÊ1!/3@7*.372:5',7 ")   + " $P[d\ZUQ;‘˜[\XRPKME>CIKF:Mq{Šžª°²·º¼ÀÀÄÍÏÐÐÑÓÕ×××ÔßÛÛáÛäâáßêñíñ÷ðñìéççòîíñäòîçìóïîííîîïïðïïïïðñðíëîïííïðïððîëëìîîìëíñòòðìñðððóñçÖîóñïíóóòðñññðñòóïðòñîðóñððñðîðñïîêïíòòðíøéû÷ÿúðïìîª-%/<3.9:80<;,&4)&'    , _[^Yd\\`bYWYYYYZXe[Y]KFUj|¢§®²º½¾¿ÃÅËÕÕÓÍÓÚÕÓÕÔÜÚáÞàçåéãìñïõïðñìçééèðíïïåôòéêóñîîïðïîïñïðïîïñðíëîïííïððîïíëìîðñîìíïïññïññïïõóè×îôóñîóñðòñððïñóôðñóñîðôòðïñðíñóîðïôïðïñññøóßÑÁ·§˜v= 399/+451/1&*25,""     Y[\Vb[[_GWOPNQRMJNTVOHOi~‘  ¤­¸¿½»¿ÊÓÕÑÏÏÎÏÔר××ÚÞÞÞãèëðøúùô÷òöñëáàáðëíööéðïìëïóðòðííîîïíððîññïîìïðîíïñòðïîïððîìðìðïñîóòîòïòîôîÕñõó÷ïòñòöõôõóüõûôùôööòöôððñññññòòîøõòðñõìÄ«ˆoko= /E:..*51/-*38/./5%%$      +YWVI_WW^@MJOMIKK@GYM=Sr~šž ¦°º»º»ÂÊÐÒÑÏÍÍÏÑÒÓØÝàÛâèéëìîòúôñùõññõéèèèïïñôöçîïïððñðòðîîîîïïðïîòñîîìîðïîïðñîîííïïîìïðïñòØÒêîòïòîôîÕïó÷ïïõñøýöòòùðöõôòõñö÷ñôóòññññðïëææèëâÕʯtwiqrxF&19.)364.0/.8>Fi‡–Ÿ±´ºÉÉËÈÌÐÒÕ×ÖÙ×ßÜâëêïöûüÿøü÷ñðøíõøøìÈ~VW_[f_H¢üìêðóìòòæðñðïïïïññíìíîïñðïïðñññòñïïïïíìííïðññññïðòóòñïîðñôòððîÒëöíòñú‰²x°¯q’¶uŽo`¯jNóûîñòðñññòñïôïìéîéP$ "&#!%'&+0-41%+*('+771/ ( %*%': "^cT`E'=La”ž¦ª´¼ÁÅÌÌÍÍÑØÚÚÝàáäíëïõóÿûûóøðéóòôüèê÷¯l[\YXR_^KžüèëíõíóòæîîîïïîíïðîîïñðððððñññðñðïïðñïîðïñòòðïðîïòóóòòñðñòðñòíÍìòõóñù~•†¢’u™‡uolš–húïñòñññòòóóñòñèëðäT !%% %'+)#(..%()($$2.-! +.#3+&-A& +1,]`Y[P8771@06HQ‹¦Ÿ°¼¹ÁÆÆÎÑÔÑÔàãáæíîïìíõðôûùìåóí÷øøÿÝ™”˜i[_ZTfZ[_N—üéëéóëóôçííîððîíïïïïðñðïðñòòñððòñïðñòðððïïòòïîïïïðñòòòññññïñõíÄïïñïñò|n•½vq¢_Ól—³½ úðôòññññòóòöîðîíëêg )"$ &%)+"(+-%$#%"(0),%-5/16&8;&35;`]b\\aX]W\I@\y¥­°¹ÀÃÉÉËÖÖØÕØãèéîðñöóõøìíëíîõóöïâõш^QV``\][dXY`JŒûîîêñìôôèïîïññïîïïîïïðîïðòòòñððñðïðññïïðíîñòïïñðñðñññðððñòîñöêºéùòõóöĶ×õ²†„±åïÍçæèåõîïòññððñóñòñðïëòì\&'$*),/-&$$+.,2#+(%()0;!&9/*''Y^\`_^cb]A=U‹¢­µµÀÄÍÍÏÙÛÜÛÝàåìñòñòõòñííêíîúßÎ嬌¯tT[U]eWW^[SY^]Kƒøðíðôïóôéññðððïðððïïðîíîïïðððððïîîïïïîïðîîññïñóðððððïîîðñóîïõç³áúðóìñööýÝyvÑüö÷òèø÷òôòóóóññòóòñòñðëôêŽNA!( ""$-&&! &"*)031,%'(2+**1;!$Z^X_M5:7BD6Ny¼ÉÀÇÄÑÏÖáÞääéííñõõëðñæéóðõõöÜ“p‚bX`ZSXVWY]aWZU\^]P}÷îëòôîîóçïñïîíîïðððððïðîîîîïðððïîîððððñðïïðððñòððïïïïîîñòõðïõè²èùóôñòõí÷×À½âðòêñíöðóôõòóóñðñòñòðñòññìêÞš!%$#1*!!*&,(/'-!"1('-39&]Y]fL..2# ):u·ÒÒÊÚÛâäëëðõø÷ôðíìÝÖïãßãØÝ¼xTFEKRPZTUOS\X\U`ZRXbQw÷îëîôñòõåíñðíìïîðññððïðîíííïðïîñïîðñððòïðððïððïñññðïïïïòòõïîõêµæõôòñõôîôðèôðõùíóöñîôóñøïòòðîïññîòòïöóðýÿ $ &-  (.'''+("&$0, " *0)&48X_\b^_aA + 'V¨ØéæÛóðóîøûûüôæãÿÄž÷‘·‡ygELEISRKPSUSXVVWVVWW]aToøñïêõöþ÷æìññîíñîïñòðïîïîíìíïðîìðîìîîííïîñòññóñîòòññðððñððñíëôêµçùôòòöùòøòüüòøìñôõ÷ôð÷öòïòóñîðññïôïôõç÷ùÅm2+  $"+0(#*&%&#",'! (=.5F +_adYVcV "/D’âÑüõÿþü÷ÚÖª¶®—Îo_€fTcVSPGJQU\\TXX\X[_^WVXVW`^Onÿõùéÿ¬¨÷õæ÷öï÷øòóôõõòò÷ôòòòöõïõ÷ôóööôô÷÷ùûûûù÷÷÷ùúúùø÷õùûüûüÿé¸ñÿýüÿü÷ÿýÿÿþûûþþüüúúÿúüÿöÿöûü÷ûöÿóýúÿýô¤qp? + " +#"%.)))/,-( (&%%(+';;03 +a\]^YZE  )-1HpwÑÝÔŸšnhWfcUfKGJNPIKSRLQWX]^WVV`]\`d[YXVZb`SlþõïùÿšTžùöñðöõøôòðò÷öòòòðòòóôñö÷õôõôóôöö÷ö÷õõóóøùøùùûùúøööôóòáÀãíëåíçåååßääáåãêíÝêçëïììòï÷î÷ôûöõþþöùøÖeazZ"" !! 2,3GC95)%*a^\\XY8  +,2=D=MYmkZFPIIKJJJCGOLSWMRQQOUZX[^Y\Z]Y\_]\ZWV[c`X[ÿýñõ¼lPYãùðö÷ôðñððòñïðóîñóôôññõôòòñóôôóóóôõ÷øøùøôñðïíìèáÙÐÌÍȽÂÉÍËÏÍÑÍÏÈËÌÉÇ¿½ÃÄÃÀ¿»ÂÁÆÆÀÁ½Â½Ä¹ÄÅÀľ¦§¦¤•‹‹“’‰Ž‹ˆ…}yz‡v|zrqqtyofek\`a\TJQCLKSOOMDFTWPXZSK__\WXY,  )9;@=NBHJIMSJHNFDKLGKTQMPLPPPUVUX``c_]W\^ZXYWUZ_^[Yúûû¨bXWPJ„ÿîôöùïñðîîííïðëííìîðïóôôóòóóñóòïíêçåäãâßÝÝÜÛØÕÚÙÖÖÙ×ÔØÖÑÖÏÑÏÉÎÔÈÉÌÈÇÁ¿¸ÂÅ»»Ŵ»ºº³»¯³º´¬³®µ¥¦¨ £ Ÿ›’‰‡„€ˆ‚…Š}‚}v}ƒŒ–vvojma`]_\\YNOXONJED;GIFJHIFA_[\W\X! +&6?4093478:mˆv^6*6VU02B<&  %$ $),(,<68=DCNEJGZ_`YYX8 2:77=:BGC?BCGGIJOKRNKQLLNNQNNPR\inid^c`TVZ\YV]_XRTLcLaLTPGFµù÷ÿÿùîãÚÑÀ°©©¤–ŽŒŠ„‚|ywtqljged`\XVUTQMLHEC;5553233543:7<<34?7691Jih+*3>H;42{m~<6(1?,,4$'3/23*&S}b5&(DP2$%<@$$      #&+46:O_\X[WTG  + "62788A9@>CAHEEEHRMKQPOOQPQMMQT^_a_b^^ZRUVZXV`cYWKSX_PSIJN=·ûàÇ´›‚ƒ‡{f\mtj`ZSTTQNLKJIIIFEDDDD?=>@?>?@AAA?>=<<920933597821:977/0dl@%,6F3@-Sf}F*%%6**+("+/'$+'0Y\?@@>=66::67"b…sH)1-K:=.=igQ  + +  + +%##"(2%fZ\[XUVG  + +$$).348;>@BDHJMMLLMKMTUWWX\[]dfdgc]YYaff`\TWWZ]RGSWm^\hUZryjn`Ukado€wpO]uk\JJLLKIHGFGHJJHFGHFCCDGGECEHLKGECCE=;=?AAAAB??7>;29&Ij^*&!$%4(" +  +  "+6?:HPWMT[m\€—‡ƒƒ’•—ŽŸ[V[\W]J' !#$&)+.168<>AFGBBHDFKRWVV\ZSTUQJFKY[[[UWUWXQPYYfYR\^PRT\KVNZNT[gagRR``[LKNNLKJIHHIJJHFFHHFDGJJGEGILKFDA@A;9658:9520-"'" ,"    +    + + ()%%  '9Mdpf}£¶…B3_§¯³·³º´À¿˜¡°Ë¿ºÁµ¼»Åº%(3B3  + +  !#$$*141/335BFIIGCBCDEGJLKJTJLUH.D.520.&//0+35-/,/,001000//..010../00*++*(')+*(%$"!  # +  );8FOSQW[K"/G\i€”¢°µ½¼ÂÌ»¦·Î‡?>Z™»¶°µ­¶®­«°°»³¶©¿ ²¥«  31)  + + +    !$)'" "&+)%%/0.,&$$),*+/*ƛD"   +   +   +   ($3"2NYbS]mitpt}Ž–žŽ“¤§¤¤¦ž¨¤¤¦œ°­§³¯®wDIZ€ª¦«¬”·¢œ£«»•¹Ž—­Ž¿ƒÄD:6)+-    + + +  +  !     +  ! *',Z}z{x‹œÀÒáÙ±œŸ®¤ÉÁ¬§°²ž°¬«´¢¯­¡©¦¸ÆƒRB^‘²©µ¤ ·§£¬´ÁœÒ“µ¨£ÈƒÎ 93   +  +    +  +  +  +   +    + +'"(W(+7*2.6. I1"$42   + + + +   + + + +  +     +   {–•’Å- (:|¸`ª´‡ÐýïöÍ‘¢¤´­š‘§¤Ž¨¡¬¨š´·±«µÉÞ‡USMŽ­ª¾¢’·Š•¥r€ZZa_C7 9G;$(8.D!-&& +   +    +  +    """ %-&/!  "     .ª¸™œ£@uI:+27/,, *+)$')6I3&26.@ &(  % +    +  + +  + +    +  + Vz3 < (%r   /¤¨©gan*0)¡‹)hÐ~•»ÿóð೦¾¾Ÿ•²¥—«¦®­“´¸¸¡V#!3$  * /& +8L024&#4!0)&  + + + $#'  +$  +     ++EW€F  Sˆ0%S†&'<  + +1Ÿ¬«JKW 4šFdÒμÉÑ‘’Ÿäùó÷ųº¤œ­£š±Ÿ¢¥™¹¬·žD 7+*$6%9' ' + 5K'" 4:.+$ + +  &- +" N    +&$  " KqQW…E _w! +1Gz;B1X5   -«££$;>HYe¾Îóòøó蜢¶øòöÚ›¯Â¨–ª¢”©¨£”ª©²–=" + +.G06)52060/(5U&-(2NFD@B>78015( +&G> + ] +    ": 0EWjSL…^  'VQ 9¨¹’k1uI{Èíçôôä²§š§ÚÿüïÆ¤¿¥”¦˜š½¤«©Ä¹¸¿k  $&KP2H!49/$  + +4O$$1 APFEDA;ABB=@4# !3K +   p  %3  =>F321*2X=>2;TR>.%(FdqgV+ + 9>?  + 2±¨T%/#((1“2NÖüðôöì›mŠ„©øõúß½»«“¦Ÿ‹p…‚afv|‡g<('++ -$%43:6BA8=B9CBG?" NC@RLIDA:A>A70 2(";D  !\+11 +!5=0*)44;(73&,&$(3+ -- MJH6   +A°¯–]$4}8ÀûÿÿýþÍ«¯¤¬êÿÿóδ¢›~C7B5 +>JA?:DB<83?87."  & :@ "+    $>51;RN@91.+1KtVt•©±«ª¥¢¤³µ«›•‘’’–¥ ¡¦¤©°¦¡­²º¬«²¨© «š¢Ÿ¢œ¢£ š¡¨”¬©ªœ£Ÿ–•;48/43 =ANAG78>;@<:7.&" .5  T + + +  !5P")9%}}zmƒ‡tovt}‹’˜ˆ}‡–“˜—§›™œ¡›•‘ ™žš¡–‘Šš§ž©¥¡¡¦¥Ÿ¢­ž˜ ¥£¤¢¦«ªª  ¦™š¡–œŸ™—¢œ Ÿ’‘£š™•—ŸŸ—127542,%0"@PA% 87/CE@81*#    jF $6"c  NL3FOV\m‘Š…”•Ž–›£®´³Ÿ¯¢™ ®¬°¼¾¶¬£ “¥¢¥¤¥¦¢žš•œŸ™˜¤–œ ‘•œ•¦­¡¢œ˜›¡©«§§©˜‘• ¢–™–•—©­¦¥§«š›—¢ª¨ž¯¯£”²¨¢¢£ž’—›¡Ž—£¦ Ÿ©ª›‘±§›Ÿž£¢ŸŸ›˜›¢§§­¬¡£¥£­¢˜–’š¥”Œ˜®©¢™œ²ˆ’…“†…|‰‡‹•B;GI=ED><+% *.'=X\cdot}ˆŒ–¡  ¨­©«¶µ·½Á¾»¸Á¼Ä¬°½¶§°¸¹¯²¯§”¤®³´¯±¡ª¤«§¥¯¬™¡¤‹¡©«­«§ ´µ¢™©ž—ž°¨¡«•Œ”›¡©­§ž™¬¯­¯±­¨¤––š£ª¥ §¨•š˜œœ¢¤§¥¤¦ªš¬°¨±¢›³­´££­©¢˜¡¡¡•›¢ª§©®¢œ¡ª¦¡¡£ œ›˜™ ¨¨¢¥££«¥¡Ÿ™–›¢žŸ˜‘œ›˜™©¬›¢˜–‰—‡ƒŒƒ~|Š‚}‹…’˜¢Ÿ› ª¨­³¬§ª­¯¬¬¢¤³µ¹»¶¯®®¢œ¥¦©¨©¬£ ¤Ÿ¢˜¦¥°­¬±«¬©©•§§³´µÁœ¬§›¥¢¢¢§¦ž¦¤¬Š’š ªµ²¢ŸŸ¤™¤¨¬¤ª©¢¥¡”šŸ¤¦¯¶¬ –¨£Ÿ§«ªª¢‰“¢¬¬¨¨¢«‘˜¡­§¨¦¥ª²œº¶µœ¦«©²­®®¨  ž ¨™š®©¥¦²© –¡ª ŸŸŸŸ¢ –• ¨©¤¨­ª©¦³°­®«¨§¬¥Ÿ¨žžª ©¤Ÿ„‰€qqwz}zuqª©¨›¦®¥­ª£ ›”’𖛣¢žž¤£¥¨œœ¬­°µ°ª«­¤ž§¨ªª¯±«´«£´¤ ¦¨­µ²±¯¨ª¥®´¶¬¸±¶´³¤¡§ Ÿª©±ž¬š«°«°ª¥ ¥¦Ÿ§²«±²­¢¦ ™¡ª§ª«ª²¯œ¡¤ªª©®«–ƒš§¤¢¦¦¦¨”› ¡©©¬¢¥©š¡¨«²³®Ÿ™Ÿ»¶§µ¯›œ ¢œ²°¨¬¶³¢˜©®£ž£¥ ž›š¥¨ª£ žžž”’‘‘Žˆˆ‰…ƒwqx~wzwwwujuirpxy€tuxt¨¡œ“¤­›¬¥« –˜ˆ”¢Ÿœ¤¥ž› ž¢©¢¢¦­¯¯°ª¥©ž˜ž¥©«¬©¥© ©›¡¦¦«­ª¤¥¤£¢¦œ¦¦³®¨ ¤–¨™œŸ°§–¦•¦Ž¦™©¥¦”›ž”žžŸž¤§¤£Ž’¤£¡”’—žœšžŸŸ¥¦ž‘”–™¡¢ššˆ’––””˜™¢¨žš•™›¢¨¨§ž¨‰ˆ“‘‹„Š‹‰‰„{ŠŒƒ†wuz~xxzrquvwqknosyvtzxxuvz|}€†Š‡ƒ„“’‘“˜Œ‡~}|}v¢– •®¤®¥¥¨£  ž¥¢žŸžšš¡ž¤«¤¡£¦ª´²ª¤ªž•šŸ£¦¨ª¥¡¥¤¨–¡©©§©ª§¬¬¥ž§¨¤¨¨¶­œ§“’˜Ÿ¡®©š œ¨””ž¤¤°§¬ ¤¢—ž¡£ ¢¤›˜”š£š“’œž¤©©«§žˆ™¡¡¢¥¥¤ ›—‹‘‰‰Ž‰‚|{osmužŽwtyspuxwrlu{y{u}}‚ˆŒ‡†…ˆŒˆ‰‹Œ’”“˜–‘‹Š‰†„ƒ„zttqwvr^YP[YRJFAA>:4>9-&&')¡—¢“˜¦¥¤¦œªžž˜ Ÿž››¡Ÿ¢¤¡¡¢¦±±§¢«¡œ¦¢¡£¨ª¢¡¡¦’œ¢¡ž¦ª¢¥©¤˜ ›©¡¯¥›žŠš¡¢¢¦¤¥¢™ˆ˜›¦ž£©©ž ¢ž›–—œ Ÿ’{‚‡Ž’„€†‡†~~€€xusppomqzx|svxzzz€ƒ|s‚…†’‡‹—˜“Š“–‘Œˆ‹‘|x}rsx{upmlkf^`]\WKJME=606@@>=HDSVbbhpsks|~…™Ÿ™—¤¤§ ›–„¥ §›¥›¢•—žœš™ Ÿ¢ š™˜¡¡¦ª­§ ¦™”¢ŸœŸ§¨¡œžžŸˆ“Ÿ¦¡§­¦¦¤œ¨§¤›˜¡¤™zˆŒ ¢‘™–‡~І‡Œ„‰†}|{vu{{x{zrsw{xz…ƒ…ˆŒ‡‡‹Œ‹ŽŽ‰…ˆŒ‹Œ•”‰’„†ˆˆƒ|sqnlccdd_VW[SQRIF>3+.91466FKKQ\iksrrp}€}ˆ‘™™§±ªŸ¨´©¤´¹­§§¬­¥¦±¶¨¦©¶¶ž–¡Ÿ¤¬§¥  ¦«¨§ª«¥–›¢Ÿ¢—›’¡ž›œ¢Ÿœ¦’Ž¥¦¡¢ ¨œ’‹ž¡œ›™“–’”•’“’•‡€†~{{wxzxvvun{zywxz~ƒ…~y|{‚‚ƒ‚}‚z‚…‹‚‡Ž†ˆŠ‡Š~€|tlki`SVWXUTPNHB@;=?>:=CED@BGLPOOUUS[krps‚ˆƒƒ„„• › ª˜ž©ª©¡³°­·£¬±¸§«®¯¡£Ÿš™§¤Ÿ—šž‘‘¢§›š ¨¨ ¨«©©¥¯´¡›¡ ¤¬®¤œž ­µ¯ž¥­° ¥¢§¥£§–£¤£™£ œ“¥—Œš–„…†|snn|xytvzw}ux}xwxwu~{xu}ƒ…‡‡ŒŒŒ“‘‹ŒŒˆ‡‡†€……‡‚z{zsfegY[[STWJRKC=>737.622;372>DHCKWLNRWds{€ƒŒ““˜£´±¦©¨­³°©¬³­¤›¡¦¡š˜®´«œœ¤œ—ž©¦œ“™ž˜“šž¢˜Ÿ‘”•’•¢—”˜–— —“”•  ¤©¦ª¤­¨¨§žž¢¤ž¬¬ªžž¡——§¬¥¦©­«¢¦©«¥ª¨§®¡§¬§¨³°¥§ª§Ÿ©­©¨­§¢¦©«¡£§§¡›¢•šžyˆŠŠ„€{‡ƒ…‚~pfhhgaVKGNUNKKGA?=<9::=9<>;CDBINMLRSafmzz}{|…ˆŠ‘• •—¥™¥ ¥©¬¦­¹¤®±¨ œ§¥¨¢¡–ª¬¡¡›››£–š ˜–”Ž—šœ§´­ š££™š¬®¥š›žšœœ›œ¤œŽš¢™”› ”¡¥Ÿ—•™¥›©¢¢£¢§Ÿ™šœœ¤ šš œ™¢ªŸ¢£¬¦Ÿ£¨¬¡¤§§¬Ÿ—  ž¤ªž¡¥¤¡§­¦Ÿ¥£¤Ÿ¢Ÿœ˜¢žž”’•“—™OKYUHHIG@=:?8>2.45?FHHHNTTZcglruvy‚ˆŽ•¢¢£§©¥£¥ž™¥¬­®¬´®¦°«¬¥©¡£˜¦Ÿž™—©¤œ ¦–“› –‘”– œ ¤¨¬¬¦ ˜œŸžŸ¨£œ˜™œ˜™ž¤®­¢¥©ž›¨¯¢•• ¢™žš—šž›’”•ž›–”›¨“œ¤¥š’”™§š¡¡ ¡¢¦¡œœœš˜š›™›¡ž›¡ª£¥¦ª¦ž ©§ £¬¬£’–¢ ¢£ ¡ž¢§¢›¡£šŸ˜••ž—’Ž’‹Oahmhqy‰|€ŽŠ–›¡§­¬¬¨¦«§¥£¢¦ª©Ÿ››—–¨œ—›£¢›šœ”–™œ£¢¦¨˜§ž¦š œœ§¢¦¨¢¤•ª©Ÿ¤¤©¤¢ŸžšŸ ¤§¥±¢§±««œ£¥§ž ¡š“š˜›ž¡®« ˜Ÿ©£££¡›—˜š  ™”—˜š˜’••—– ˜œ•™§¨¥•šœ¦—–›˜››Ÿž™––˜—•—™™›Ÿœ˜›¡žž ›œ¢£¦™•ž™š‘‰Ž“ŠŽ‘“‘–“’‡‰’Œ’—•ŽŠŠ¡²¨¢ž¬©³ ž¥¢™œš”™œ™›˜“•”‹Žš ››š™¡Ÿž› œ¡¥¢Ÿž›ž˜›¤¬«ª¬›¨ž¥ ¨«˜¨¥Ÿ© ¦ž¡§«¨»°¥¡¢š–œ¡Ÿ¢§¢¯¢£­¥ªž¢¦ªŸž¡Ÿšš›š—•›­­¢”•¢¢›ž¨©£ŸŸŸœ›–—–˜š–—’’–—œ œ˜™— ™”–Ž”™˜˜˜“ŒˆŠŽŽŽ“’Ž“‘ŒŠ‡ŽŒŒ‹’Ž”Šˆ‹“˜œ›žš™Ÿœ••›šš›œ›™˜–ž¢˜¤—«¥¡›˜¢¥žŸ¡¤ž¡¡¡Ÿ››¡ ™›¨­§¦¨ªµ³°¦£¨¦ª«¦£¢ž¢™œ¥ªªª¬±¢§›žŸ§®¯­ª¢°¡ ¬¡¦Ÿª¯¸®¨ ©ž” ¡›œ¢Ÿ¤  ¨¢§¡—œŸžœž™’˜˜“–Ÿ­§™–œœ™œžŸ›–šŸœ——ž›š˜˜š“”’“’’‹‡–‘‘™’Ž’–’„“’”’‹‡‰Œ‹ŠŽ™ ž›¡ ™—–•”œŸžš˜˜Ÿ š™˜™œ›™–™žš›”‘——”“™š˜–‘”œ™›¡ž°¦ª¬¦ª ¨®›žŸ¡ ¥£Ÿ££¢™ ¢œ˜¢«ª¤¤¦¬®¯¬¬¨£¥ª¨¡ ¢ œŸ ¢¦¨ª£¤› ¥«®©§Ÿ¯¤˜§¡©§›©¬¯¥ž¬¦›¡›——££Ÿ Ÿ§¥¤¥›Ÿž™™™˜•š˜™˜•”•‘’•œš“‘‘‘˜›š–”–“”—“–œž•ŸŸœ§™˜£¥—¡§¤ž ¢ ›œŸ›˜”’˜˜”–––“—˜Œ˜˜‘”–”—’˜˜““œ›™›ŸŸ›œœ“Œ•˜—•–••”•’ž¦›µ®¤¶ª¬¢®³ž¡¢¨¬¯ª¥¦¤£›œ™ž©°¤¥©¬²´³¯©££«¬£Ÿ§¤¤Ÿ˜–œŸšŸœœœššž¡¤ª¨¡«©™£¦­®˜¢£¯¦¡¢ ž£ ¢šžŸœŸ¡¡Ÿ˜’–˜—“’‘˜‘ˆˆŽŽ’‘”––—™–”“‘—Ÿ¢¢œ›¦©  ¡‘™¡™™•¥¥œœ™¡¢›šŸ˜™œŸ¢¢ŸŸŸ›”’”˜—““𙑔•“•š‰ˆ‰“—““‘—–’•”’‘––––—š˜”‘‘‘‹‹‹Œ‡†ˆ‰Œ¦”ª¡©¨¨°§¦œ°²¢¢¥¤¬±¬ª¬«¬§¡¢¥£¢¨®«ª«ª³³°¦ª¦¤©«¡›¢¦¡œžž›”˜—˜Ÿ›žŸ£«¥Ÿ¡‘¡£ ž—“—œž˜œœ•’ šš“–’”“ž—š–•—šœœ—š›™ ¡™™ž¡ –‘“’šžš‘¡¦›žŸ—”“™–– ž«¦œ™•ž¬¢•› ™˜–ž¡š˜›š”’–””‹•—‘““މ‡†}‚‰‹”Ž‘’Š“”“”’Œ˜˜˜”–Ž–˜ŠŠ“”™ª¤œšžž¬§­Ÿ›ª§ž¦š¡¡¦Ÿ¦¢§¨ž¤¤¥¨¢¥¡¦£¦©©©¡Ÿ££¨¤œ— Ÿž˜–œš‘‘•—“Œ››š–“”ŽŽ“ —¢š™œœ–žš—–›˜—ž–•¦¢ – ¢¤¡¤–ŸŸœ˜–—˜£›•›¢Ÿ›ˆ’‘‡œ¢¢–’Ÿž•˜—–“˜’’’”Œ™£  œ•ž™˜›š“–š›œŽ–Ї†„†’Žˆ†‹’”’Žˆ‡Š‹•–Ÿ¡¢Ÿ–‘› žž¢¤£–”  œ¡“—™’–…Ž˜¥‘–š—•”¤¤ªŸ“Ÿ¡ ™›¡ž›£žŸž¢ ¥¨Ÿ™œ £œ—šœ•”˜š”–žž˜”“”š”›™“Œ••šŸžš™ª£ ¤¢  š’˜™šœ‘— ™›’ž£¤¤š™¡Ÿœ¢ž—”™›––šš š“—žž“‹Œ–””•œ›˜’”™™˜••’—ˆ”–”“‹Š“Œ‘“““Œ–•Œ‡†Œ’““š›–•˜™˜™˜”‹Œ’‰“•’•œ  —•˜œšž££›–šž™—’—…˜’Ž™™—’–›š—–ž•›™–˜—• ¥™ ¥¦ ¤¤›¡§§¨§£š– ›™–šžŸ™¦¦Ÿ—•—™œ˜™ ž’žžŸŸ›“¦¥™œ¢˜›™š’”Ÿž¦”” š˜“‘—¡ŸŸŸ”¢œ—œš““•“Ž“‘•““‘‘Œ‹””–—“—š“œ¢˜š›ŠŸœŸ‘šš•  –’ž¢œ š˜ œ““™—•‘ŒŒŽ“’‘•—•–’•…‹ŽŒ“““˜Ÿ ””ššœ ž›™˜š–•—“›˜’‹Ž’Ž”˜¡£©£••£¤¡¤ ¨–œ“ ˜¤³¡¢¤¤ ž™–£¬© ›§£“œ›™–——¢ž›˜”’”˜–•—œš“˜ž˜žœ™–›¦š›ž”œ‘’¡—š¡—’—•““‘š––—’—‡‹ˆ“’‹‹‰‡‡‹’œ£š’š˜”˜šž“— Ÿžž˜˜œ £š›žœ›Ÿ’š¢˜™œž˜•œžš—›Ÿ”‘™“‘“”’Ž‘”˜˜‘Œ“—––ޅІޑ’ŒŠ‘”–——”’“ŒŒŠŽ…†Šƒ–˜›•Š–œ¢¢”¥£ ¡Ÿ¦˜–Ÿž™šª¡žœŸŸš—™ž¤Ÿš–¡§›–œ˜”–“”˜žœ¢£œ”“––“’–›‘œš ‘˜‘””‘““‘“š‹““““—•‘‘‹••™›¡š’‰Œ••š–”•—•“Ž•œž£¡˜š˜“–…˜œž—˜š•˜™™š£¡œ›Ÿ–•›˜š”“›“œœ™˜•”˜š”œ¢—‘˜–‘ŒŠ…€‚ˆ‰Œˆ…‰Œˆ„ƒ‚‚€}€ƒ€„‹Š‡ˆ‚‡†Œˆ‚‰Ž“š›šš’“‘“‘’‚˜šž£ƒ” ¢›Ÿ›’¢Ÿ¢£ž¡¢ž™ž—ž¦™™˜–šœ™œ–œœ– ¡’––”•Ž”—šŸ˜–™—’‰Ž‘‰”‹žŠ‡ƒˆ–š“¢š›Ÿ¦¥ Ÿ™›ž£š¨ ž“’šš˜—•“‘’’‘”— ¦˜–𔕅“Ÿ˜›”–Ž“˜‘“™š™›šŽ—œ›—™”–𓒑ޕ𒔓‘‹†‰Š†~{{|ƒ‰†€„‹ŽŽŒ‡ƒŠ‡„ŠŠ†‰Š’”“”—”›–’‘–•”™ž”‘‘ŽŠŒŒˆ‹“¡œ¡“—˜Œ™™‘–™›’„—”–’˜Ÿ”•‘’“’”Ž’“‹Ž•‹Ž‘‡ŠŽ•’““‘˜›–˜›–š™™œ––Ÿ•”‡—“–„“˜‘”Ÿš˜œŸ£Ÿ››™’•˜œ¢¤¥œ•™–˜˜—”‘ŽŽœ‘•™œž“—”’‰Š•—•Ž“ŠˆˆˆŽŠŽ’ŒŽ†“’•“—‘‘–ššœ™–›‘ŠŽ™›¡š—–“——‘Ž’“Ž‹†‹…ŠŠƒ‚ŠŽ‹‰‘’މˆ‰‹ŒŒ‘–•Œ‰Œ‡ˆ‰ˆŽˆ‹˜„‰Ž”‹Œ’ŒŠ‚‰‰†ˆ••“›—Š‘‘“‹‰‘›™‘”“”—’”Ž‘Œ‘•š—‘–¢š˜˜’”˜ž——˜˜™‰“’‹ˆœ“˜™ššœ›£ž˜˜›‘˜›ž– ¡™’—”““’ŽŽŒ‰‘Œ—”Œ‹Ž’“‚ƒ’“‘‘•‹ƒ““–’–œ“‹Œ¢Ÿ–¡ ’—›¡¢œ–˜¡œ˜–ŒŽœ–•“ŒŒ‰Œ‹ŒŠ†€‡…‚ƒƒ‚„‡‡…†Œ†ŠŒ„ŒŽ‹Œ‰ˆ‰‘‰‡‡’—𖙣–¢©Š“‘‘‘Ž’’’¬ž¤¢¡¤¡’™•’–“•Ÿš‘’˜‹—’”‘ޑޒ“’’–˜—šš “™œ’›‘”‘™’ŠŒ‰—‹—•—”Ž’“˜’•™•—“ŠŠŠŒŽŠˆ‡Ž“•••˜šžš‹’˜˜••š‘ˆ’”œ™˜•’“˜ŠŒ——”Ž’”‘˜œ˜š•’˜š—ˆŒ“ŽŒ‡‡‡ƒ‰„„…„…ˆ†€|†…„‚€„…†‡‡‡–‘‘”Œœ‘““ˆ‘——˜“‹‘¡“˜§¡¨¤‘…›•Ž•ˆ¦¢¥ –Ÿš“•‘‹Œ˜š•”š•””–•Œ‹Ž’‹‘‘‘””‘˜—›Œ“’—˜ˆˆˆŽŽ‹Šˆ„‚‰‹‘•‘ˆŠ‘‹ŽŽ‘ŒŠŽ“•™š›š‘‹Š•–•–•”—œ’šœ‹‘”’ŠŠŠ”“ŽŽŽŠ„†Œ‰Ž‰‹ˆŒ’˜—‰Ž‹’Œˆˆˆ‡ˆ†‡†ƒ‹Š‰‰†„…†ƒ€ƒŠŒ‰‡Š‰ˆ‹“š£Ÿššš˜”˜™•“Ž‘”•–’Œ††Ž“•‘Š¢¤ ›¤‰š˜Ž…މ“ª¡¤¢››•ŽŠ‘ˆŒ––‘“’ŒŒŽŽŒŒˆˆŒ’’‘Ž““Œ‰ŒŠŠ“”™–…Š‚‘”ŽŒ‡‚žœ–˜”““˜˜”’Ž“——˜—˜—”‘Ž‹‰‰’’‘—“‘–Œˆ‡Ž‹‡Œˆˆ†„‰‹ˆŠŒ‹ŽŒ†“‹Œ‹Š“Ž‘˜Ž˜“’˜‘“”•“”’”—˜”’““‘ˆ…†ˆ††‹Ž‰‡‡‰Š‹‹‘œ—–—˜–‘‘‰ŽŠ‘‰‹‰‚…™š„–¤ š¢ˆ’Šƒz€ˆ{–Ž”–†‹‡Š‘ŽŒŠ……‰†‡‰”‘‹”‰’“’Ž’•–Ž‹‹ŒŠŒ‰’–œ‹‘–“–”†Œš›’“’Ž‹–•‘‹Œ”’“‘‘Ž‹‹Š‡†‰‹‰‹Ž‡‡‹‰’ˆ‡ŠŽ‘‰ˆ‹ŒŒ’”™•˜”Ž˜š“““ŽŒš–—–Œ›‘‘™”•——“‘——‘Ž’‘‡‚ƒ€…|}|ƒŠŠƒ‚ˆ”‘“‘Œ“Œ‹Ž‰Ž‡ŠŒ‚‡ˆ…‡ƒ€—„ƒ‹‹Ž†‘‰„|‚‹„‹‰~~ƒŽŒ••Љ’•“Ž”ž¢›Ž”‰“•“ŽŒ•˜”’ŒŽ‰Œ’’˜˜”ŽŽ“’‰…ˆŠ‹”‘ŠŠŽŒ‰‰ˆˆˆˆŽ‰ŠŠ‡…†‰ŒŒ‹‡‰‹ŒŠ‰ŒŽŽˆ‘•––Іޑ‹„ЉŒ‹Ž“‘““ˆ’“‹‘†“Žš˜’‘ŒŒˆˆ‹‘’Ž‹‹ˆ‰…‡…ƒ„‚~‰‡~zvx{€…ˆ‰…‡ŽŽŒ’’’‘“”Žˆ…Š…Šˆ‡ŽŒ†Š’ŽŠ‡~‘•“””””ƒ‘“”’–††“™˜”•”ŽŽ“•ŽŒ™—‘ŒŠ†‚„‹Œˆ…ˆŒŽŽŠŒƒ‰‡‹ŽˆŠŽ’‡‹‰ˆŽ‹‰…†€‚ЋЋ‹‹‹‘‹‰‹‹‹Œ‹‡†Œ‰†…ˆ‰‡‹ŽŠ†ˆŒ–Ž‘ˆŽŠƒ‹‡Œƒ‚€ˆ‹ƒ„‹Šˆˆ‰ˆ~‚†‚‡„ˆ‰”„€ŽŠ„‚…‡ˆˆ†€~†‚‚~|~‚„„„…‡Š‹Œ‰‰‰‘“’”Ž‘‘‰Š†‰ƒ}„…‡‡‹ˆ˜’“•‘‚‘“”•“––…€ŠŽ‰ˆˆŠŠ‹’–“ŒŽŠ‹’“ކ‚ŠŽ‰„ƒ‚‚‡ˆ‡†„„…†…ˆ†ˆ…†„‡‰‹‹Œˆ†‰‹ŒŒ‰‰Š“–••‘‹ŠŽŠ‰‹Œ‹‹‹‰Š‰ˆ…Љ†„…ˆŠŠˆ„‡Œ‰…†‡“–ЇЄ„‡ˆ€‚‚Љ†|ƒƒƒ†‰ˆ…‚‡‰‡Ž…‹‡ˆ„‡„ކ‹……Ž‹‡ˆŠ„ƒ††…ƒ„‰ŠŒ‹ŽŒ‹Šˆ…ƒƒˆŒˆŠ†ŽŠ‰Œˆ…Š„}€‚€~€”’‰Œ‡‘Œ”ŽŒ“†€ƒ†|~…|~ŒŠ‰‰ŠŠˆŠ‹‹ˆˆŠ‰‡…Š‹„€„‡…‹‹Š‰ˆˆ‡†ˆˆˆ‹Ž‹‡†Š••˜““…ŠŽ‘‘Žˆ‘‘’‰’‰‡ˆŠŠ‰ˆ‡‹……ˆ„‡„„€€€‚‚€{„ƒŠ……ˆ}~t~vu}†„Š‹ˆ‰†Ž‘Œ‘–Œ‰“˜““…’‰–ƒŽŒ†ƒŒ‡Š„†Œ†…ŒŠ†„ƒ…„†ƒ|……„ƒ‰Š‰ˆ„…„„…ƒ‚…ƒ‰z‰‹…‡|r€yu}tldc_ff[VS…ŽŒ‡†~~‡‡‡‹ŠˆŠ…‚}†‰ƒ†‚…‡’•“ކ‚„†††Œ’‰w~‘“‘ŒŽŽ‘‘‹ŽŒŠŽŒˆ–’’—š–Š‹““‹‹ŽŽŒŽ‡ˆŽˆ‰‡…††„Ї„‡„ƒ{ƒƒƒƒ‰‹†…Ї‚Ž›’–‘tu}zƒ‡ŠŽŒ’—’˜™“‘‰‘–•‘šŠ’‰‡‹Œ…|‚„„„‰‰Ž‡„‡…}}{tuwtx{|yvuvvsuvpnpe\^bRXa\[UFEK@@D=3-.01/10)„Œ‹‰†€~Šˆ„…†ˆŒ‰††ƒ„‹ˆ‰Š†ƒ„‡‰Œ‘—”Œ…~}ƒƒ„wv†‰Œ‹Œ‹‰ŒŒ‡ŠŠ‚‰ˆƒ‹Ž’™‡†Š†‰‹‡Œ‹……†‚„‚‰…‡ƒ‰ˆ„‚‚ˆ†‚‚€~……„…ƒ‚€€„„…‰Œ‰ˆŒˆ‡•‘”—•}cdn€†‰„††ƒ„ˆŠ‹‡…„Ї‘‚ˆŒŒ„‚……|}z{zxyyxzwpnmjif`[VQRRLMRTPLKMOGHJCBE>979300/.)))0'%'&%('('&)+&ˆŽŽˆ†~ŒŽ†ƒ„ƒ‰Œ„ˆ~…‚{ƒ‡…†‰‡†„}|‡•“’Š{z|x{ysv}|€‚…„ƒ‚‡†ƒ‚‚‚…‰{‡Žˆ†’‡‚~†ˆ„‡‡ƒˆ†|ˆ}†~…ƒ†ƒ‡ˆ„‡…†ƒ‚~„†ˆ„€‚„„„†…ƒ„ˆˆ‰ˆƒ‚…‰†ˆŠkclƒ‰‹…‚{}€Šx„„€„€z}u~vs{qmehje`Z[ZYYUNNHDDDDH?82.-//*0352/.--10/('+,-($'$!(+,*"$ "(+/11369?B?‰‹‡‡y…‰„ƒ„~€…€‚y}zsy}zy~~{srx‡‹‹‡„{|y||xz}|~€‡ˆƒƒ‚‡„ˆˆ„‡y‰ŽŒƒ‡ƒ€‚‚ƒƒ~|||‚z€y||ƒ‚„ƒ„‡†Šƒ€‚‚~zy{||{}€€€}}{xx|{qjnqqghpngorldicfRYVV[_WTLOOIKDE>?:A<895460360./129221.-.00-.....)$)*+*)*+,+'*+-14:6-006>@DGKQV\add…„…‰‚‚rz€ƒ~|‚~~yxwv|}|}zyyx|€~‚ŠŒ‡††‡†€ƒ€……€‡ˆ…†ˆƒ†‡ƒ‚ƒ}ƒƒ‰‚|}……}~€}vw}||€}yy|}z}tlrsh_^hnlkoolgjkjg_UQUSZ^[KGG>KCDDF8:>;9>661+.206333/,//33.2+/..1-,1/166335476::7657:::::=>=8<<:9:<@A>GIOXZ]cbahiiolmjmppqqqrƒ‚‚…‚ƒwz‚|ƒ„‹Šƒ‚~|€ƒ„…„ƒ…ƒ„ŒŠ‡Œ‘‘‰ƒ†ŒŠƒ†‚„ƒ|}}ƒƒ†‡‰ˆƒ‚…ƒ‚‚„ystv~{yxvmkssuwidqmm_gig`YXZ[ZYLDNRKHMTTIA@@>=@A@>8214+-00**',/*1(/,%'*,-'-4'$.%)*.1&)0,2)#,,'+08::554440,/6523353-)+/1.0...,.2--,,&'*.)(*0)'(!!#!$'#)-0,&&'*889CMEKNU\]beecgljkmikljikkjmilnlkmpqlrsvwwzusvyy{||ƒ{xsmuooxxtpqpor‚ƒ„}ƒ}ƒŠ„‡‰‹ˆ‚|vx~z}…†…Іƒƒ††|puyszvcQKNKO_j]DGK?2>Yc\GFJ:=73/&4035&*(0+*'+&%(/111//-*+,*.0-+*+,,+,,')'''#$*+/*-.3/001/298<994654;6?<@BOWWPWRGM_gfdkknknsqpptjjpklqnqusqqnlouvvtstspsxsssx€‚t~„‚|rzwwywnurxzzwvywtu€~{‚y€ˆ‚}€…pw‹…„z„yqRh‚xlluwvspfgb]__SEDMJEF@50-+,04:92/+1)3/'")2,,*/2*0/.),2-,/)+-()(""!#$!!&&%#!&&)&"""&((.6605AIILLSVRYTUWR^]cdbdbfacinjjlotr|xpttwxvuov|xxrlwxxttluutw||{z{zxzvvwustz{slmuzytrr|xicjsuzxjfmtqlnnlhbfvciplrtzx|tinwzjf`gTKHXTKIJGEDA7873131.%,+&&$"&*'*,*1610046* +14'(1.*"&"&&+*'+.+("!!%-/03121/:=A?BFHFCBGMR\^`egehoqnoqnlnmlinrqqkktos{~}zwu‡‚Š„~z{||x}|{zz{~wkw{wyxx{€{|~yx{zwxupnolglbbowqmoqm{oddhmifb^`b^ZY`_\XUXXWEGKBJPVL^REFA7976:3.+/40,./10,1,,,)*-.,2334/-21-/.(+.(-+&/% &- $'(*63(28766<9AAFBCDJRVW[^[X[hgehlgdhjikqnssuzyqrqwsutossvuoxqquyzxuvtw†y}Љޓ‘ˆƒ…’‘†ƒ“|€†Š†||Š…|uvv{~rswnimpwwrmnqmbfgjligltnprrqj]\daa``dhhbckhhbbe"&!.(-01,@8*0402/5,2)/-11224740.+04/.21440.0/++,+-18=<852*17765:BCPMEISMR\`[W[bgUZh]efkgklmmmmpqxyrtqq}xvxzvrtzwwvyzyvxzzu{‚‚}{ƒ~zr{|ƒ„}y~yˆ……‹•Ž†Š›šœ •“˜‡‰ˆ~}†‚†€}…{yzqecdcggdabfifmoidc`Z`c[Xflbd\WZdigdccahfhach//&4010(+($"'((&$'$)'+,-5::655859CE<;BBHFA>@A=9@ECHV[WZVVWQZgiigtrrkmprjjrllqimklrxnwpmsvvvuvvxz„‚vx~…€{v{€}‚€}†Ž‹„‚††ˆ‹‰‰Ž“yŽ…ˆˆŽ~’‘–˜’˜š™“š¡›”§šŒŽ›–Ž‘…}“•’{xƒ„zupbYYWSU\ee]T[akold``YX^bchkpjgfhfa`egcdghbci#!"&,'0255/69@CEEKPRX\]^]^cabfd\]_]accaaddadkfeqrowuvxorwsusyxvx}xsusyprzs{qxx|ty}~|{……„Іƒ‡‡‘ˆ‰’ŽŽ“‘‹“›œ’˜•’•“–š—–™˜—‹™–™–”™˜—–›‘‘Ÿ¡šž¦š¡–Š“˜›‘“ŠŒŠ„z}txvwjbdc_fimprrpkeglqrf\\giis}ylgpourhaahpokhlkdcg,03:CGEFNTY`XV`\\_ice]fjmkhlqompyvsrrspkqpnkilswpstuxxz}x}|zwyvx}‰„……„‰‡~€ˆ‹‘˜‘ŽŽ”‘‘‹‘ŒŒ‹ˆ‡ƒ”š•–—’•™™•›œ›œŸŸ¢Ÿšš››š”‹Œ•›Œ•œšœžš™–››—™ŒŒ¢¦‘¡›–—š œŒŸž–›•™™˜…†„ztyhjih^W[djq~skhjklntpmmlihhbachkc\f`ec^bdb_de]`WVTW[[adilfejmjmxokhmmkigggisolpupnutuvy}}{{ywwxtsuz~{}}vplel|{‚z}€„ƒ„‹†‡„•’—Ÿ –“’“™˜–—ˆ‘–•”–™–•’–™•™ˆ”œ˜”›‘tzŠ—Ÿ™–™Ÿ Ÿ”Ž•’›š•‡‡›˜ˆ‹™§£˜Ž¥¤Ž˜––~ƒ Ž{›‰}–’£•”œˆ…~}}„‰|vnqoomjkrxxtc]fjd`dk`VXZ\]`^Yac_hjeghb^`_]`ci_`SY[]itmjvzxsutukhplhpssrupipsvvsqpppytw{unnokotyustzyyw{|vrpo}yz{uv{u}ƒ…ˆ‡€†‘„‘™“—Ž•Ÿ ”—Šˆ”‹“˜‘—›”›™™œ‘“‘’œ˜“œ™†Œ……•˜œ¡©–Ÿ¥š–˜ ›¤œ›•š’ŸŸŠ‰‘•ŸŸœ‰‹‹{|emx“ž›”|{„„ƒ|†‘™˜ˆyjcfiqz|‚††zjSNS[_bY[]V[_WVY^_c^USQ\[`d`[]_]]^ea^d_ceqjoxidrtxjhochltoty|sjmjdovtpoonvswzxsqoqtwutuwxxy}x}…{szwxy€‡~~‹Žƒ‰Š‰‡”–ŠŽ‹™}Œuw’‘‡–š‘˜œ•˜˜——“Œ‘™Ÿ¢›Ÿ¡›˜’–šž ˜—¡« Ÿœ–šž¦¨Žw€‘ˆž«­¨¤ƒšŒ‡y¨«Œ†””¤«“Žžmvxu‘“–‚optƒ•ŒpafoulX[hitqdnlqb_^_caYblpeYZUNQZ`aa]XV]cdch`_aifgkfgqqrypkpuohorkmnqzouvqklu{{‚€|z|zxytxxtrwzzvxƒ~{zyko|vwyЉ†}‹†œ†”™†•“–y„•œ‘šœ™•—‘‹Œ˜’–Œ|m{™”–› —¡£Š–£”ž®˜“‘‰–¡§Š•¡“‰z|—œ¢–¥§°´‡¦¢“¨¨Ž”‚~w}r…ˆoov~†…yukqpb\iklypoxtsfbbfde_[chgb]ab[bahf^WTTVVTX^^UdongqsjbhplahrkevnjgffWXbcmx~yqnrwwspx|~€}xw{{{|~~yssw|ƒz}€‹~ƒ}y}}{ƒŒ€‰‹–•…~‘›Ž‡‰™ª¤›‰{„Š”¬¯™“’–‡‹¦¤‹“Ÿž•†{v‘†—š—’wolgaYSWf}ˆ€}z–…wci‚Ÿµ®ª¦¬Žž¢’•“~–ƒaSmn^[bkzŒ‚prpien~yddvngtgae]kjih\U[]\ecdbbrtppid_UQSSX\bZ\][_bRZc^fphb`ciskrnbkjflprxvvy{wpkku}~yvrproqy~vpr~vy‚}z{n{}om}wŒŒŠŒy~€‡’˜žˆ—˜›’€y’˜•—š©Ÿ•‘œ“¥›’}o…“Ž“ž•~“}‚ŠŽ–’Žƒƒˆˆ}~ƒ†–›—˜¤¦—””–†‰Šž“€|Ž’£¸­ š¡™—›~{}r†Œ‡Š†‰Š‹ztpnmrwuywmqrqnhgec\[bcabffbehk][QPX^a_XWbhWW`_XhOXbQNXXWelh\_iliija^hljmmptqlouv~}zz|€‚{y}{wvwvv|€€|pklyyƒ€zxŽ‹‘„‡•Ÿªš…––– Ž•œ•ŽŽ‹—œ¨¤ ŸŽ‡€†—”‰•›Žuozupps{ŒŒ†”–”Š‘‹‡‰|‰”ž›Ž—¦¢¡®¦œ—„œ®Ž’€l…x~}„˜ž¥œ’œ€z{ƒŒ‹ƒ€…‚ux|sjmpjhs~szodg`egg`^bcfknjgfZZSXUUWVWZ[JHLMY__ZdZZ\\ZX`cYMNMXRM\W]hcXY_[ZZ]]]bitrokinsv{€vjirz~‚yzyrvtw…y€sx…|…’˜v†Š•˜”«¤«‘§Ÿš–—ˆŽ€…››Ž…Ÿ“•œ—‰ˆ™Ÿœ~…†…}†Ž‘†}“•ƒ~{z‰ž‡ntvqŽ–Šž nHg‡u…–—žª–cŒ™ž˜ƒ¢¤¨¡œ–‘hˆ‚}„…‹ŒqJR[]dnn^ged_]_^__ba[Zacf_gc]ba]Zfeceie]XP[ddghi^cb\V]ZOVVDLPISSAPWO[ntwrtromkjmqnlnstuslijfckxyonhj}‡|wzz}zyq‹‡‘–†Žœ‘˜¬›”˜Šˆ†rš‹œŽ› •‹ƒyˆ’‹„“˜œ—”¢§™‹s`ds‹š–Œ”’†€}tkj`VxŒnc}Ž“Ÿ£‡ŠšŠ–œµ“|‹ª©¬£“°š–Ž–¤Ÿ’›l~€‚w…ƒsyt……{}‚m]hgflc_][\V^`VU^dipeYW]_Vdmnhba^\^W\aehce]TW^`\WONQNPIHIQNROQZ_[c[`^]bdchrkq}qkcYYcnyzwƒqw€}ƒ‡yzkhm†Œ€ŽŒƒ†‡–¤›†‚•ކy†” ¢’Œ…——sމ~}{ou‡†‡‰™‘Œ‹Š¥¡u}Ž}…𣥢–•zo…›—’‹~|{†’xp‚Œª´ €°±—–¨‚–𛑙§€ŽŽ’Žrinosoovo~šœ‰ynXPR]^WQMV][^nsbPR_bdd`aaXUPNQ>;JQRWLNWXR`d^STYX]e^UQYUYffgiadZefaZgwsiaYONYcikYZb^evvliklns}€„‡Žˆ‚xqrt`iyei^`Z3.8Jkz‹–‹†wg`]xx‰–„tisvy…“‘އnޤ© ‹…‚„‹ljjf{ƒtg  ‹”¢žŒxwœ–š¦ˆi[\b…Ÿƒnfrm‹PMe^~ƒŸ™Œ{pˆ‡zt‚‘––„tp›‰vmz}‹Œ~vo`eddnupd`ely‡„iRNNTZ]SGQ^aa^YXTUZ[`ffha`_e^iob^XNKNJJNGEMTLOYliefgekjdfeZ\ZWZX^WHMFMchn‚„}†‰‚urn]WZsxkck{rXDK^SNURmj{”˜¢Ÿ„tmyvƒŒx_Wa{~rˆƒg`ZWg}¡’su…–ˆ„ˆ†„~‡Š–މ‚}‚‰Œqq‹……|[aZG[SNi|plgIejt`r{}’™–™Š|nY\jnphdc_ee[c\aajtqjnkkmld[]fdfgjlqxvj[T[ac^XTKOZcchfp[YWNU]XZ_ebac^PSScfSc`VVdfbm|}xlaZiefnfl{€{rxx_UAIZhiUN\m‰‰†‹Œ€‡yy|ož„mwwt€oUp|qoxrh|Œ|’xŠ—{w…‹Œ„€‚ŽŠŽ’—˜’sf…—’“•€…wsk}’{k‰˜‘˜“†wxŽ¢˜Œ–‹£˜w¢žuYogytY`b^ds‹ˆ|€’•‰‚ferWJ\o}w|‡~eYZ^bfkv|reaehhhkmifiabiqd[ZcdZgjbbg\GTVMMNJMU`hbY^`Y\ZUYXYJ_amnffghm{|~vkkaiks{usvpkan…‰„|s€wvvofjz~„{em}tl|fqˆ{z‰mgyˆ’–‡kxrr›•ƒ…ˆ’w\brŠ‹}syz‚ƒpv™•„‘†‹–¡˜‹{ŠŒŒ˜ˆu|ltz’ƒ‰”‰|—†‰Š†Œ•Ÿ¬›©§}…•™Œ{dbZ\}‡š‡r™„~wupljgddimcT\\XU]kne_dbepk]\X[Z_]][b`Yhc[YSJFKKM^dZXZ^VOJHL^TSa`SRVbortoedii``_^^lonaWV[cbbx~x`Wbnoiqkefa_sxˆ…Žr_‚ˆwxŠtz}Ÿ€†™†ivr|hktd‰‡Šš‰{‘›•ƒxnuznq~‰˜›˜ŽŒ˜Ž…Œ’–ˆ‰ˆucrtrt~m}n\cqƒŒpƒŒŽŸ£®“¡žŸœ¬¯œ‚…ާŸ™‘ry†‰Š†xm`KGZXTaejdjyƒzpeZPO^e]ROL\`[^[OO[\^ikd^bb[]VYULMNMV\YRNRHIGTabTUIDV^XQT``bhpuvoeoiafTVs}ƒ€xpqmb_L=;U`TQYkwvlq‚ˆl^SLP_XXe^xh\H8(K.vaJbª~CN’ZNJx‹‡}†‚‚ƒ‚€€‚€€‚‚€€‚‚ƒ‚‚‚‚€‚‚€€€€€€‚‚‚‚ƒƒ„„ƒ‚ƒ„„‚ƒ…„ƒ„ƒƒƒ€€€€€€‚ƒ‚‚ƒƒƒƒƒ„ƒƒƒƒƒ„„„„„„„„ƒ‚‚‚‚‚‚„„„„„ƒƒƒ‚‚‚„ƒ€‚‚‚‚€€€‚ƒƒƒ‚‚€€€€€€€‚‚~~}}|{{^1‹LnYvUSIh~[J\º‰EM‰i^@……‘~€ˆ€ƒ€€‚‚‚‚‚€€‚„„ƒ„„ƒ‚‚‚‚ƒƒ‚‚‚‚‚‚‚‚‚„„„„„ƒ„„ƒ‚ƒ…ƒƒ…„„†…ƒƒ‚‚‚ƒ€‚„‚‚‚ƒƒ‚‚‚ƒ€€‚‚ƒƒ‚‚ƒƒƒƒ‚‚‚ƒƒ‚‚ƒ„ƒƒƒƒƒ‚„ƒ€‚‚‚‚‚‚€€€€€€€€€€€€€€€‚~~€~}||{Œ;a4zVtœ‘?YfƒlEŒaI>ƒaS:}t‰„~„…ƒƒƒƒƒƒƒƒƒ„‚‚ƒƒ‚ƒƒ„„„„ƒ‚‚„†…„ƒ‚„„ƒƒ„„ƒ„ƒ‚ƒ„„ƒ‚ƒƒƒƒƒƒ‚‚ƒƒƒ„„„‚‚„„„ƒƒƒƒƒ€ƒ†…ƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‚‚„‚€„‚ƒ„„„„‚ƒ…„…†„……ƒƒ„‚„…„†ƒ„ƒƒ‚……€‚„„ƒƒƒ€‚„„„ƒƒƒƒƒ‚ƒ‚‚‚ƒƒƒ‚‚‚‚‚‚‚‚ƒƒ‚‚€€€€€~~~~~~}}}\(i.Gy²²EN!RaM‰Y><‚VC9|s‡‚€€†ƒƒƒƒƒƒƒƒ„‚‚ƒƒƒƒƒƒ„„„ƒ‚‚„…ƒ‚‚ƒ„„ƒƒ„„ƒƒƒ‚ƒ„„ƒ‚„ƒ„ƒƒƒƒ‚‚‚ƒƒƒƒ„ƒƒƒƒƒƒƒ‚ƒ……„„„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‚‚„‚„‚……ƒ‚„‚‚„…ƒ„…„„…‚ƒ„‚ƒ…„†ƒ„ƒƒ‚……€ƒƒ„‚ƒ‚€‚„ƒƒƒƒ„„„‚‚‚‚ƒƒ‚‚‚‚‚€€€€€€~~~}}||]‹x‚,h­‘SNh`?@”j_Avj9s~’„~‚€‡ƒƒƒƒƒƒƒƒ„ƒ‚‚‚ƒƒƒ„ƒƒ„„„ƒ‚‚ƒƒ‚‚ƒƒƒ„„ƒƒ„„ƒƒƒƒƒ„„„ƒ„„„„ƒƒƒƒ‚‚‚ƒƒƒƒƒ„ƒƒƒƒƒƒƒƒƒƒƒ„……„ƒƒƒƒ„„„„ƒƒƒƒƒƒƒƒ‚‚‚„‚„‚…„‚‚„„ƒ„…ƒƒ„„„„‚ƒ„ƒ„ƒ…ƒ„ƒƒ‚„…„ƒ„‚ƒ‚‚„ƒƒƒƒƒƒƒ„‚‚‚‚‚‚€€€€€€€€€€~}}}}h"…kc?tl]XZ±xdA¨ƒbKžˆjF|„’‚~‚‚‚†ƒƒƒƒƒƒƒƒƒƒ‚‚ƒƒƒ„„ƒƒ„„„ƒƒƒƒ‚€‚ƒƒ„„„„„„„„ƒƒƒƒ„„„ƒ„„„„„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ„„„ƒ„„‚‚…†„ƒƒ„„„„„„ƒƒƒƒƒƒƒƒ‚‚‚„‚„‚„„‚ƒ†…ƒƒ†‚‚„„„„ƒƒƒ„ƒ…„„ƒƒ‚„…„ƒ„‚ƒƒ‚„„ƒƒ‚‚‚‚‚‚‚‚‚‚‚‚‚‚€€€~~~~~O!€bEDs}`e@¶x^D¬‡lC—©€Ex‚Œ„„€„„……………………„„„„„„…………„„„„ƒƒƒƒ‚ƒ‚‚„„„„„„„„‚ƒ„„„„„„…………„„„ƒ„„„„„„‚‚ƒƒƒ„„„„„ƒ……‚ƒ……„„„„„„…………„„„„„„‚ƒ‚„‚„‚……„…‡†„„‡ƒƒ…„„„‚„ƒƒ„ƒ…„ƒ‚ƒ‚„„„ƒ„ƒ‚„ƒ‚„„„„ƒƒ‚‚‚„…„ƒƒƒƒƒ‚‚‚‚‚‚‚‚ƒ‚‚‚‚‚‚ƒ‚ƒ„ƒ‚€€e)oveD]ŒjiD¦qhAŸ…kD”’|OqˆŽ†…€…‚……………………„„…„„„…†……„„„„„ƒ„ƒ‚‚„ƒ‚…„„……„„…‚ƒ„„„„„……………„„„„………………ƒƒƒƒƒ„„„„„„……ƒ‚‚„…„„„„„„…………„„„„„„‚ƒƒ„‚…‚……ƒƒ…„ƒ…‡ƒƒ…„„„ƒ„„„…ƒ…„ƒ‚ƒƒ„„…ƒ…ƒƒ„„ƒ„„ƒƒƒƒƒƒƒ…†…„ƒ„„ƒ‚‚‚‚‚‚‚ƒƒƒƒƒƒƒƒƒƒƒ„ƒƒ‚‚‚€€€T;t[bI[X^P°miD¥’`E˜ŒmVpІ‚‚‚…ƒ……………………„„……„„…†……„„……„„„ƒ‚‚ƒ…ƒ‚…„„……„„…‚ƒ„„„„„………†††…„„……………„‚‚ƒ„„……………†…………„„†„„„„……………………„„„„‚ƒƒ„‚…ƒ„„ƒƒ„ƒƒ…‡ƒ„†„ƒ„„…„‚…†ƒ……ƒ‚„ƒ„„…„…ƒƒ„ƒ‚„ƒƒƒƒƒƒƒƒ…†…ƒƒƒƒ‚‚‚‚‚‚‚‚‚‚ƒƒ‚‚‚‚‚‚‚‚‚‚€€€FmX=‹E[‚eZ= h\;~¢}<‚xbBtyŒˆ†…ƒƒ‡……………………ƒ„……„„…†……„„……„„ƒƒ‚‚„…ƒ†„„……„„…‚ƒ„…„„„……†††††„„„„„„„„‚ƒ„„„……………‡……††„„†„„„„……††…………„„„„‚ƒƒ…‚…ƒ„…††‡…„††‚„†„‚„„…„‚†‡„……„ƒ…ƒ„„‚…„…„‚…ƒ‚„„„ƒ‚‚‚„„„‚‚‚‚‚‚‚‚‚‚‚€€€‚‚‚‚€€€53\'c4OoG6;rK84YJK/{\V9lkˆƒ†ƒ„……„…………„„„„„„„„„„ƒƒƒƒƒƒƒƒ„ƒ…„„„„„…„………ƒƒ„„…………„„…………„„„†…„„„„„ƒ…„ƒƒ„„„„………†††‡‡„„„…††……†…„ƒƒƒ„„ƒƒ‚‚‚ƒƒƒ…„„ƒƒƒ„„ƒ‚ƒ„……‡†††…„ƒ„„†€ƒ}~€ƒƒ„„ƒƒƒƒƒƒƒƒƒ‚‚‚‚‚‚‚ƒƒƒ‚‚ƒ„†…ƒ‚ƒ„„‚€„‚ƒ‚‚‚€‚egva4MsI>=QS0”fX9sob5ht…‚……††…„…………„„ƒƒƒƒƒ„ƒƒ‚‚‚ƒƒƒƒ„„‚‚ƒ„„„„„……„……„ƒ‚‚ƒƒƒƒ„ƒ„„………„„„…„„ƒƒ„„„†…„„………„……………†††…………………†††………………„ƒƒƒƒƒ„„„„„„ƒƒƒ„ƒ‚„„…ˆˆˆˆ‡†‚‚ˆŠƒˆ‡„ˆˆ‡Ž‡ˆ†…ƒ…†„†„„„…„„„„„„„„„„„„„„„„„„ƒƒ„„„ƒ‚‚ƒ€ƒƒ€‚€‚‚ƒƒx#kƒbDG‹_V2š‚}HŽ“Kw‘}Vf~…ƒƒ„‡……„„……„„„„ƒƒƒ„„ƒƒ‚‚‚ƒƒ„„„ƒƒƒ‚‚„„„………„„…„‚ƒ‚‚‚‚ƒƒ„„„……„„„„…„„ƒ‚ƒƒ„†…„„„…„„ƒƒ„„„„………†††…„…††††††……„…„„„„„……………………„ƒ„„„„†ˆˆˆˆ‡„†‚‡‰„‹‘…ˆ€ˆŠ†‰Š‡ˆƒ…~ƒ„„„ƒ„„„„„„„„„………„„ƒƒƒ„„„ƒ‚ƒ„„‚‚‚…ƒ‚€€€‚‚]&f“O8ot_)“ej.Šf2xp?m£„J]…Љ…ƒ„††„„…„„„………„„…ƒ„…„„………………„„…„ƒ††………„„„………„ƒ†‡†…††…††……………„…………„ƒ„†‡†……†‡‡†‡‡††††††…………„„„„…„ˆ†…†„‡…ƒ„‡††‚†„„„‚„‡ƒƒ†‰‚ƒ††}…ˆ…œ`IóÿÿúûýÙN8A<<;;7:49-;=C?C@>@?A=?B::>;6SQ„^V)}gw:]>XRS™mX<†s9E€ˆŠŒˆˆ‡‡‡ˆˆ‰ˆˆ‡‡‡ˆ‡‡‡‡ˆŠŠ‰‰‰‰‰‰ˆˆˆ‰‰‰‰‰ˆ‡††‡ˆ‡‡ˆˆˆˆ‡‡‡‡ˆˆˆˆ‰‰‰‰‡ˆ‰‰‰‰‰ˆˆ†……††‡‡ˆ‡‰‰†‚‚|{{ŠŽŒ…ylph`^[QRTTTTT[RQQYXQHPVNPORBMYXMRïýúûÿÿùî_f¿ÿöÿÿþè†MDBGCB=9:=9<7:9567441110./00&-(,((-+(.'0,+.*)"'(&%#^[ŠrW3X=y|‰Œ†‡‡†‡ˆ‰Š‰ˆ‡ˆˆˆˆˆˆˆˆ‰‰‰‰‰‰‰Š‰‰‰ŠŠŠŠŠ‰ˆˆˆˆˆˆˆ‰‰‰‰‰‰‰‰ˆˆˆˆˆˆˆˆ‡ˆ‰‰‰‰‰‰ˆ†‡††„‚€~~~‚ƒ„…‹“”†o_O;6BEFFG@KDCACBC;><>C8D?:M†ÿîþÿýþüëj^qìþùÿÿÿåo;/,3+.2,)*(&&('%%&$&"#&%$&&'%!$'  '# &*'!%!\d~yk"eI]+_jL9J€oJ5iJ5yy‡Œ…‰††‡ˆ‰‰‰ˆˆˆˆ‡ˆ‰‰‰ˆˆˆˆˆˆˆˆˆ‰‰‰‰‰‰ŠŠ‰ŠŠŠ‰‰‰‰‰‰‰‰‰‰‰‰ˆˆˆˆˆˆˆˆˆˆˆˆ‰‰‰ˆ††ƒ‚~}|€ƒ‚„‰™†raF0.*/11/300,/*2/)/+/.,*+.2&11$+//((G_ÜÿøùýÿÿûÆQ]•ÿùúÿÿÿÚ[0'")#$)(#"%%&$#'(&&$!"#"#%"%&#$'"!"%&)$*"&+&(%,*'RWpm(jxq3]jS4F}jP7‡bN/|v’‡Œ…‡††‡‡ˆˆˆˆˆˆ‡†‡‰‰‰‡‰‰ˆˆˆ‡‡‡‡‡‡‡‡ˆˆˆˆ‰‰‰ˆˆˆ‰‡‡‡‡‡‡‡‡ˆˆˆˆˆ‰‰‰ˆˆˆ‡ˆ‡‡‡‚~}}}~……†Œ•—pP1*+4:( +% *%#"#&!($*" )**. .&"- * )ZÿùúúÿÿþùTZÃÿúøÿÿÿËN-&':@5$$+*&)*''-/,+/,.,,04//-2/00025.7729716075855;YjzYXo|c:^qI9H€gO;ƒeG6~~’Œ†ˆ‰ˆ‰‰ˆˆ‰ŠŠŠŠ‰Š‰ˆŠŒ‹‹ˆ‡‰‰ˆŠ†‹†ˆ‹†Š†Š‰‡ˆŒˆŠŠ†ˆˆ††‹ˆ‘††Œˆ„‹†…†…ƒ‚„‚„†…†‰Š’‰weQ@504-0*($#$!&)%#$!##(")"%'$%(,'*(".0*3)F]Ûÿþöÿ÷þÿåaNgíÿ÷ÿÿÿÿÁH?9EXhQ58496A<6;;@7=A8DDA;38>C@CEAJPEGOBE;=AHi^#v](mŒ_=`kI@KdO=hB8}‡Œ„‡‰‰„‡‰‹‹‹‰‡†‰Œ‹ˆ‡Šˆ„‡‡†‡Š‰‡‰ˆ‹‡†‰†‰†‹‰ˆ†‡ŠŠ‡“…‡Œ„–z‘Žƒ†‡…„„ƒƒƒ€„„‡‡‰Š‰‰ŠŠ‡i6%--%)&(),*+4/-6.32012734/5658;9;6?><:=\vÿÿÿüþøÿÿÄGVŠÿúøÿÿÿö¦IEDIQPE=8>AE@D@DCHECIIKF]MOX\^OSGQH`Ko`][Sn\#vs:fšn@B>;E4@=A>:DHHJHFGGGHECCFGKLTYMHDMa`gSIL`AR|ÿÿüýûüüúñh^]Òýøüýÿÿäsj\ZhnhoxP#8^z†‚‰z>l—Ž“d5!lœ”ŽdLb/,8KJJF6(BM813Cja)LOw`lZ?VˆV…[N>zU…uY={O6w‹•Œ€„…‡ŠŠŠŠŠŠˆ‡‹ŒŠ‡‰‹ŒŒŠ‹‰ŠŒ‰‹‰‹‹‰Šˆ„…‰‰„ƒP`wŽ„Ž|CUMŒŽ‡†‰ˆ†‹‹ŒŒŒŽŒŠŒŒŒ‰‘˜—ƒR5;@<8FGALnyqvz}wbOPozzZ]K_„xtcMP\OTÐÿÿÿ÷ýþõùÖN[nùÿúûÿÿÿáhrh\U_`\f_R_n”‡‚Tn¡••rG8vŒ}cFADO1)#@=M,+9A@K>A?K2":;S3d†h9>R5CAVYDt].iP3ky‘„hcl…‹Šˆˆ‰‹ŒŠ…ˆŽŒŠŠ‰Š‹ŠŒŠŠŒŠŠŠŽ†‹Š‡‰Ž‹‹‰ŠŠ˜b‚‹’ƒ˜ƒKTX–’’‘’‹‰‡ŠŠŠ‹‹ˆ‹ˆ…ˆˆ…†ˆ…„‹‚wE=FI;ADBSoytqmrqmbWMfh_fVUT[`f`WZ`IVpÿÿüÿöû÷÷þ¢YX›ÿùÿÿÿýÿÐclNDQZRJCTTZc†…Jj˜ž—xOIeO90%AI8)%%()HLPI/..$%&<-+$Hb_al ^pj/G|Vk›’‘€9zk_*wlT:o‹£‘ƒ‚ˆ”ŒŒ†ƒ€|}dLYx€{wywtupthwdmlihbgfgfor^ƒjY\d^]pphbf`ecQLMOONLHMSOJNLFFOGGNOQUXZ]aa`^WTY_QXZQYX[JYaVW]YXwhovmgMC@H\[ÿÿÿýøÿøõûâL]RÄÿüüþÿÿø¢R]a~r~zz|prborskrkdkfd`?*)/8+61>%$Cznn7UmZIEyYg†€giGrc_RhRL6IQLGt†wrokkmcjgin=H‚wuunhppdm`j^jmfhXoci^ql_yg„oZaaQYbuu`zlmh\MWVISVKUWQSVWYQ\TP[VT\__P]\S\[QV]YVVYT__YY`^ZYVVnepv^87A6@F°ÿýÿÿÿÿ÷ýù¢OO4`ŒßýõðÿïŠHLQdBVp€{}|vsww|||xpukohgG/%5&4##"2%=@-whq__mWVhl^rmmhldeoj]wbhY^HIWkƒ}tiPLemliidarKJ‡uwsmvmmkkhynxauohjKXDKCMPip.@:54Juwwm{mfjL[^S\`VV_[OZ_RV`SV^]VZdQRZ[VY\TUZdVXd]``ZY_h\UeX_w[@:..;3Q[ûÿýÿÿüÿüÿõm[L=39Èÿøüín- -, /8>M8flXhklkGcu`z`{dopmp[5dtslfXaodqoojjajoolfemwX":ztruvywqvkbLEAJi>',4-$99.6oz†ksƒv}myPaaVZ`\U^ZOZ]RZbY]Yd`\fcXS`[Q\`Y_iTVYV^gj[`\oe`e[lNL_JBA=CµûÿýÿÿÿþùýÖS_R±f:DXžõÿßcBKTM>A;;>ELLFJJLIGOVKYHJ;%%".& ;F "+($"!%9%$,-]^l_bd_hfc|cpmwbrj‚M0%64-?cimiqltjqknqnnrhgma+ ~smyoyivkVKRPRXWP>ZHBC"'=> rv{fi…y|xwYge[W`^[\W[ZYbc__[Ved]``]XXWduljnbVc]VYkkSl]ki[d^]bfd@L8PHüþÿÿÿÿÿþýÿ¦XNbýß“K@J€ÈÂKI:B?8A891$#=-'.?=O?4$(&%%+ 21'6=BShmhp[__ZbehSxan`I!(3:‚}imlkspjomb_dihikj:ktYtw}iyo{ipnSZam`mYp`KJ<:).7NN-at]cailxntjnic[e]^VVZPOZTOSLQ[WRYWGFTZQFKKLFGUTSPZXRd_NVXe`UZU\IT2K‘ÿÿúÿûÿýÿÿÿp]C™ûúð³dQZauPGDI=+6254-33)%.E/!.O-Pkk`rcq\r_[Z[hpX+ >KH9€rsiihcghZOWUX]dc]8BbbO`fhadcnp^jb`ce`S[dlck_SYMRGNQMUGPRR][aZZRMNLXKKHLFFOMKJWSWVVY\AMWTUJA_ZIV_[X\e_^dbYSZcnc`Z^mSEHTæÿúûÿÿÿÿÿÿåO\JÉÿöõüÒˆSOLTII>82AA:HE9JB9P_I;>?DJLP*/4JIII7HEPL?B)AC.<H:*!M1J^c]\_^a_``cVVXYZfFVPIXccUjd^^^ebb_URSSJMYOTS42KTPQMDHKMNEDMOYZPPXLOdaSJOCB4?G>SHMQYUdcdkmlkkjlseUURGKQGDFQXTZkyzba_U]ffwm[ca^SUYb[ZYUVVcbQZU\ZIOQŽýôÿÿüÿûÿÿÿ°ROdñúïþÿÿëªYZMMJ?;6>ICMPŒÿúÿÿÿüÿüÉQROY;7AMGJLOTPL@@9D>5E<7<<''7@5CHUSJSIG=F_S@J??E.3,EFCGIOVQVUW\`Wajlkln~–€\Q\f_cVh}{{nn}|}f`pgc\WZifjwxyxqgvsf^rgoxTHhVOc]giysmofijnpdrmechimnjedkndQEEH]RPVIMVNJ=CPWQQSMJSGFNA>K<;?D;9D@:FHEEA?7N9CC?EŒÿûøÿýÿöüúÿäfq@ºÿúýþýýþÿáSWT^C0CLPQRMMSOFEEFGE?6386/2V]:1>YRU[YNEEPbI4CEI62>9K-LŒŽ–‘‹…Œ’‡ŽŠ„y™¢wsrdci[l~tjlmdb[^jZLYQNVZgc\XZXS^^`S_baQFFXaPPYj^ijZ_V@NTBLVQRSaZT^ldeYYaUHLAMIO^XTPJPC?Sh_LXOPJ>KF64;8@8:CE?GQROLMI=NQTZU:BOOGUZM9EJJ?>FOlf``fccXbXVS`YSSQ]OTn[QW[_VUZYVbTLHGGWSIC>EQPXQUUYNM`KOWMR]PFUHMMMi`Tib]U=4EE5IFKPQ_ZVTYV_UW^PKQSQQR]YUIRRI?JQX^VLYWHJCBIG>F=8?5L81-:C0Jƒÿööüùü÷ýÿ÷ÿ„nOz÷üùü÷ýýÿ÷¨JPFMHCC?7ABDIFLF=?INPPI?**9PJG`RHHUH@K@CK8B>;BD:FB:liZV]ROTSPSPRXOGMHNLAG?AROXRWMRLJWMTWUO]OBSIMNceWUcfZTSSNS]]KOTTUSVV_Zc\UOSaYIO\MOXaTRVSLRSUXZLS_QF?FFA7;DE57;.CVÊÿùõøûüûüôÿí`uK¢ûûúü÷üùÿòŽLC8D;5=A:BCFKFKE??LWTJD:,)=QA;QXRLNKOKUK@LRDLJGIB3PBBHW,1.,.%,).&#./*BMQhKRBCIXRNODINPSNH>FF176;MIQO@LCSZRTUAKLUFIHMaO_`X[]bdeW^fY^\F^RRLUUNSEP\bSSd_[ISUSILIOTTOZZ[\OFKTLIEBBJD449.,@8-7794C9W{ÿüýûùüùüûùÿÁ_b`Øüüúýúû÷ÿëxE6-4.-907;4=LIADFCEMHHVRE7JUNLPVUSLPFGVMINZLPYGMOPI>3EV=89<948,,*14,%9]€NaDIMMWOA>ONGMOKIG??GD977>8>MKERNQa\FOJQLVPHAOKV`RceOgffm^UcSHCH\SVSPTJORSMISWYOTPPOQDMNQVZPR`OJVSGI@@KB==798)/<4*B.1:8/<>MEËÿ÷óýÿûùúúÿÿqS„þõüùûüø÷ÿÛh;42,1:=-9=35AA;=<6GC>KZZRPQSPFDOTTTIDHNPYMHPSMMEDE;P5/&#++31:8BQ/(2.]cÿÿÿùùüûþüúü÷ZmW°ÿúüøùýõúùÃX59@27@@4/6551)6853:FB=AIRTZTQVOOXRQIESJ5DGGHSQFJOS[PEE>PBJJC?@2;KEPor{~˜ZMDG08B/5;B<9@8.4BIIFGQTL@@?>AAEMEBFNGDMSQUJFMIOC:9." "(+-7<<01%DZ±ÿúóÿýûúûþÿÿÆSm[æÿïþûøþõþ÷¯I1:H<75<-'+"3JBG;:BGD=@[MDGCPPKR]bRNL@EB.0=35BASHD:DTROQME2FUYBOSEORI;S[PQJQ\HTOSG.=9<@925=>AEELA5A[A56*.(,48=DI?;@?:@>ENILTOSNJMQOOME;PW@\B>:-=MH>EdBYWkPCfŽKD| ¥‡Š•fOlPvž\KI;KH?CXIOWJQTI@??3@;+?KL=7.?PMFMPRMIEKGDKGFA@I>HNDD?VPCGJF<97930+545AIJHG>@GB07>HM=AHJGBJJJQBAEDH8*#*A4/,1I‚©ÿýüöûûÿýýúÿèXxI¤ÿÿÿÿÿÿÿÿÿòŠHA@??M7-)$&23=O5/7GI>B<7>FNWOGJIJPFGCIOC?PGNMB1,C:CEB>AFD<:CCE?FX?KT;>C5:MKIE6=EHLID1?QADEH8/466>:--5,"'6QE-@CG9<1660(-+-=:4?9$4DEC@G=<=$"9A=#Gƒ—ÿüûÿùýùýÿüýÿ‚V]pÿÿýÿÿÿÿýÿÿâ^TK?B:2,0$%+9=6&*,&+.6;:GE:6DEN@4* 1<03%'=1/6'>>UQIRK9:1(DTBDD>HH;9TRQ/+0;IFCDWXpeU_PESNEQIINNGO\]ZH.12*9GG988@6!)AG0-$'9CN5VT7E>57:?>5.0+,3A?QF0+0@>2.,9* +4@6.<51*/=F));'+1229BD7/IA<:'$ 9>8.#+""YGTZBK0IH(JC21IL@?OID<>D@)2'7=.5>;/>PI476>@?G>@3.3).I4,84.%3:5,223-@8+064756-4=A0>604*&02'/A$ %>9.*++*"#)17?505;I:4,0)/$5> THWBIF;L85D;1GBK?5968.1J9.Mksotzppi_]pgbdfb]kdijUPQA:DCGDE;.)L_86@,8E,"NLH&&0:8WLC:.5=3G93DL<8HV@EK>B5F151HKF@:5]kjhpyuvurZWURa`W\ttojbg]P8J]RRQ(#,TLD=>Ha'<6jL>1I9A&)7(% "!$%*HD(*5#!  (+0*44*!25$'7)(09:bªýÃl…oÌýÿüøûùøüöÿX51 +*)0<#*$:/(7!"! ",133>8&'%,2(*942B/%32#&!;?$YFS8G77@:8DC&F@;MWLXGB!@J598<2G>1Sepsqmfemjni_aPHYjmgemuhijU@<_Xa`>'@iEV0@YSS@NQdK,GG8:6.% !,,925?'5$#) .*,-%-%$-5"'("c»øí¸ŸØôüùýÿÿùúúÿÿÓ-8&2'"76!&*-.:985'$$!+5?=BB;H9 +-#'/0+*",%&3$>>6?hCEZ'EL7MJFN?DTMLD93041""(0-" '3>?.^[IWGGA%;C?':CRHCTVJQ@S;JP>@Qe_]d_mji[KUcDcdOTpnjhitk`cj\[a:@ 'A-3%' $ !*+/!"1))&*,0.'*8.!X¶øóõïüõÿýùÿþû÷ÿÿÿþõóðôS 28I262%)35.!$-9110:=5C1#!$!&&''5?7'ID>G7LH<8 B8:<=5=P7BZH5?HA9F6E>BJdXLRNKIPX][gQFEKSUFOdqjhSUXaXSdkiW€nn~vunW{jc`>:/1!  "%/)@7),<0GEOc=7402*59(?DGK@L>BH66:CJ@>ISTVJHILPY_kYG=:HPKG^prrUWW]hFdmWjpv‡zŠ…palh]J<0K9RWJD;B8?FCIQAAIQYouqXYdD>JPUdnliRK\UOgZ]_Yn|l‰…‚ujuau/7O1,FJbX.=<!(27JE4=L($)!$*#187%%IšøûùùÿÿÿûûýúûÿÿÿÿÿÿÆ[TH-5E<0&)&!25B15=?6DI."+./3)2/%1# ".##&C /D.BU-+5+99'2?PNRYG?2IRA7/+60+888BC=OY`_eYT=7<1ESQ_bYLB;GCDLXZX_owxbi…gbHE.DX$!'M?F83 7  (049?8&#!    >ñüøõÿÿþÿüüþýù÷ýûÙa52%9:<.'84%-/"*$&-::BC@RJ1?N9)!"'/! #  *?!00 ',4(KR9.37+9K.HKND@JM@3@GP953,'%'!4?@6;IH'#./iƒF0.!  + +  " 6‰ñøõýÿÿÿÿþüýýýÿòŒKTA!5%;B&( )3'06'"#-D<3DQI>ZC&2?5(6%'5)2)  ,!'.--(-=P>64AXBCTH8?:KS@7A<#(/&".B>:;DH>AAKXMHGIVECOSXUEB7IB6IW_TWiuo~„}lc_}I*6ANJMDDK,&.&$68B58CD;CHEECA=:G<6CIJRA6@84;TEIISYjcu|ytoi__::B4(70/-%   $R1  !+!&1$#M@=HUL9B386G=;QFZ<1>.$0&;@E69:76DL[NWhv€uv€€‘}ˆ}v€~~€ˆ€ƒ“Ž•Œ–”…‡…uq}nhi`\W^`nhqls„hmpr|gY]ƒ_fz„‚~ƒ|vskmmiblkoqywsy€‚{uxyŒªÓÒäëéäããâäæäå깑v^: )!,+5?7.3XQ:?,+9.4(#   !.& (67D7:KJP26?1A>3H=PXQF-7PGHA<:F6%<{¤¯·ËÒäñãÝéàáåÖ×ÙàåßáÞÚÛÙÛÖÛÙÜÛÙÝÙ×ÓÓÙÙÛÛÔÙÚãÜÛáßäÝØÙÛÜÑÝßâíÛÛßÝåÒØÝÔ×ÖÛàãÛÚàÌ­£¸ÒÚÜÛÓÔÝÝרÜàåáàÓØÒÑÎÕÔÔÐÒÑÔ××ÕÖäèéàÅ”zR8=-?GC;=/7 74AlY//[R)4 #1(35)-<-  !C ! "'!3/@D262<<8JNLF59MZQI4!)O„  ˜¨ÄÏÉÃÍÑÝÛÕÝÙÚàÙÙâÒÚÔØÒÒÑÒÒÒÍËÓÐÓÎÔÍÐÍÐÓ×ÎÕÍÔÐÐÏÏÚØÐÔÛÐÚÑÑÕÖÎÈÑ×ÓÑÒÎÓÏÍËØÔÐÔÔ¹wu¿×ÍÖÒÒÑÚÑÓÓÔØÔÖØÓÛ×ßÞÝÖØØÚÞÞÚØÞáÝÝâåáУ`9+9>-7I@13-!!*$$$!#!*2319) 56(  C,$:!!?41UTK6:0 '(*$,7>>FceZH=3Mkqoœ²¬²¾ÃÓÞÜßÜÜÖÝßäæçæãÕØÔ×ÛÙÙÕÖÛØÙ×ÜÛÞáÞÜØÚâÛÞÝàãÜÞÝßßàÝÙÞàÞàÞÛéÚÙÝÙÝÜÛáàâÚàÞâÝåçб¾àÜÛÝàßäèßææãÖÖÜÜÛÝáÝÛÜØÖÙÛÚØãàÙßÙÐÜÛññ¬L9L6DE9+*$ +'0'+,*+ (2#%"!%&/'&2+!%/#) -'%  + $1#%:CE8 $!+1)#! 6F8>*.)(2+'$=8;2>KVWM??44BPnŽ£«´«½ÃÅÆ×ÊÆ¿ØàæãìæìéááåãáÞàåÛÙÖÕÚßáääÚÜÜÞ×Ö×ÛÞÚØÖÕ×ÚÛàÜÜÞÞÞßÞÜÜàââââàâàÞÜÛÞàáרçÀžÊáßëéåããâáßàáããááâßáãäâàÞÞÝÜÜàääáÞÛïäàøß:#(><"##'"&''  !3M*I!1 +6%>!!2888,12&),* -B??N[A1&!71IP=534HRAB>SRZO-µêáíäééæìèêëìêéèæÛÙÝâââæäßßßáÞßÝßàÝÝÞÜÜÞßâßÜÝàààßÝÝãæççêæäæèæäãäåêÝéäÁÙìßèæåååçççäåèçäåæãäæçççææåéäÞÞâåååáîîïõ¹%!%75 +.- ! +   +"*;%)?Q1 3411 /. #$%#!/16ILI)!=8E/ &OgYY!@em62ÅàáâíìïåææíñòéåìããæççæéèéæâçéìèåãàáçééèåéæäàææããáàãææéìéæçééèæåäâçåïÞÑæçèêêêçèëîéëíëèëìééêêêëíîííîêçéëëîó÷ñÜüà2&!BJ064+ #$%  !;*?(6#"4 )6>I'#3;%$)*"$2JA10" &*7G74QH@${¨||B1bjp"EØîîâéñíææìñóìåèêéãäìðñòíîìïîòððíéêïñññïññîëïîìîîìíîíîðïðîììíïñòïíê÷ú×åðóóòðïïñôñòôóðóõòòòðïðññðñ÷öôôóñõúúøõî÷‡* 1@B;"$( + 4?$   )*  &A8$8@0AP- &"*6 &"#?=')#-%%'>52%%&=PD+?PC7"zŸˆ”^Tgm[rßåçëéñêëìïñðëäéîéèôöõûôõóõó÷õøù÷öóðòö÷÷÷÷ôööö÷÷öøøöö÷öùõòòõ÷ùúú÷ûôÿçãù÷õóôöøøøööøøö÷ùøôõõôö÷öõøûøôôöö÷þõ÷ùðöµ - !2E8"%MO +  +0 !843W,%( +""0<(("2:&"5.%,#(,,( +KJ0AM9>) %€¢‚‘Ž*>3,@qzde~L"isnoIEÀèççëêææïëäô÷ïðòóó÷úøùûùûùýûúúúýüýþÿùüûýýúüýúúùúù÷öøø÷÷ùúùøùüþù÷ùöÿçôúûüúø÷÷øûøúýûúûýúûûùùùùùûûüûöøøòÿýùóëåàêäÅÓÀϿҋ1,% .]Q" + $1E#!+-&!')&5(2*+0&-(!-S^MTqv„…ެ´›…{mze1[„rv—ÐèÝæèæèåÞíðåçúåïðúûùõõõöùúûøøùúûý÷øüü÷ùø÷÷÷÷øùùùúúûöøùøùüüùøúúýü÷øøüçíûüúüøøôõøöøúúøøú÷öøøôôööùøùøõùúõ÷ëéßÝÛÚÙׯ¼ÇÁºÇäÅxA* '_g3*%"& +  #    >$ #!Xy†‰¡©±¼ÁÅËÉÈËÍÑÞߨÓÜÞÕÝÝÚÖäÞääâãæèôóõ÷ýûúøÿúåöûõùúüøõôôøùúûö÷øùùøõôöøùø÷÷öôö÷ùø÷÷ùùùöö÷÷ùûûüùúüøøíáøúööóø÷÷õ÷úûûùùúùùúùøùúø÷ùøøûùøüõïöö÷õ÷úùû×q¶|¼‹·«Ê(*$ /374//81,20-3!)  + +   5NLR}„¤º•‚~xoy~reUA60/*C`tƒ•¥Ÿ§³½ÂÄÊÏÉË×ÚØÛÛÙÜ×ÕÚÜÜãæáàäêòíñòõööö÷ôùöøüé÷÷ð÷úø÷õóõùûûü÷÷øùøøöôõ÷ø÷÷øøöøøù÷ö÷ùùûøùúûýþûüúúûø÷íÞ÷ú÷öòùùùö÷ùúúúúûøøúúøùú÷ùúùøùùùúúóøøûù÷ôõý÷ðôûôóÿÿÌ3 .2>5*.34061$)4 + ' + +    "5@IDDA@.ˆ‘WUOEA:;1+07:7-Ags„œ©±²¹¼ÀÄÆÊÕÖÙÙÚÜÞàáàÛæââèâíëêèóúöúÿùùôðîîùõôúíû÷ðõüø÷öö÷úûûüøøøø÷ø÷ôô÷øööøùøùùú÷ö÷ùùø÷ùýþþüøýüùùúøîÝ÷üúøôúúù÷øøøùúûüøùûú÷ùûùùùúùúüýøöòøöùù÷ôþïÿýÿýóòîð©,$.:1,6:5-87(#1&$% +  + *A=@;JFKSYQQQOKHFBNDCH95E`sŠ ¨±¶ÁÁÀÃÇËÑÜÜÜÖÜãÞÜßÝãáèåçîîòìõúøþøùúôïððï÷ôöøîýûòóüú÷÷øùûúûýøùø÷öø÷ôô÷øööøùù÷øù÷÷ùûüúøùûûýýûýýøøüúïÞ÷ýüúõúø÷ùø÷÷øúüýùúüú÷ùüúùøúùùýÿúø÷ýø÷öøø÷þùåÔĺªšx<277-(42-+-"&/2)      + 9;<9HDJR>OIGDDC;58@B=5?[uŒž¡§´ÀÇÿÃÎÙÛÙ××Ö×Üáâáàãççæìðò÷ÿÿÿûþùýøóéèé÷òôýÿòùøõôøüùûùöùúúûöùù÷øøöõõøù÷öøúûùøúûûûù÷ùõùøýúÿþúþøû÷ýõÜúþúþöùøùýüûüúÿþÿûÿûýýùÿýøøúúýýýþúöÿüù÷÷ûòÊ®‹rn‚r?,C8,,(3-+)&/5,+,3###    <:9.FBHR8GFHE>=:-5G=,Ces’š ©´ÀÄÃÁÆÎÔØ××ÕÕ×ÙÚÝâçéäëðñóôõùÿûøÿüøøüñðððööøûÿð÷øøùùúùûù÷úúúûøùø÷ùøõõõ÷ùø÷øùú÷÷ùùúúù÷øùøúþäÞöúþøû÷ýõÜøüþööüøÿÿýùùÿ÷ÿüûùüøýþúýûúúúýýüûôîíïòèÛеwzltu{H&.7,'142*,+*48,%0)62" % + >C3'FMOI@SURPMJ@7;@5?hŠ¥¯¹»¼ÂÉÈÑ×ÕÓÕÚÚ×ÜÞÚÛáéìêìò÷øúùõ÷óÿöòùêÄèòó÷õöùüüîöøùúùøùúúøûùùüøøö÷ùøöööö÷øøøøù÷÷ùúûûúùöúøüÿâÛùûýùû÷ý÷ÜøøùúùøÿÐÁÝÿûüøûüûôÿ÷öøþúüúùùúûûùìäÞÖÔÏ‹nryhkT+++%( $#!'(*,+/,&'%$-3*$*49,,& 8.25&ED+4=`•ª¸ÀÆÊÉÏÕÕØÚÕÙÚÜÞáäèëïðòõ÷úüüüü÷òòôôñûá—ZMIXCµÿó÷ùôóýÿóøøúüüøùüúöøúùùøúù÷öööøúùø÷øúúùúûýýüûûüùúöüýùöþýúýü÷úûÚ÷ü÷÷óÿ·m^Å–“žxgÖYÌm‚Èÿ÷øûûøøùúúûù÷ïõôâL"!(! $,+*,&&!-4*!1*,+#&);" (16AIGCFQTQ:AA?;95=\‡—¢¶¾ÊÓÐÌÔÛØÙÝÛÚÜÞáåêîïóùüûúüýüøü÷ðñöùþÛ‹WT\Y[E¬ÿöôõøúöÿòùùúûüùøüúõøûúö÷úøööøøùúúùööøùøøùüüûúûü÷úùýùüüýþúþû÷ùúØö÷ÿõóÿœ¤z³¨} ¦‡»€nÀ]^íÿúøúûøøùúúû÷øòìôèM! !(+(2()$ %$%+(,!#)".*) AEHJD>>=/1/-41:_š®´¼ÌÏÑÏÓ××ÚÝÜßÝåâèñðôýÿÿÿÿÿþùøÿôùüüðÌYW_[f_H¤ÿòò÷üõûûï÷øùøûûøúúöõö÷öø÷öö÷øøøùøööøøùøùùúûüüüüøùúûýüúùüýýûù÷õÙóþõúùÿ‘¹€¸¹{œÀ–wh·qUüÿ÷úúùúúúùúøýøóïñëR"$ !#"(,)0-!'%#"&22,*#!'$)<"  !GL>M3  +0?T‰˜£©´¾ÄËÑÓÔÔØÞààãæçêóñõúøÿÿÿúÿøñùùøÿìîû³p^_YXR_^K þîñöþöüûïõõ÷øûúöøù÷÷øø÷÷÷÷÷øøø÷ø÷ööùúûúüûüýýûúû÷øúûþýýüüýûùøùóÓôúýûøÿ…œ«›~£‘™wt£ŸqÿûýýüúúûûúúýþúïòóèV###$(& %++"%&%!!/+*(+ 2,'/C) 3.FICH>())%4'->Gœš¯»¹ÃÉÌÕØÛØÛçêçìóôõòóûöúÿÿòëùóþÿÿÿ᜗›l^b]TfZ[_N™þïñòüôüýðöö÷ùüúöøøøøùø÷ö÷øùùø÷÷ùøøùúûüüüûûþýúùúøøüýþþÿþýýúøøüóÊ÷÷øöøùƒužÆz«h§Ýu ¼Æ©ÿüÿýüùùúûúùÿùùõôîîi '"$%$') &)+#"!# &.'*#+3048(:='57=IFLHJOHOKP@7Rpœ¤®·ÀÅÍÌÒÝÝßÜßêïïôö÷üùûþòóñóôüúýöçùÔ‹aTYcc_`[dXY`JŽýñôòúõýýñø÷øúýû÷øø÷øø÷õö÷ùùùø÷÷ø÷øùúúûûüùúýýúúüùúüýýýýýüýû÷øýðÀñÿùüúý˽àþ»ºïùÖðïñîþúûýüùøùúúúýüùöòõï^$&&+(--.$% "),*0!)&#(+3=#(;0+)*DIILMKRTQ65Nƒ›¥¯´ÀÇÏÑÒàâãâäçëò÷øôõøõôððíðòþãÓ걑²tT[U]eWW^[SY^]K…úôóøûøüûðøøùùüûù÷÷öö÷÷ö÷øøùùùùùø÷÷øûûûüýûûþþüüþüüüüýüûûüýü÷öüí¹èÿ÷úóøýýÿæ‚™Úÿÿÿûñÿÿþÿýþþûùúûüûüýú÷ò÷íNA!(  "#+%# %'&-0.)"'*3,**1<"$EIEK;"))6JEGFNLKJEIPKGJKHGKMNQNQQSUUSWbec]`[[^]VZYVX\\[Z˜÷ˆ]W[UUKPëóÿôùøöñïòñïïðòøû÷öøöóõõòòñîêççèèëìììëêìíïóñïõõïåßÕËÈÇÇÁ¶“‚…Ÿ´¶½ËÆÆËÈÀÃÓͶ¼Áº±²©´—–Ž”š€€‚wjhh]^QMh”…xU=9LhT717<+! &17/%(0120+,122601188-0E<0;;:QF9@@4093469;n‡tY4&4RT,.A8%$" $*,),;57@;Sp„m0-6AI<31zl};7,5D..4$'1-23*%T‚|`4$(BP1$$<>$$     + $*,77=OJGEKKKB + + 40587@8A?DBIFFDGPLJPONNRQRNNRU_`b_b^^ZRUW[YWadZVJTY`QRHGK:¶ûàʸ¢”‰ŠŽm`txnd^VXXVSQPONNNKJIIIGD@??@?@CDDDBC@@@=65>889=8965?>7:>>;='g‰vK*0-I8;,;geP"     "(& '&&!/&;.oJJKGGL= $$*/459@BBBBBA??8?<3=*Nma+'!#$2&"   + +! %$  !'1<:JV]QW]o`„›‹‡‰‹šŸ˜§MEMNJRA" "$%'+-.146;=@EFAAGCEJQWVV\\UTTPIEJX[[[UVVXWPOXYfYR[]QSU]NYR^QW^jdjSSaa\MLOOMLKJIIJKKIGGIIGDFIIFDFHKJGEEDE?:7679730.+ %" 0&  +  +   !!*01--(#"*1CUjwm„«»‰B1]¥±¶¿»¾¶ÂÁ›¤³Î½ǻÂÁÌÀ (9. +  +  !!"#)030.224;CGDCGE>?FHC=AFIIGCBDEDFIKKJTJLTI/E/8542*223.66.0-0-11211100//121//011*++)'&(*)'&%&%$ + $  +  !# *7KJV[[Y_dR+&6Ncp‡›©·¾ÆÄÊÓ­½Óˆ? & #  + +    + + +    !###!&-&/! + +!#  2°¾Ÿ¢©Dx;r[A8l¥¸JŒÖ„©íöñ¤ÇÄ´¤³¶¥¶¬°³¬Á¼³»©~}T?@B;IC9(. +$ +H,4B6430,45637-  + 0I  k  +%3  >>F310)1W=>2;TR>.%(HgwkZ. + + :AB  + 4³ª‘V(3'*%*Š(HÔúïñõí v“Œ°ÿüÿæÂÀ±˜¬¤–’wŒ‹hlzˆh=,  /66%(8/0?@GCONE16-78=6 +@50A:832*4270+  +0&6A U$ + //  5=0*(35: '92(,($*2-#%11     ROM;   C³²™` )"3y6¿ûÿÿüÿг¹¬´óÿÿûÖ¼ª•£†NBGPNYWRYa[VbXherxw†t’ˆ——¦¥²¬µ£»¿«´ª¤,.9.5' /<1.)1/+'#/*-%   07 +  )  #! +" )E<8B + +XTF?&98%&6;Sy[{±»´±®«­¼¾´¥£ œ¡°­®³±¶¼³®¸½Å¸·¿·¹±¼«³®±«±²¯¬ª³º¤¨À½¾°µ±¨¥)"&%# 03@17''.+0.-,%! 29 K    $&   ;X*  + %&1A-……‚u‹}x}……‘˜Ÿ„ŽŸ›¤£´¨©ª®¥Ÿ›¬›§«§®¡œ•¢¯¦±­¬¬²±«®¼­§¯±¯°®²·¹¹±±¸«­´©­°ª¨¬±«°¯¤¦¦¸²µ¯««³±©!"'$%" (8F7,.%9;71,)#   qK  2#d !%)+(YX?HT]ikjv†Œ‹‚‰•”‘›”¡¤±¸´§¦¡ªª§°±´¼²·À´¨´´¯Áµ¯¯´¦µ§º®¾§­­ª¨¦”¤¯³¯§³­¨ž²·¯ª©«¨¦¥¤©³³§¯»»·²µ¶®¹º«±²¯¯¤­·°®´µ©± ­¯³­®ª©­¹¡¢©799:;6>I8'#):(=$>9797.   + + 4fC ' +Pi: $>2::76() !15.A]`jkw~‰”š¢­ª¬´¹µ·ÂÁÃÉÍÈÅÂÍÉÓ»½Ìô½Åƽ¾»°­·¼½»½­¶š±¸¶²¾»¬¨°³›°¸º¼º¶±ÄÅ´«»°©®À¸±»¥œ¥¬®²º¾¸­¤´ºµº¹¸°¯ž¡¢®²°­¸»¨­«¯­³µ¸¶µ·»ª¼¿´½®§¿»žÂ±³½º³¬®°°°¤ª±¹¶¸½¯©œ­³¯¬¬®«©¨¥¦¯¬··±´°°¶­¬ª¦£¨¯­®¥ž©¨£¤¸»«²ŸªªŸ­™ —¤Ÿ¢‰‡“‰‹™™œ¨²±­ ±·³¹¿¸°³¶¸µ·­±¿ÄÈÈÁ¼»»¯©²³¶µ¶¹°­³°²©µ¶¿¼¼Á»¼¶¶ ²²¾ÀÁΩ¹´ª´±³±¸·¯·µ½£«±»ÆÃµ²²¹®¹º¼³¸·°³°£©®³µ¾Å»¬¢³°ª´¶·¶¯• ®¹·µµ²¼ ¡­¨±¼·¸³²·¿ª¨ÅÁÀ§±¶´™¾¹¼¼¶®­°®°¸©«¿º¶µÁ¶­¡¬¶¬¬¬¬¬¯­£¢¯·¸³·¼¹¶±¾»¸»¸µ´¹²¬ªµ«©µ¯¸´¯–“›”……‹Ž‘Œ‡ƒ¾»¹©²¹˜°¹¹µµ°«¦§ª¤ª¯±ªª¯¯±´¨«º½¾Ä¼¶·¼³­¶·¹¹¾ÀºÃ»³Æ´°··¼ÄÁÀ¾·¶±ºÀÁ·Å¾ÃÁŸµ²¸°¯º»Ã°½¢«¼¿¼Á»¶±¸¹²ºÃº½¾¹®²¬¥­¶´··¶¾»«°³¹º¹¾»¦“ª·´±¶¶¶µ¡¨ª­®´¶·­¨°´¥¬±´»»¶§¡§ÆÁ³Á»§¬«±²­ž ÃÁ¹»ÅÀ¯¥´¹®«°²­«¨§²·¹²¯­­­£Ÿœž›••–’Ž„~…‹„‡††‡…|‡{„„Œ”†‡Š†º³¬ ­´¡²­¶¬¬¥©™¤²¯¬²µ¬ª¬­±¸°²¶½½¾¼¶±¸­¨­®µ¹»¼¹µ¹°¹«±µµºº·±±°¯®²¨±±¾¹µ­±£·¨«®Á¸¦¶¥´œ´©§·´µ£«®¤®­«ª°³°¯©šž°°®¡ž£­­«¯°°¶·¯¡¢¥§ª²³«§¨“¡¡Ÿœ£¡ª°¦¢¡¤«±±°¦°¥‘›žœ–‘™œšš•Œ›”•Ž„‚‡‰ƒ…‡~‚ƒ„~z}~‚ˆ…ƒ‰‡„„…‰‹Œ•™–’“œš ¡Ÿ Ÿ £¨ž™“Žˆ¶¨°¢¥´ª´«­³®¬¬œªµ²®¯®¨©°­³º³±³¶¸À¾¶°¹­¥ª¯³¶¸ºµ±µ´¸¦°¸¸´¶·´¸¸±ª³´¯³³Áº©´ Ÿ§®°½¸«¯ª¶¢ ª°°º³¸¬°±£­­²¬±°ª¤£œœ¦¬°© ¡«®¯µºº¼¸¯™žª²²³¶´±«š¦¤›–˜œ””™”Œ‡‡‹{y€©™‚„~}…†ƒ}†ŒŠŒ†ŽŒ‘—™”‘•™•–˜™Ÿ¡¢§¥ š™œ˜•“’“‰ƒƒ€†…mh]hhaYUPQNJDPK?889;·ª² £®­¬®¤µ¨©©˜£¯¯­¬­ªª­«®°­¬°±µ¾¾´¯º°«µ±°²·¹±¬°°µ¡«±®«³·¯²¶±¤¨«¦´¬º°š¦©•§®¯¯²³±®¥”¢¥°¨ª³³©ª®¨ª§¥¦­¯¯¬¢ŽŒ‘˜¡¡•“”“Ž‹‹Œ…‚€}}|z~‡ˆ‰ƒƒ…‡‡‡‰€ŽŽŒ’“Ÿ”—¤¤Ÿ–¢¥ ™œ¢‰Žƒ„‡Š„yxwrmojicWVYTLKRLEKIIGKNGAGQQOLWSbeqou|w‚‹”©¯©§´´·µ°§“©°«²¦²¨ª­ ¢­«©¨¬­¬¯­ª§¦§°°µ·º´­µ¨£±®«®¶¸±¬®­®—¢®³°´¼³³±©¨³²¯¨¦£¬¯¤…š•™­¯¥£”‹•‘›’””‘Œˆ‡†ƒ†ŒŒˆ‹Š‚„ˆŒ‰‹–””•˜—’’–—˜–™™”“—˜œ¥¤Ÿ˜¡ž“—™™”„‚}rtssnefjb`aXUNC99=><>=6’š™—–Žš˜”•–™š’–‘–“”›˜™š–“”—™œ¡¨¥¡–Ž””•’ˆ‡’—šœœšž˜žž•–œ™Ÿ¡¢¦ª¡˜—›—šœ˜Ÿ™™š–˜“š–˜—œ•˜–“˜—’’‘Ž–•••”’‘““”˜›˜—›—–¥¡¤§¥st~•˜“••’“˜ŸšŸš–””š—¡’˜œœ”’••Š‹ˆ‰‰‡ˆˆ‡‰ƒ}{zwusmhc^__YZ_a]YXZZOOQJILFA?A;8876155>53543645769;6–›œœ˜–Žœž–“””š•˜Ž•’‹“—•–™—–”Œ—¤¢¡Ÿ™Š‰Ž‹‡Šˆ‚…Œ‘“–•’”“˜—”“““–𛢙—£˜’Ž–˜”™™•šš•œ‘š–”——›œ˜›™ž•’‘Ž“•—“‘“““•“‘’––—›˜“’•™–˜™zr{Ž’˜š”‘ŠŒ™‰““ŒŒ†‰Š‚‡}yqtvojdeedd`YYSOOOOSLHB>=??:=@B?<;:89870/3450,/,)0377/4028;?AACGJPSP—™›——‰•™”“”‘–‘’‰Šƒ‰Š‰ŽŽ‹ƒ‚ˆ–šœš–“ŽŠŽ‹ˆ‹‹‡‰Œ‘˜™“”’‘—”‘˜˜”—‹š œ“—‘‘’’‘““ޑޔŒ‘‹ŒŽ””•••›—š“’’ŽŠ‰‹ŒŒ‹‘ŽŽ‹ŒŠ‡‡Œ‹‘’‚{}€€ww{t{{sxruchcafjb_WZZTVOPIJEHC?@=<>8;>;6:9=DAAA>=>@@:;;;;;614565456762568>>:7::>>9=6988;87<:??@CEJKHEDFIIIIILMIDKLJIIKOPMVX^gilrqpwxx~}~{~€€‚‘“’“‡Š’‘Œ‘”•œ›“’ŽŒ“”•”“•“”œš•šŸŸ—‘”š˜‘”’‘Œ’’•“˜”‘ŽŒŽŽ…€€Š‰‡…„…|z‚‚„†xs€yyksuslhgijii\T^b[X]ddYQPPKJMNMKE?>D;=@@::79<7>5<70479:7=D71;267;>36=9?6/8837;;;;;9;?::<<67:>655;423*,,0,*14/-628B3)+75=8526103:<>><<<:;9:;=:878998;945666239:>;>?D@A?@<>EDHEE@EDELGPMPR_gg`gbW]owvt{z}z~ƒ€€†{{€„ƒ|}zx{‚‚€€|„€€„Љ‡}‚~|€|uzy~}€~z{‰‡„‹Š‚‰‘‹†‰Žy€”ކ…}^vŽ„xx‚€{wpqlgjk_QQZWRSMB;6459=BB9828/;5-("-82216938;:58?:FF@EQYY^^ehdkfficontutvtxsu{€zz|„‚Œˆ€„„‡ˆ†…}‚ˆ„‡{†‡‡ƒƒ{„„ƒƒ……ƒ€€~€~~}„‚zst|€zyx‚‡|melvu}xmfpwtnqqokeiˆ}jpwsy{ƒ{pu~tpjq`WTd`VTURMLI?@?><>>;298331/2414539>988;=2$7@ADCDB@KNPNQTVTSRW]blppwwvx€‚€‚}~}zƒ‚‚||…€…Œ‡ƒ•˜’Œˆ‰ŠŠ†ŒŒ‡†…††‹‚x‚ˆ‚„ƒƒƒ„~€zyzzz{zuuvsnobbowqmoqm{~nbbcieb^Y[]YUT[ZZTST`_MOSJRXaWi]PQLBFDCGC>;?D=::;=<8<77967=>@?;;<;<@GLKGDA9>DDBAGOS`\VZc_dnrmimtwejxmuv{w{||}||ˆ‰‚ƒ€€‰„ƒ…„~‚††ƒ……‰……„††‡ŽŽ‰‡Š†~‡ˆ‰…ŠŽŽšŒ„“–Ž’£¢¤¨› Ž”–—”…„އ‰ˆ‡€„ywxl`^__bb_\]ac]ce_ZYVPVXPJX^UWNIKUZXUTVT[Y]TY[::*1?;<;5851/4555365:8<=>FKIEBDDDGQSJKRRXVROQRNJQVSXfkgjffgakvxxvƒ‚‚{~ƒ{{ƒ}}‚{{z€†|…~{„„ƒƒƒƒ…Š”‘…‡ŽŠ‘Љ…‚…ŒŒŠŠ‹‰‘š–‘‘“–””™ž˜„Š™““™Œ‰œ¡¡™Ÿ—¡ —•™ §¡š­ “ ›“—––‹—™—‚~y‚€yrmhZQQOKKR[[QHMR\`]UQQJFMQRUX]ZWUWUPOTXTUX[SVZ*.'(,(*-394=?BB>EHPSUU[`bhlmlklqoptrlmomqssqqttqv}xw‚ƒ€ˆ†‡Š‚‡„…ƒ‰ˆ†ˆŒ‡‚„‚‰€‚Šƒ‰††Š‚‡‹ŒŠ‰““’›™•’–š”œš“”˜›š›–š˜ž™–›¦¤š— œ™œš¡ž– Ÿ”ž’ — › ž›œŸ••££ž ¨œ£˜Œ•šœ“•Œ“‘‹…z}rtom`W[XV[^bcec^YTVY`_UIKTVVaieXS\\b_UNOV^]ZW[ZSUV6:=DMQQR\bgngdojjmxrtluy|zw{€~|ˆ…‚‚z€~{y|ƒ‡€ƒ„…ˆˆ‰ŒˆŒŠ‡‰†ˆ‹—’““”“ŠŠ’•›¥ž›œ› ™—››˜™˜–“ ¦žŸž›œ£¡Ÿ¢¥¢¥¦¨©¦Ÿ¡¡¡£ š‘’›£¡’“›¢ ¢¤ ŸœŸŸ™ŽŽ¤¨‘£›–—š œŒŸž–›•™š—…†‚xpudb^[QJQW`dqeZXXXY[a][ZZVVUONPRUMFPKPNILQOLQSKNEDDEeeknsvrqx{x{†}{v{{ywuuuv‚~{„}„ƒ„…ˆŒŒŠ‰‰…‡†„…ˆŒ‰‹‹„~zszЉˆŒ“Ž›•›š’’š˜Ÿ¥§žŸž ¥¥¢¤”ž¡¢Ÿ£¤£ Ÿ¢§¡œ£œš’œ¤žœ¢˜{•—’Ÿ§¡œŸ¥¦£˜’™–“Ÿž™‹‹ŸœŒ«§œ’§§‘›™–~ƒ Žzšˆ|•‘¢”“›‡…~{|€…vqwfgba`]^eklfSKSUMJNVKDCHGHKIDLLJQUNNOIEJIGINTJJ@FHJp{tq}‚}€wt|{w|~|u|„„~~~‡ƒ†Š„}}{z{ƒ…„ƒ†……ƒ‡ˆ‚~|{‰…†‡‚†€…Ž”Œš‹——Ÿ™•˜Ÿ¬ª¡¡—’™ž—œ¤š£¦§ž¨££¥››™˜¢œš¡ž’‹ŒŒ—œž¢¨­š£ª ™›£ž§Ÿž˜•¢¢„Œ”˜¢Ÿ‰Œ‹z{dlw’š“|y‚‚{…•”ƒtb[\_frmouyyn^E>BIJLCEG@GIC@CHIMH==9FCDFB=ACAADJFCKFJLxpv~pjz|ƒusznsyw|„{rxuoz‚€|{{z‚€„‡…€|z|‚€€‚ƒ‡€…€…ƒ{‚€ˆ†‡Š”—‰š“’‘›Ž’’¢†–•~€›šž£™ ¤  Ÿ œ•˜¢¦©Ÿ£¤ ›–”™£¥¢œž¥¯¥¤Ÿ™ž›Ÿª¬’zƒ”‹¡®°«§‚„Ž›ˆz§ª‹…““£ª“ŽluwtšŠŽ‘zgfjxŠcTYbi`JNXV_[NVTYJGFGKG?HRVK?@;33;ABC?:8AGHGMEDFlijnlmwwy€wrw|vouxqstwv|}zsw€††‹‡…„‚€}}{€ƒ{}„ˆƒ€†„„€rvƒ}~‚Š“˜“‡•¤›ŸŒ™—€‹œ£˜¡£ œž˜’’£ž˜œ“ƒt ¡“–˜›£˜‘¢¤‹š§—’£±›–”Š–¡§ž‘Ž‹–¢”Š‘‘{}˜£—¦¦¯³†¥œ¡’§§Ž”‚}szo‚…llrzw|oj`ggVP]_^k`^e_\PIGLHGA=EJIB=CD=DCJH@9668;9BH?AB@D]MU^Ycme_]bfrhqmajiekopvvv{}{too{ƒ|yurtqs{€xtu€w{„|}p}qq{…’’“”†ˆš ¦Ž›‚„›•€|“›–šš¬Ÿ •”œ“¥›’}r…“’”}|Ž’|ŠŽ–“‘ƒƒˆ‡|}‚…—š—–¤›¦•’””†‡ˆœ‘~z‘¢·¬Ÿ›¢š—š}z}rƒ‰„†‚‚†‚†qiea]adbd`VWXVSKFB@98?@=>BB?BEH=?56>DGE>?JP>>GF>_FOYHERRQ_fbVYcfdde\Ycgejjosqloxy€‚}zz|~€yw{}{wvyxx~‚‚|pno|{‡„~|„‘•‹Žœ””¦®ž‘‡˜˜– ––Œ˜©¥ ž†…–•Š”š‹smyqmmpz‹Œ†”–”ŠŠƒ‰Œ…xˆ—ŽŠ•™¤Ÿ©¤š•‚š¬Œ‘k„w}~‘…˜ž¤›‘›€wx€‰‡|~{mlofZ\]UQ\eZ_TILDEDG=;?@BIJGDC7:3<99;<=@A0.23>DD?YOOQQOMUXNBCBMGCTQWb]RSYWUX[]]bjuspjhmrsy}}shhqy~„{|„|uywzŠ}†„z|ˆ|ˆ“„„–œzŠŽ˜›”«¤ª¦ž™–—ˆŽ€…››„‘“š–‰ˆ™ŸŽšz|‚€zy‚Œ„|‘~yvu„›‚jnrkІ˜œhDcƒq‘’™¨”aŠ™ž˜ƒŽ¢¤¦Ÿ›•h…€{€„…i>BKLQYTCLIHCACBCABC;;BDD@ED>CB?@9ENOICB?=?:=BFHCE=CFMOLG?>?<>767?=D@BKRNYPWTUZ_^cmfivˆyic[QQ[fqro~mr{x~‚wxifk„Š~ŽŠ‚ŠŠ‘Ÿ–}ˆˆ€s€œžŽˆ““o{‰Šˆ}|zlr~‚Š‚‚„”Œ‡†zƒ š†ks†u}’ššŽˆpg}•‘‰Œ…xsr}‰‹rl~ˆ¥¯˜{‡««‘{’¤~’–—Ž–£ˆ{‰‡‡‰…vh_abfbad\k‡†tbT?57AB;518?=@PUD23@CEE>BB95203 ,649.0982NPL@BFGJRKB;F?FRTUXPTLWYTO\mj`ZPFEPZ`bPQYU\mmc`afhmwzy€ƒŠ„~tmn}{oXaq^bWYS,'0Bcr‚†rb[Xss„“qerrv€Š€gz‡¡˜„~ˆ{|ƒdbb^s{l_y˜˜ƒŒš•†rn–’ž€aVW_‚œ~i_jeƒHG_Xx~š”‡vkƒ‚ul{ˆ‹zgc€{e\hjxyhaXIOKKS[THDGN[ifK40/5;>1%/;:67<@BHHJC@?RHVYOHE8685390/7A8=GZYUXXX^_Y[\PRPMPNSM=B;BX_ey{x€„|pliWRTnrf]fvjQ=DWLGNKfev“ŠŠš—|…ˆzmfro~‡sZS]vwk|^WQN^s†˜‰ln€‹‘Šˆ‚~‚€~x…‘‰yzux‚ƒxhh‚~~{xW]UBVNIdx{{lhcEagq]mvu‹Ž€oaLN\`_VQPLPPFLFHHOZWNRMMONF=>GEGEHJOVTH92FACHNKJLG9=@PSBQNFEUWU`osnbWP_[\d\bpvpiooVM<96>LOF=B@CNI;:587<;;9@A:ID<:4++002CI?=AE=61/3E>30*:>9<9--89;FIB<@C<>7:6-.21:@=626./-:GG:<3.@HD5BPZcMKadЉ˜Šs`_mkZZXY[]qgScdFRnr|yttQK`a`cc\etfbb]WKO=KTHUZ{”‡…—ƒt Ž§ —–• œ«£•¤›‰{sl`elibZZos[_ihhPTaaVTZUFDGFB:47AB77@GD:>J<79925;=>AEF@GE>;8;ED;>;<:=:?5',..24>>AGKNX`URc[\\V`wtm]Q<>LWfmhcmg`bcdQMXeh_a[UNE[copeXf“mh]{rv~†…Œ‡”—tŠ€‚„yh`ajmzu_KLavziV[hmifjowrn]h{znebX]^^\Wpxvougpmezyqsyƒ©¡–†Ž¢–˜ž‹•š”vk~†[_db]b~†uzd`XNHDLJPOQQ@))7@DHGFJD47<Qa^^]gkaZ^^ZNdwfZ[LZ[Wrlzsn‹w|‚ls†\s~‰“‡Š“•ˆŒš„††}ŒŸ‘}xl]kv^rn[ccaQ;&$058=87=EEKODAIK<9?::4:C;?BR_SME=FL5,8GYTRWco}}qojxyoYhlq¤¬‘vaj•’yŒšx„Œ…‘Žs`]hkwgcslbeklewj`jWZKAEDAGIIGGD\k`I>JX[TciErzNERkupaWT[g]]u‡Œjg^g…rlYYQSjv^q“—zw|s`KRbbUXq`Nc[D84*:OQYPIAILB61>NJKEA;49FB>;8284*$$4>AC0 %+,;,2.*3<;9,29>?=;;8;967424DFBIO@6A37IRTXVRHGZe^Z\]_d]a^FGaWTRH@CA35ct|d[bk_MICAVvaglVQN,7C=UVTdI(37Pfl[bQ^sy†yloihoisoagc^SbioaFDE951&'-3FBUQLw\‚Šxjmknx£lv—|bC8==+->RirkVL?UW?HNW\kX:OPEPMNF:=KPJ@4.6;?DAOMC?579658=85:=;;=BA:669B5<<7:CF;PNNA668959?P`g^I@?9/)),?S\UVQFLXNYJL^?]†x_\P]†lcarTVHXPOH;Iae`\eiXP\bet~vm_vwUDYkpzvohSRyydOYkrtTe]PUi€{cMUbjfhvo{^B> ,DV{ˆmx‰ƒzt~lj|””š‡u_XYUNL[RMGDA:336;==>832. %&.8?=<8.0?;@DQJ<@IPUOEKPQ\_S?=@?KTbakclsh]WVdtqjhpa\WgS\dcƒ€zxz†šŽ…pjikkkh_^_R_j`u}xc_n‚qj€‚w}r~mtvdlhWifUN`~‹{uk^NOMHTIKZSQom‚ˆdpyˆ‚„•lkeOCh“ŽŠpt~…sdxkt…w{boYsqIBAHTQKC=;6,*1&!'*.68=@AID71)0-6;=A=;26834:211893376??=9@=<>AGJCDH=55DOK?8@JHJDDSULO[]`dillk^]eZROSWYbjmlgXfngWPSb]_i]]`]UUT;Nu–‰‚xgblxww†~rZip{by”qu|xTQOLVLGMJEI?<@3645376;><<@:<380,056*#,4*$,2,+&)1-%&-6B>853:AE@56?CAANZYY[WSNFNOLICC?=;FDEDIJGAHOQGLZU_cqj`RUN]lphSrmyhk[R[tdKKIk…vs_Vfj`K?K[d]b\N@614GNFkŽ€OC>CZnhfgicgtnn„ˆƒjqzqiv}baHMHDM`o‚nl`\^QEAFUj€Œ”‘ˆsxxpeaab\STHORUM>@JMOLA==?@??;MCFDE<6188=;;DE@@94$$% \ No newline at end of file diff --git a/samples/multi_device/vx_lenet.cc b/samples/multi_device/vx_lenet.cc new file mode 100644 index 0000000..853a1b1 --- /dev/null +++ b/samples/multi_device/vx_lenet.cc @@ -0,0 +1,235 @@ +/**************************************************************************** +* Generated by ACUITY 6.6.0 +* Match timvx 1.1.30 +* +* Neural Network appliction network definition source file +****************************************************************************/ +#include "vx_lenet.h" + +#include +#include +#include + +namespace +{ + +char *get_const_data(const char *data_file_name) +{ + std::ifstream fin(data_file_name, std::ios::in | std::ios::binary); + if (fin) + { + fin.seekg(0, std::ios::end); + int size = fin.tellg(); + fin.seekg(0, std::ios::beg); + char *buffer = new char [size]; + std::cout<<"File "<> lenet::input_size_list = {{28 , 28 , 1 , 1}}; +std::vector lenet::input_bytes_list = {28 * 28 * 1 * 1 * sizeof(input_0_type)}; +std::vector> lenet::output_size_list = {{10 , 1}}; +std::vector> lenet::inputs_tensor; +std::vector> lenet::outputs_tensor; + +void lenet::construct_graph + ( + std::shared_ptr graph, + const char *data_file_name + ) +{ + char *coef_data_ptr = get_const_data(data_file_name); + + tim::vx::Quantization convolution_1_out0_quant(tim::vx::QuantType::ASYMMETRIC, 5.209146976470947, 131); + tim::vx::TensorSpec convolution_1_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_1_out0_quant); + auto convolution_1_out0 = graph->CreateTensor(convolution_1_out0_spec); + + tim::vx::ShapeType convolution_1_weight_shape({5,5,1,20}); + tim::vx::Quantization convolution_1_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0033623368944972754, 119); + tim::vx::TensorSpec convolution_1_weight_spec(tim::vx::DataType::UINT8, convolution_1_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_1_weight_quant); + auto convolution_1_weight = graph->CreateTensor(convolution_1_weight_spec, coef_data_ptr + 80); + + tim::vx::ShapeType convolution_1_bias_shape({20}); + tim::vx::Quantization convolution_1_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0033623368944972754, 0); + tim::vx::TensorSpec convolution_1_bias_spec(tim::vx::DataType::INT32, convolution_1_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_1_bias_quant); + auto convolution_1_bias = graph->CreateTensor(convolution_1_bias_spec, coef_data_ptr + 0); + + tim::vx::Quantization pooling_2_out0_quant(tim::vx::QuantType::ASYMMETRIC, 5.209146976470947, 131); + tim::vx::TensorSpec pooling_2_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, pooling_2_out0_quant); + auto pooling_2_out0 = graph->CreateTensor(pooling_2_out0_spec); + + tim::vx::Quantization convolution_3_out0_quant(tim::vx::QuantType::ASYMMETRIC, 10.594023704528809, 145); + tim::vx::TensorSpec convolution_3_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_3_out0_quant); + auto convolution_3_out0 = graph->CreateTensor(convolution_3_out0_spec); + + tim::vx::ShapeType convolution_3_weight_shape({5,5,20,50}); + tim::vx::Quantization convolution_3_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0011482049012556672, 128); + tim::vx::TensorSpec convolution_3_weight_spec(tim::vx::DataType::UINT8, convolution_3_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_3_weight_quant); + auto convolution_3_weight = graph->CreateTensor(convolution_3_weight_spec, coef_data_ptr + 780); + + tim::vx::ShapeType convolution_3_bias_shape({50}); + tim::vx::Quantization convolution_3_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.005981168244034052, 0); + tim::vx::TensorSpec convolution_3_bias_spec(tim::vx::DataType::INT32, convolution_3_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_3_bias_quant); + auto convolution_3_bias = graph->CreateTensor(convolution_3_bias_spec, coef_data_ptr + 580); + + tim::vx::Quantization pooling_4_out0_quant(tim::vx::QuantType::ASYMMETRIC, 10.594023704528809, 145); + tim::vx::TensorSpec pooling_4_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, pooling_4_out0_quant); + auto pooling_4_out0 = graph->CreateTensor(pooling_4_out0_spec); + + tim::vx::Quantization fullconnect_5_out0_quant(tim::vx::QuantType::ASYMMETRIC, 4.961546421051025, 0); + tim::vx::TensorSpec fullconnect_5_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, fullconnect_5_out0_quant); + auto fullconnect_5_out0 = graph->CreateTensor(fullconnect_5_out0_spec); + + tim::vx::ShapeType fullconnect_5_weight_shape({800,500}); + tim::vx::Quantization fullconnect_5_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0007354848785325885, 130); + tim::vx::TensorSpec fullconnect_5_weight_spec(tim::vx::DataType::UINT8, fullconnect_5_weight_shape, + tim::vx::TensorAttribute::CONSTANT, fullconnect_5_weight_quant); + auto fullconnect_5_weight = graph->CreateTensor(fullconnect_5_weight_spec, coef_data_ptr + 27780); + + tim::vx::ShapeType fullconnect_5_bias_shape({500}); + tim::vx::Quantization fullconnect_5_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.007791744079440832, 0); + tim::vx::TensorSpec fullconnect_5_bias_spec(tim::vx::DataType::INT32, fullconnect_5_bias_shape, + tim::vx::TensorAttribute::CONSTANT, fullconnect_5_bias_quant); + auto fullconnect_5_bias = graph->CreateTensor(fullconnect_5_bias_spec, coef_data_ptr + 25780); + + tim::vx::Quantization relu_6_out0_quant(tim::vx::QuantType::ASYMMETRIC, 4.961546421051025, 0); + tim::vx::TensorSpec relu_6_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_6_out0_quant); + auto relu_6_out0 = graph->CreateTensor(relu_6_out0_spec); + + tim::vx::Quantization fullconnect_7_out0_quant(tim::vx::QuantType::ASYMMETRIC, 16.404624938964844, 81); + tim::vx::TensorSpec fullconnect_7_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, fullconnect_7_out0_quant); + auto fullconnect_7_out0 = graph->CreateTensor(fullconnect_7_out0_spec); + + tim::vx::ShapeType fullconnect_7_weight_shape({500,10}); + tim::vx::Quantization fullconnect_7_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0015804264694452286, 135); + tim::vx::TensorSpec fullconnect_7_weight_spec(tim::vx::DataType::UINT8, fullconnect_7_weight_shape, + tim::vx::TensorAttribute::CONSTANT, fullconnect_7_weight_quant); + auto fullconnect_7_weight = graph->CreateTensor(fullconnect_7_weight_spec, coef_data_ptr + 427820); + + tim::vx::ShapeType fullconnect_7_bias_shape({10}); + tim::vx::Quantization fullconnect_7_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00784135889261961, 0); + tim::vx::TensorSpec fullconnect_7_bias_spec(tim::vx::DataType::INT32, fullconnect_7_bias_shape, + tim::vx::TensorAttribute::CONSTANT, fullconnect_7_bias_quant); + auto fullconnect_7_bias = graph->CreateTensor(fullconnect_7_bias_spec, coef_data_ptr + 427780); + + tim::vx::ShapeType input_0_shape({28,28,1,1}); + tim::vx::Quantization input_0_quant(tim::vx::QuantType::ASYMMETRIC, 1.0, 0); + tim::vx::TensorSpec input_0_spec(tim::vx::DataType::UINT8, input_0_shape, + tim::vx::TensorAttribute::INPUT, input_0_quant); + auto input_0 = graph->CreateTensor(input_0_spec); + + tim::vx::ShapeType output_9_shape({10,1}); + tim::vx::TensorSpec output_9_spec(tim::vx::DataType::FLOAT32, output_9_shape, + tim::vx::TensorAttribute::OUTPUT); + auto output_9 = graph->CreateTensor(output_9_spec); + + lenet::inputs_tensor.push_back(input_0); + + lenet::outputs_tensor.push_back(output_9); + + auto convolution_1 = graph->CreateOperation ( + 20, // weights + tim::vx::PadType::NONE, // padding + std::array({5,5}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto pooling_2 = graph->CreateOperation ( + tim::vx::PoolType::MAX, // type + std::array({0,0,0,0}), // pad + std::array({2,2}), // ksize + std::array({2,2}), // stride + tim::vx::RoundType::CEILING); // round_type + + auto convolution_3 = graph->CreateOperation ( + 50, // weights + tim::vx::PadType::NONE, // padding + std::array({5,5}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto pooling_4 = graph->CreateOperation ( + tim::vx::PoolType::MAX, // type + std::array({0,0,0,0}), // pad + std::array({2,2}), // ksize + std::array({2,2}), // stride + tim::vx::RoundType::CEILING); // round_type + + auto fullconnect_5 = graph->CreateOperation ( + 2, // axis + 500); // weights + + auto relu_6 = graph->CreateOperation (); + + auto fullconnect_7 = graph->CreateOperation ( + 0, // axis + 10); // weights + + auto softmax_8 = graph->CreateOperation ( + 1.0, // beta + 0); // axis + + (*convolution_1) + .BindInputs({input_0, convolution_1_weight, convolution_1_bias}) + .BindOutputs({convolution_1_out0}); + + (*pooling_2) + .BindInputs({convolution_1_out0}) + .BindOutputs({pooling_2_out0}); + + (*convolution_3) + .BindInputs({pooling_2_out0, convolution_3_weight, convolution_3_bias}) + .BindOutputs({convolution_3_out0}); + + (*pooling_4) + .BindInputs({convolution_3_out0}) + .BindOutputs({pooling_4_out0}); + + (*fullconnect_5) + .BindInputs({pooling_4_out0, fullconnect_5_weight, fullconnect_5_bias}) + .BindOutputs({fullconnect_5_out0}); + + (*relu_6) + .BindInputs({fullconnect_5_out0}) + .BindOutputs({relu_6_out0}); + + (*fullconnect_7) + .BindInputs({relu_6_out0, fullconnect_7_weight, fullconnect_7_bias}) + .BindOutputs({fullconnect_7_out0}); + + (*softmax_8) + .BindInputs({fullconnect_7_out0}) + .BindOutputs({output_9}); + + free(coef_data_ptr); +} + +} // namespace acuitylite diff --git a/samples/multi_device/vx_lenet.h b/samples/multi_device/vx_lenet.h new file mode 100644 index 0000000..94406f6 --- /dev/null +++ b/samples/multi_device/vx_lenet.h @@ -0,0 +1,34 @@ +/**************************************************************************** +* Generated by ACUITY 6.6.0 +* Match timvx 1.1.30 +* +* Neural Network appliction network definition header file +****************************************************************************/ +#ifndef _VX_LENET_H +#define _VX_LENET_H + +#include "tim/vx/operation.h" +#include "tim/vx/tensor.h" +#include "tim/vx/graph.h" +#include "tim/vx/ops.h" + +namespace acuitylite +{ + +class lenet +{ + public: + using input_0_type = uint8_t; + using output_0_type = uint16_t; + static std::vector> input_size_list; + static std::vector input_bytes_list; + static std::vector> output_size_list; + static std::vector> inputs_tensor; + static std::vector> outputs_tensor; + + static void construct_graph(std::shared_ptr graph, const char *data_file_name); +}; + +} // namespace acuitylite + +#endif diff --git a/samples/multi_device/vx_mobilenet.cc b/samples/multi_device/vx_mobilenet.cc new file mode 100644 index 0000000..fb55383 --- /dev/null +++ b/samples/multi_device/vx_mobilenet.cc @@ -0,0 +1,977 @@ +/**************************************************************************** +* Generated by ACUITY 6.6.0 +* Match timvx 1.1.30 +* +* Neural Network appliction network definition source file +****************************************************************************/ +#include "vx_mobilenet.h" + +#include +#include +#include + +namespace +{ + +char *get_const_data(const char *data_file_name) +{ + std::ifstream fin(data_file_name, std::ios::in | std::ios::binary); + if (fin) + { + fin.seekg(0, std::ios::end); + int size = fin.tellg(); + fin.seekg(0, std::ios::beg); + char *buffer = new char [size]; + std::cout<<"File "<> mobilenet::input_size_list = {{3 , 224 , 224 , 1}}; +std::vector mobilenet::input_bytes_list = {3 * 224 * 224 * 1 * sizeof(input_0_type)}; +std::vector> mobilenet::output_size_list = {{1001 , 1}}; +std::vector> mobilenet::inputs_tensor; +std::vector> mobilenet::outputs_tensor; + +void mobilenet::construct_graph + ( + std::shared_ptr graph, + const char *data_file_name + ) +{ + char *coef_data_ptr = get_const_data(data_file_name); + + tim::vx::Quantization permute_33_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.0078125, 128); + tim::vx::TensorSpec permute_33_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, permute_33_out0_quant); + auto permute_33_out0 = graph->CreateTensor(permute_33_out0_spec); + + tim::vx::Quantization convolution_1_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_1_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_1_out0_quant); + auto convolution_1_out0 = graph->CreateTensor(convolution_1_out0_spec); + + tim::vx::ShapeType convolution_1_weight_shape({3,3,3,32}); + tim::vx::Quantization convolution_1_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.02182667888700962, 151); + tim::vx::TensorSpec convolution_1_weight_spec(tim::vx::DataType::UINT8, convolution_1_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_1_weight_quant); + auto convolution_1_weight = graph->CreateTensor(convolution_1_weight_spec, coef_data_ptr + 1029156); + + tim::vx::ShapeType convolution_1_bias_shape({32}); + tim::vx::Quantization convolution_1_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00017052092880476266, 0); + tim::vx::TensorSpec convolution_1_bias_spec(tim::vx::DataType::INT32, convolution_1_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_1_bias_quant); + auto convolution_1_bias = graph->CreateTensor(convolution_1_bias_spec, coef_data_ptr + 1029028); + + tim::vx::Quantization convolution_2_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_2_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_2_out0_quant); + auto convolution_2_out0 = graph->CreateTensor(convolution_2_out0_spec); + + tim::vx::ShapeType convolution_2_weight_shape({3,3,32,1}); + tim::vx::Quantization convolution_2_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.29219913482666016, 110); + tim::vx::TensorSpec convolution_2_weight_spec(tim::vx::DataType::UINT8, convolution_2_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_2_weight_quant); + auto convolution_2_weight = graph->CreateTensor(convolution_2_weight_spec, coef_data_ptr + 3172868); + + tim::vx::ShapeType convolution_2_bias_shape({32}); + tim::vx::Quantization convolution_2_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.006875000894069672, 0); + tim::vx::TensorSpec convolution_2_bias_spec(tim::vx::DataType::INT32, convolution_2_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_2_bias_quant); + auto convolution_2_bias = graph->CreateTensor(convolution_2_bias_spec, coef_data_ptr + 3172740); + + tim::vx::Quantization convolution_3_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_3_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_3_out0_quant); + auto convolution_3_out0 = graph->CreateTensor(convolution_3_out0_spec); + + tim::vx::ShapeType convolution_3_weight_shape({1,1,32,64}); + tim::vx::Quantization convolution_3_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.030420949682593346, 121); + tim::vx::TensorSpec convolution_3_weight_spec(tim::vx::DataType::UINT8, convolution_3_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_3_weight_quant); + auto convolution_3_weight = graph->CreateTensor(convolution_3_weight_spec, coef_data_ptr + 3173412); + + tim::vx::ShapeType convolution_3_bias_shape({64}); + tim::vx::Quantization convolution_3_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0007157585932873189, 0); + tim::vx::TensorSpec convolution_3_bias_spec(tim::vx::DataType::INT32, convolution_3_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_3_bias_quant); + auto convolution_3_bias = graph->CreateTensor(convolution_3_bias_spec, coef_data_ptr + 3173156); + + tim::vx::Quantization convolution_4_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_4_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_4_out0_quant); + auto convolution_4_out0 = graph->CreateTensor(convolution_4_out0_spec); + + tim::vx::ShapeType convolution_4_weight_shape({3,3,64,1}); + tim::vx::Quantization convolution_4_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.40277284383773804, 130); + tim::vx::TensorSpec convolution_4_weight_spec(tim::vx::DataType::UINT8, convolution_4_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_4_weight_quant); + auto convolution_4_weight = graph->CreateTensor(convolution_4_weight_spec, coef_data_ptr + 3175716); + + tim::vx::ShapeType convolution_4_bias_shape({64}); + tim::vx::Quantization convolution_4_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.009476631879806519, 0); + tim::vx::TensorSpec convolution_4_bias_spec(tim::vx::DataType::INT32, convolution_4_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_4_bias_quant); + auto convolution_4_bias = graph->CreateTensor(convolution_4_bias_spec, coef_data_ptr + 3175460); + + tim::vx::Quantization convolution_5_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_5_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_5_out0_quant); + auto convolution_5_out0 = graph->CreateTensor(convolution_5_out0_spec); + + tim::vx::ShapeType convolution_5_weight_shape({1,1,64,128}); + tim::vx::Quantization convolution_5_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.015148180536925793, 104); + tim::vx::TensorSpec convolution_5_weight_spec(tim::vx::DataType::UINT8, convolution_5_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_5_weight_quant); + auto convolution_5_weight = graph->CreateTensor(convolution_5_weight_spec, coef_data_ptr + 3176804); + + tim::vx::ShapeType convolution_5_bias_shape({128}); + tim::vx::Quantization convolution_5_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00035641362774185836, 0); + tim::vx::TensorSpec convolution_5_bias_spec(tim::vx::DataType::INT32, convolution_5_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_5_bias_quant); + auto convolution_5_bias = graph->CreateTensor(convolution_5_bias_spec, coef_data_ptr + 3176292); + + tim::vx::Quantization convolution_6_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_6_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_6_out0_quant); + auto convolution_6_out0 = graph->CreateTensor(convolution_6_out0_spec); + + tim::vx::ShapeType convolution_6_weight_shape({3,3,128,1}); + tim::vx::Quantization convolution_6_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.06053730100393295, 160); + tim::vx::TensorSpec convolution_6_weight_spec(tim::vx::DataType::UINT8, convolution_6_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_6_weight_quant); + auto convolution_6_weight = graph->CreateTensor(convolution_6_weight_spec, coef_data_ptr + 3185508); + + tim::vx::ShapeType convolution_6_bias_shape({128}); + tim::vx::Quantization convolution_6_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00142435054294765, 0); + tim::vx::TensorSpec convolution_6_bias_spec(tim::vx::DataType::INT32, convolution_6_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_6_bias_quant); + auto convolution_6_bias = graph->CreateTensor(convolution_6_bias_spec, coef_data_ptr + 3184996); + + tim::vx::Quantization convolution_7_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_7_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_7_out0_quant); + auto convolution_7_out0 = graph->CreateTensor(convolution_7_out0_spec); + + tim::vx::ShapeType convolution_7_weight_shape({1,1,128,128}); + tim::vx::Quantization convolution_7_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.013755458407104015, 94); + tim::vx::TensorSpec convolution_7_weight_spec(tim::vx::DataType::UINT8, convolution_7_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_7_weight_quant); + auto convolution_7_weight = graph->CreateTensor(convolution_7_weight_spec, coef_data_ptr + 3187172); + + tim::vx::ShapeType convolution_7_bias_shape({128}); + tim::vx::Quantization convolution_7_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00032364498474635184, 0); + tim::vx::TensorSpec convolution_7_bias_spec(tim::vx::DataType::INT32, convolution_7_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_7_bias_quant); + auto convolution_7_bias = graph->CreateTensor(convolution_7_bias_spec, coef_data_ptr + 3186660); + + tim::vx::Quantization convolution_8_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_8_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_8_out0_quant); + auto convolution_8_out0 = graph->CreateTensor(convolution_8_out0_spec); + + tim::vx::ShapeType convolution_8_weight_shape({3,3,128,1}); + tim::vx::Quantization convolution_8_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.01675807684659958, 123); + tim::vx::TensorSpec convolution_8_weight_spec(tim::vx::DataType::UINT8, convolution_8_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_8_weight_quant); + auto convolution_8_weight = graph->CreateTensor(convolution_8_weight_spec, coef_data_ptr + 3204068); + + tim::vx::ShapeType convolution_8_bias_shape({128}); + tim::vx::Quantization convolution_8_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0003942920302506536, 0); + tim::vx::TensorSpec convolution_8_bias_spec(tim::vx::DataType::INT32, convolution_8_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_8_bias_quant); + auto convolution_8_bias = graph->CreateTensor(convolution_8_bias_spec, coef_data_ptr + 3203556); + + tim::vx::Quantization convolution_9_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_9_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_9_out0_quant); + auto convolution_9_out0 = graph->CreateTensor(convolution_9_out0_spec); + + tim::vx::ShapeType convolution_9_weight_shape({1,1,128,256}); + tim::vx::Quantization convolution_9_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.007601846940815449, 151); + tim::vx::TensorSpec convolution_9_weight_spec(tim::vx::DataType::UINT8, convolution_9_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_9_weight_quant); + auto convolution_9_weight = graph->CreateTensor(convolution_9_weight_spec, coef_data_ptr + 3206244); + + tim::vx::ShapeType convolution_9_bias_shape({256}); + tim::vx::Quantization convolution_9_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00017885988927446306, 0); + tim::vx::TensorSpec convolution_9_bias_spec(tim::vx::DataType::INT32, convolution_9_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_9_bias_quant); + auto convolution_9_bias = graph->CreateTensor(convolution_9_bias_spec, coef_data_ptr + 3205220); + + tim::vx::Quantization convolution_10_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_10_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_10_out0_quant); + auto convolution_10_out0 = graph->CreateTensor(convolution_10_out0_spec); + + tim::vx::ShapeType convolution_10_weight_shape({3,3,256,1}); + tim::vx::Quantization convolution_10_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.04105526953935623, 129); + tim::vx::TensorSpec convolution_10_weight_spec(tim::vx::DataType::UINT8, convolution_10_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_10_weight_quant); + auto convolution_10_weight = graph->CreateTensor(convolution_10_weight_spec, coef_data_ptr + 3240036); + + tim::vx::ShapeType convolution_10_bias_shape({256}); + tim::vx::Quantization convolution_10_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0009659679490141571, 0); + tim::vx::TensorSpec convolution_10_bias_spec(tim::vx::DataType::INT32, convolution_10_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_10_bias_quant); + auto convolution_10_bias = graph->CreateTensor(convolution_10_bias_spec, coef_data_ptr + 3239012); + + tim::vx::Quantization convolution_11_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_11_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_11_out0_quant); + auto convolution_11_out0 = graph->CreateTensor(convolution_11_out0_spec); + + tim::vx::ShapeType convolution_11_weight_shape({1,1,256,256}); + tim::vx::Quantization convolution_11_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.006431614048779011, 122); + tim::vx::TensorSpec convolution_11_weight_spec(tim::vx::DataType::UINT8, convolution_11_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_11_weight_quant); + auto convolution_11_weight = graph->CreateTensor(convolution_11_weight_spec, coef_data_ptr + 3243364); + + tim::vx::ShapeType convolution_11_bias_shape({256}); + tim::vx::Quantization convolution_11_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00015132607950363308, 0); + tim::vx::TensorSpec convolution_11_bias_spec(tim::vx::DataType::INT32, convolution_11_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_11_bias_quant); + auto convolution_11_bias = graph->CreateTensor(convolution_11_bias_spec, coef_data_ptr + 3242340); + + tim::vx::Quantization convolution_12_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_12_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_12_out0_quant); + auto convolution_12_out0 = graph->CreateTensor(convolution_12_out0_spec); + + tim::vx::ShapeType convolution_12_weight_shape({3,3,256,1}); + tim::vx::Quantization convolution_12_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.013460792601108551, 122); + tim::vx::TensorSpec convolution_12_weight_spec(tim::vx::DataType::UINT8, convolution_12_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_12_weight_quant); + auto convolution_12_weight = graph->CreateTensor(convolution_12_weight_spec, coef_data_ptr + 3309924); + + tim::vx::ShapeType convolution_12_bias_shape({256}); + tim::vx::Quantization convolution_12_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0003167119575664401, 0); + tim::vx::TensorSpec convolution_12_bias_spec(tim::vx::DataType::INT32, convolution_12_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_12_bias_quant); + auto convolution_12_bias = graph->CreateTensor(convolution_12_bias_spec, coef_data_ptr + 3308900); + + tim::vx::Quantization convolution_13_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_13_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_13_out0_quant); + auto convolution_13_out0 = graph->CreateTensor(convolution_13_out0_spec); + + tim::vx::ShapeType convolution_13_weight_shape({1,1,256,512}); + tim::vx::Quantization convolution_13_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.00917122047394514, 109); + tim::vx::TensorSpec convolution_13_weight_spec(tim::vx::DataType::UINT8, convolution_13_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_13_weight_quant); + auto convolution_13_weight = graph->CreateTensor(convolution_13_weight_spec, coef_data_ptr + 3314276); + + tim::vx::ShapeType convolution_13_bias_shape({512}); + tim::vx::Quantization convolution_13_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00021578485029749572, 0); + tim::vx::TensorSpec convolution_13_bias_spec(tim::vx::DataType::INT32, convolution_13_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_13_bias_quant); + auto convolution_13_bias = graph->CreateTensor(convolution_13_bias_spec, coef_data_ptr + 3312228); + + tim::vx::Quantization convolution_14_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_14_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_14_out0_quant); + auto convolution_14_out0 = graph->CreateTensor(convolution_14_out0_spec); + + tim::vx::ShapeType convolution_14_weight_shape({3,3,512,1}); + tim::vx::Quantization convolution_14_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.036934755742549896, 132); + tim::vx::TensorSpec convolution_14_weight_spec(tim::vx::DataType::UINT8, convolution_14_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_14_weight_quant); + auto convolution_14_weight = graph->CreateTensor(convolution_14_weight_spec, coef_data_ptr + 3447396); + + tim::vx::ShapeType convolution_14_bias_shape({512}); + tim::vx::Quantization convolution_14_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0008690185495652258, 0); + tim::vx::TensorSpec convolution_14_bias_spec(tim::vx::DataType::INT32, convolution_14_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_14_bias_quant); + auto convolution_14_bias = graph->CreateTensor(convolution_14_bias_spec, coef_data_ptr + 3445348); + + tim::vx::Quantization convolution_15_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_15_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_15_out0_quant); + auto convolution_15_out0 = graph->CreateTensor(convolution_15_out0_spec); + + tim::vx::ShapeType convolution_15_weight_shape({1,1,512,512}); + tim::vx::Quantization convolution_15_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.005300046876072884, 140); + tim::vx::TensorSpec convolution_15_weight_spec(tim::vx::DataType::UINT8, convolution_15_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_15_weight_quant); + auto convolution_15_weight = graph->CreateTensor(convolution_15_weight_spec, coef_data_ptr + 3454052); + + tim::vx::ShapeType convolution_15_bias_shape({512}); + tim::vx::Quantization convolution_15_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00012470202636905015, 0); + tim::vx::TensorSpec convolution_15_bias_spec(tim::vx::DataType::INT32, convolution_15_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_15_bias_quant); + auto convolution_15_bias = graph->CreateTensor(convolution_15_bias_spec, coef_data_ptr + 3452004); + + tim::vx::Quantization convolution_16_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_16_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_16_out0_quant); + auto convolution_16_out0 = graph->CreateTensor(convolution_16_out0_spec); + + tim::vx::ShapeType convolution_16_weight_shape({3,3,512,1}); + tim::vx::Quantization convolution_16_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.042609862983226776, 94); + tim::vx::TensorSpec convolution_16_weight_spec(tim::vx::DataType::UINT8, convolution_16_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_16_weight_quant); + auto convolution_16_weight = graph->CreateTensor(convolution_16_weight_spec, coef_data_ptr + 3718244); + + tim::vx::ShapeType convolution_16_bias_shape({512}); + tim::vx::Quantization convolution_16_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0010025452356785536, 0); + tim::vx::TensorSpec convolution_16_bias_spec(tim::vx::DataType::INT32, convolution_16_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_16_bias_quant); + auto convolution_16_bias = graph->CreateTensor(convolution_16_bias_spec, coef_data_ptr + 3716196); + + tim::vx::Quantization convolution_17_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_17_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_17_out0_quant); + auto convolution_17_out0 = graph->CreateTensor(convolution_17_out0_spec); + + tim::vx::ShapeType convolution_17_weight_shape({1,1,512,512}); + tim::vx::Quantization convolution_17_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0049632852897048, 127); + tim::vx::TensorSpec convolution_17_weight_spec(tim::vx::DataType::UINT8, convolution_17_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_17_weight_quant); + auto convolution_17_weight = graph->CreateTensor(convolution_17_weight_spec, coef_data_ptr + 3724900); + + tim::vx::ShapeType convolution_17_bias_shape({512}); + tim::vx::Quantization convolution_17_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00011677854490699247, 0); + tim::vx::TensorSpec convolution_17_bias_spec(tim::vx::DataType::INT32, convolution_17_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_17_bias_quant); + auto convolution_17_bias = graph->CreateTensor(convolution_17_bias_spec, coef_data_ptr + 3722852); + + tim::vx::Quantization convolution_18_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_18_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_18_out0_quant); + auto convolution_18_out0 = graph->CreateTensor(convolution_18_out0_spec); + + tim::vx::ShapeType convolution_18_weight_shape({3,3,512,1}); + tim::vx::Quantization convolution_18_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.028358859941363335, 127); + tim::vx::TensorSpec convolution_18_weight_spec(tim::vx::DataType::UINT8, convolution_18_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_18_weight_quant); + auto convolution_18_weight = graph->CreateTensor(convolution_18_weight_spec, coef_data_ptr + 3989092); + + tim::vx::ShapeType convolution_18_bias_shape({512}); + tim::vx::Quantization convolution_18_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0006672407616861165, 0); + tim::vx::TensorSpec convolution_18_bias_spec(tim::vx::DataType::INT32, convolution_18_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_18_bias_quant); + auto convolution_18_bias = graph->CreateTensor(convolution_18_bias_spec, coef_data_ptr + 3987044); + + tim::vx::Quantization convolution_19_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_19_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_19_out0_quant); + auto convolution_19_out0 = graph->CreateTensor(convolution_19_out0_spec); + + tim::vx::ShapeType convolution_19_weight_shape({1,1,512,512}); + tim::vx::Quantization convolution_19_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.007770895957946777, 89); + tim::vx::TensorSpec convolution_19_weight_spec(tim::vx::DataType::UINT8, convolution_19_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_19_weight_quant); + auto convolution_19_weight = graph->CreateTensor(convolution_19_weight_spec, coef_data_ptr + 3995748); + + tim::vx::ShapeType convolution_19_bias_shape({512}); + tim::vx::Quantization convolution_19_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00018283734971191734, 0); + tim::vx::TensorSpec convolution_19_bias_spec(tim::vx::DataType::INT32, convolution_19_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_19_bias_quant); + auto convolution_19_bias = graph->CreateTensor(convolution_19_bias_spec, coef_data_ptr + 3993700); + + tim::vx::Quantization convolution_20_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_20_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_20_out0_quant); + auto convolution_20_out0 = graph->CreateTensor(convolution_20_out0_spec); + + tim::vx::ShapeType convolution_20_weight_shape({3,3,512,1}); + tim::vx::Quantization convolution_20_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.024329448118805885, 134); + tim::vx::TensorSpec convolution_20_weight_spec(tim::vx::DataType::UINT8, convolution_20_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_20_weight_quant); + auto convolution_20_weight = graph->CreateTensor(convolution_20_weight_spec, coef_data_ptr + 1032068); + + tim::vx::ShapeType convolution_20_bias_shape({512}); + tim::vx::Quantization convolution_20_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0005724348593503237, 0); + tim::vx::TensorSpec convolution_20_bias_spec(tim::vx::DataType::INT32, convolution_20_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_20_bias_quant); + auto convolution_20_bias = graph->CreateTensor(convolution_20_bias_spec, coef_data_ptr + 1030020); + + tim::vx::Quantization convolution_21_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_21_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_21_out0_quant); + auto convolution_21_out0 = graph->CreateTensor(convolution_21_out0_spec); + + tim::vx::ShapeType convolution_21_weight_shape({1,1,512,512}); + tim::vx::Quantization convolution_21_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.009658650495111942, 99); + tim::vx::TensorSpec convolution_21_weight_spec(tim::vx::DataType::UINT8, convolution_21_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_21_weight_quant); + auto convolution_21_weight = graph->CreateTensor(convolution_21_weight_spec, coef_data_ptr + 1038724); + + tim::vx::ShapeType convolution_21_bias_shape({512}); + tim::vx::Quantization convolution_21_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00022725333110429347, 0); + tim::vx::TensorSpec convolution_21_bias_spec(tim::vx::DataType::INT32, convolution_21_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_21_bias_quant); + auto convolution_21_bias = graph->CreateTensor(convolution_21_bias_spec, coef_data_ptr + 1036676); + + tim::vx::Quantization convolution_22_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_22_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_22_out0_quant); + auto convolution_22_out0 = graph->CreateTensor(convolution_22_out0_spec); + + tim::vx::ShapeType convolution_22_weight_shape({3,3,512,1}); + tim::vx::Quantization convolution_22_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.019366811960935593, 106); + tim::vx::TensorSpec convolution_22_weight_spec(tim::vx::DataType::UINT8, convolution_22_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_22_weight_quant); + auto convolution_22_weight = graph->CreateTensor(convolution_22_weight_spec, coef_data_ptr + 1302916); + + tim::vx::ShapeType convolution_22_bias_shape({512}); + tim::vx::Quantization convolution_22_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0004556716012302786, 0); + tim::vx::TensorSpec convolution_22_bias_spec(tim::vx::DataType::INT32, convolution_22_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_22_bias_quant); + auto convolution_22_bias = graph->CreateTensor(convolution_22_bias_spec, coef_data_ptr + 1300868); + + tim::vx::Quantization convolution_23_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_23_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_23_out0_quant); + auto convolution_23_out0 = graph->CreateTensor(convolution_23_out0_spec); + + tim::vx::ShapeType convolution_23_weight_shape({1,1,512,512}); + tim::vx::Quantization convolution_23_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.005446993745863438, 153); + tim::vx::TensorSpec convolution_23_weight_spec(tim::vx::DataType::UINT8, convolution_23_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_23_weight_quant); + auto convolution_23_weight = graph->CreateTensor(convolution_23_weight_spec, coef_data_ptr + 1309572); + + tim::vx::ShapeType convolution_23_bias_shape({512}); + tim::vx::Quantization convolution_23_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00012815947411581874, 0); + tim::vx::TensorSpec convolution_23_bias_spec(tim::vx::DataType::INT32, convolution_23_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_23_bias_quant); + auto convolution_23_bias = graph->CreateTensor(convolution_23_bias_spec, coef_data_ptr + 1307524); + + tim::vx::Quantization convolution_24_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_24_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_24_out0_quant); + auto convolution_24_out0 = graph->CreateTensor(convolution_24_out0_spec); + + tim::vx::ShapeType convolution_24_weight_shape({3,3,512,1}); + tim::vx::Quantization convolution_24_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.007835594937205315, 126); + tim::vx::TensorSpec convolution_24_weight_spec(tim::vx::DataType::UINT8, convolution_24_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_24_weight_quant); + auto convolution_24_weight = graph->CreateTensor(convolution_24_weight_spec, coef_data_ptr + 1573764); + + tim::vx::ShapeType convolution_24_bias_shape({512}); + tim::vx::Quantization convolution_24_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00018435961101204157, 0); + tim::vx::TensorSpec convolution_24_bias_spec(tim::vx::DataType::INT32, convolution_24_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_24_bias_quant); + auto convolution_24_bias = graph->CreateTensor(convolution_24_bias_spec, coef_data_ptr + 1571716); + + tim::vx::Quantization convolution_25_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_25_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_25_out0_quant); + auto convolution_25_out0 = graph->CreateTensor(convolution_25_out0_spec); + + tim::vx::ShapeType convolution_25_weight_shape({1,1,512,1024}); + tim::vx::Quantization convolution_25_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.00817922968417406, 130); + tim::vx::TensorSpec convolution_25_weight_spec(tim::vx::DataType::UINT8, convolution_25_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_25_weight_quant); + auto convolution_25_weight = graph->CreateTensor(convolution_25_weight_spec, coef_data_ptr + 1582468); + + tim::vx::ShapeType convolution_25_bias_shape({1024}); + tim::vx::Quantization convolution_25_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0001924448151839897, 0); + tim::vx::TensorSpec convolution_25_bias_spec(tim::vx::DataType::INT32, convolution_25_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_25_bias_quant); + auto convolution_25_bias = graph->CreateTensor(convolution_25_bias_spec, coef_data_ptr + 1578372); + + tim::vx::Quantization convolution_26_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_26_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_26_out0_quant); + auto convolution_26_out0 = graph->CreateTensor(convolution_26_out0_spec); + + tim::vx::ShapeType convolution_26_weight_shape({3,3,1024,1}); + tim::vx::Quantization convolution_26_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.12616927921772003, 211); + tim::vx::TensorSpec convolution_26_weight_spec(tim::vx::DataType::UINT8, convolution_26_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_26_weight_quant); + auto convolution_26_weight = graph->CreateTensor(convolution_26_weight_spec, coef_data_ptr + 2110852); + + tim::vx::ShapeType convolution_26_bias_shape({1024}); + tim::vx::Quantization convolution_26_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.002968570915982127, 0); + tim::vx::TensorSpec convolution_26_bias_spec(tim::vx::DataType::INT32, convolution_26_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_26_bias_quant); + auto convolution_26_bias = graph->CreateTensor(convolution_26_bias_spec, coef_data_ptr + 2106756); + + tim::vx::Quantization convolution_27_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec convolution_27_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_27_out0_quant); + auto convolution_27_out0 = graph->CreateTensor(convolution_27_out0_spec); + + tim::vx::ShapeType convolution_27_weight_shape({1,1,1024,1024}); + tim::vx::Quantization convolution_27_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.018048152327537537, 95); + tim::vx::TensorSpec convolution_27_weight_spec(tim::vx::DataType::UINT8, convolution_27_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_27_weight_quant); + auto convolution_27_weight = graph->CreateTensor(convolution_27_weight_spec, coef_data_ptr + 2124164); + + tim::vx::ShapeType convolution_27_bias_shape({1024}); + tim::vx::Quantization convolution_27_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.000424645550083369, 0); + tim::vx::TensorSpec convolution_27_bias_spec(tim::vx::DataType::INT32, convolution_27_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_27_bias_quant); + auto convolution_27_bias = graph->CreateTensor(convolution_27_bias_spec, coef_data_ptr + 2120068); + + tim::vx::Quantization pooling_28_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023528477177023888, 0); + tim::vx::TensorSpec pooling_28_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, pooling_28_out0_quant); + auto pooling_28_out0 = graph->CreateTensor(pooling_28_out0_spec); + + tim::vx::Quantization convolution_29_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.16609922051429749, 66); + tim::vx::TensorSpec convolution_29_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_29_out0_quant); + auto convolution_29_out0 = graph->CreateTensor(convolution_29_out0_spec); + + tim::vx::ShapeType convolution_29_weight_shape({1,1,1024,1001}); + tim::vx::Quantization convolution_29_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.004986600950360298, 74); + tim::vx::TensorSpec convolution_29_weight_spec(tim::vx::DataType::UINT8, convolution_29_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_29_weight_quant); + auto convolution_29_weight = graph->CreateTensor(convolution_29_weight_spec, coef_data_ptr + 4004); + + tim::vx::ShapeType convolution_29_bias_shape({1001}); + tim::vx::Quantization convolution_29_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00011732713028322905, 0); + tim::vx::TensorSpec convolution_29_bias_spec(tim::vx::DataType::INT32, convolution_29_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_29_bias_quant); + auto convolution_29_bias = graph->CreateTensor(convolution_29_bias_spec, coef_data_ptr + 0); + + tim::vx::Quantization permute_34_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.16609922051429749, 66); + tim::vx::TensorSpec permute_34_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, permute_34_out0_quant); + auto permute_34_out0 = graph->CreateTensor(permute_34_out0_spec); + + tim::vx::Quantization reshape_30_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.16609922051429749, 66); + tim::vx::TensorSpec reshape_30_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, reshape_30_out0_quant); + auto reshape_30_out0 = graph->CreateTensor(reshape_30_out0_spec); + + tim::vx::ShapeType input_0_shape({3,224,224,1}); + tim::vx::Quantization input_0_quant(tim::vx::QuantType::ASYMMETRIC, 0.0078125, 128); + tim::vx::TensorSpec input_0_spec(tim::vx::DataType::UINT8, input_0_shape, + tim::vx::TensorAttribute::INPUT, input_0_quant); + auto input_0 = graph->CreateTensor(input_0_spec); + + tim::vx::ShapeType output_32_shape({1001,1}); + // tim::vx::Quantization output_32_quant(tim::vx::QuantType::ASYMMETRIC, 0.00390625, 0); + // tim::vx::TensorSpec output_32_spec(tim::vx::DataType::UINT8, output_32_shape, + // tim::vx::TensorAttribute::OUTPUT, output_32_quant); + tim::vx::TensorSpec output_32_spec(tim::vx::DataType::FLOAT32, output_32_shape, + tim::vx::TensorAttribute::OUTPUT); + auto output_32 = graph->CreateTensor(output_32_spec); + + mobilenet::inputs_tensor.push_back(input_0); + + mobilenet::outputs_tensor.push_back(output_32); + + auto permute_33 = graph->CreateOperation ( + std::vector({1,2,0,3})); // perm + + auto convolution_1 = graph->CreateOperation ( + 32, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({2,2}), // stride + std::array({1,1}), // dilation + std::array({0,1,0,1}), // pad + 0); // multiplier + + auto convolution_2 = graph->CreateOperation ( + 32, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 1.0); // multiplier + + auto convolution_3 = graph->CreateOperation ( + 64, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto convolution_4 = graph->CreateOperation ( + 64, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({2,2}), // stride + std::array({1,1}), // dilation + std::array({0,1,0,1}), // pad + 1.0); // multiplier + + auto convolution_5 = graph->CreateOperation ( + 128, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto convolution_6 = graph->CreateOperation ( + 128, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 1.0); // multiplier + + auto convolution_7 = graph->CreateOperation ( + 128, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto convolution_8 = graph->CreateOperation ( + 128, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({2,2}), // stride + std::array({1,1}), // dilation + std::array({0,1,0,1}), // pad + 1.0); // multiplier + + auto convolution_9 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto convolution_10 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 1.0); // multiplier + + auto convolution_11 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto convolution_12 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({2,2}), // stride + std::array({1,1}), // dilation + std::array({0,1,0,1}), // pad + 1.0); // multiplier + + auto convolution_13 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto convolution_14 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 1.0); // multiplier + + auto convolution_15 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto convolution_16 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 1.0); // multiplier + + auto convolution_17 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto convolution_18 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 1.0); // multiplier + + auto convolution_19 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto convolution_20 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 1.0); // multiplier + + auto convolution_21 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto convolution_22 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 1.0); // multiplier + + auto convolution_23 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto convolution_24 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({2,2}), // stride + std::array({1,1}), // dilation + std::array({0,1,0,1}), // pad + 1.0); // multiplier + + auto convolution_25 = graph->CreateOperation ( + 1024, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto convolution_26 = graph->CreateOperation ( + 1024, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 1.0); // multiplier + + auto convolution_27 = graph->CreateOperation ( + 1024, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto pooling_28 = graph->CreateOperation ( + tim::vx::PoolType::AVG, // type + std::array({0,0,0,0}), // pad + std::array({7,7}), // ksize + std::array({2,2}), // stride + tim::vx::RoundType::FLOOR); // round_type + + auto convolution_29 = graph->CreateOperation ( + 1001, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto permute_34 = graph->CreateOperation ( + std::vector({2,0,1,3})); // perm + + auto reshape_30 = graph->CreateOperation ( + std::vector({1001,1})); // size + + auto softmax_31 = graph->CreateOperation ( + 1.0, // beta + 0); // axis + + (*permute_33) + .BindInputs({input_0}) + .BindOutputs({permute_33_out0}); + + (*convolution_1) + .BindInputs({permute_33_out0, convolution_1_weight, convolution_1_bias}) + .BindOutputs({convolution_1_out0}); + + (*convolution_2) + .BindInputs({convolution_1_out0, convolution_2_weight, convolution_2_bias}) + .BindOutputs({convolution_2_out0}); + + (*convolution_3) + .BindInputs({convolution_2_out0, convolution_3_weight, convolution_3_bias}) + .BindOutputs({convolution_3_out0}); + + (*convolution_4) + .BindInputs({convolution_3_out0, convolution_4_weight, convolution_4_bias}) + .BindOutputs({convolution_4_out0}); + + (*convolution_5) + .BindInputs({convolution_4_out0, convolution_5_weight, convolution_5_bias}) + .BindOutputs({convolution_5_out0}); + + (*convolution_6) + .BindInputs({convolution_5_out0, convolution_6_weight, convolution_6_bias}) + .BindOutputs({convolution_6_out0}); + + (*convolution_7) + .BindInputs({convolution_6_out0, convolution_7_weight, convolution_7_bias}) + .BindOutputs({convolution_7_out0}); + + (*convolution_8) + .BindInputs({convolution_7_out0, convolution_8_weight, convolution_8_bias}) + .BindOutputs({convolution_8_out0}); + + (*convolution_9) + .BindInputs({convolution_8_out0, convolution_9_weight, convolution_9_bias}) + .BindOutputs({convolution_9_out0}); + + (*convolution_10) + .BindInputs({convolution_9_out0, convolution_10_weight, convolution_10_bias}) + .BindOutputs({convolution_10_out0}); + + (*convolution_11) + .BindInputs({convolution_10_out0, convolution_11_weight, convolution_11_bias}) + .BindOutputs({convolution_11_out0}); + + (*convolution_12) + .BindInputs({convolution_11_out0, convolution_12_weight, convolution_12_bias}) + .BindOutputs({convolution_12_out0}); + + (*convolution_13) + .BindInputs({convolution_12_out0, convolution_13_weight, convolution_13_bias}) + .BindOutputs({convolution_13_out0}); + + (*convolution_14) + .BindInputs({convolution_13_out0, convolution_14_weight, convolution_14_bias}) + .BindOutputs({convolution_14_out0}); + + (*convolution_15) + .BindInputs({convolution_14_out0, convolution_15_weight, convolution_15_bias}) + .BindOutputs({convolution_15_out0}); + + (*convolution_16) + .BindInputs({convolution_15_out0, convolution_16_weight, convolution_16_bias}) + .BindOutputs({convolution_16_out0}); + + (*convolution_17) + .BindInputs({convolution_16_out0, convolution_17_weight, convolution_17_bias}) + .BindOutputs({convolution_17_out0}); + + (*convolution_18) + .BindInputs({convolution_17_out0, convolution_18_weight, convolution_18_bias}) + .BindOutputs({convolution_18_out0}); + + (*convolution_19) + .BindInputs({convolution_18_out0, convolution_19_weight, convolution_19_bias}) + .BindOutputs({convolution_19_out0}); + + (*convolution_20) + .BindInputs({convolution_19_out0, convolution_20_weight, convolution_20_bias}) + .BindOutputs({convolution_20_out0}); + + (*convolution_21) + .BindInputs({convolution_20_out0, convolution_21_weight, convolution_21_bias}) + .BindOutputs({convolution_21_out0}); + + (*convolution_22) + .BindInputs({convolution_21_out0, convolution_22_weight, convolution_22_bias}) + .BindOutputs({convolution_22_out0}); + + (*convolution_23) + .BindInputs({convolution_22_out0, convolution_23_weight, convolution_23_bias}) + .BindOutputs({convolution_23_out0}); + + (*convolution_24) + .BindInputs({convolution_23_out0, convolution_24_weight, convolution_24_bias}) + .BindOutputs({convolution_24_out0}); + + (*convolution_25) + .BindInputs({convolution_24_out0, convolution_25_weight, convolution_25_bias}) + .BindOutputs({convolution_25_out0}); + + (*convolution_26) + .BindInputs({convolution_25_out0, convolution_26_weight, convolution_26_bias}) + .BindOutputs({convolution_26_out0}); + + (*convolution_27) + .BindInputs({convolution_26_out0, convolution_27_weight, convolution_27_bias}) + .BindOutputs({convolution_27_out0}); + + (*pooling_28) + .BindInputs({convolution_27_out0}) + .BindOutputs({pooling_28_out0}); + + (*convolution_29) + .BindInputs({pooling_28_out0, convolution_29_weight, convolution_29_bias}) + .BindOutputs({convolution_29_out0}); + + (*permute_34) + .BindInputs({convolution_29_out0}) + .BindOutputs({permute_34_out0}); + + (*reshape_30) + .BindInputs({permute_34_out0}) + .BindOutputs({reshape_30_out0}); + + (*softmax_31) + .BindInputs({reshape_30_out0}) + .BindOutputs({output_32}); + + free(coef_data_ptr); +} + +} // namespace acuitylite diff --git a/samples/multi_device/vx_mobilenet.h b/samples/multi_device/vx_mobilenet.h new file mode 100644 index 0000000..1f81509 --- /dev/null +++ b/samples/multi_device/vx_mobilenet.h @@ -0,0 +1,34 @@ +/**************************************************************************** +* Generated by ACUITY 6.6.0 +* Match timvx 1.1.30 +* +* Neural Network appliction network definition header file +****************************************************************************/ +#ifndef _VX_MOBILENET_H +#define _VX_MOBILENET_H + +#include "tim/vx/operation.h" +#include "tim/vx/tensor.h" +#include "tim/vx/graph.h" +#include "tim/vx/ops.h" + +namespace acuitylite +{ + +class mobilenet +{ + public: + using input_0_type = uint8_t; + using output_0_type = uint8_t; + static std::vector> input_size_list; + static std::vector input_bytes_list; + static std::vector> output_size_list; + static std::vector> inputs_tensor; + static std::vector> outputs_tensor; + + static void construct_graph(std::shared_ptr graph, const char *data_file_name); +}; + +} // namespace acuitylite + +#endif diff --git a/samples/multi_device/vx_resnet50.cc b/samples/multi_device/vx_resnet50.cc new file mode 100644 index 0000000..7011e3e --- /dev/null +++ b/samples/multi_device/vx_resnet50.cc @@ -0,0 +1,2416 @@ +/**************************************************************************** +* Generated by ACUITY 6.6.0 +* Match timvx 1.1.30 +* +* Neural Network appliction network definition source file +****************************************************************************/ +#include "vx_resnet50.h" + +#include +#include +#include + +namespace +{ + +char *get_const_data(const char *data_file_name) +{ + std::ifstream fin(data_file_name, std::ios::in | std::ios::binary); + if (fin) + { + fin.seekg(0, std::ios::end); + int size = fin.tellg(); + fin.seekg(0, std::ios::beg); + char *buffer = new char [size]; + std::cout<<"File "<> resnet50::input_size_list = {{224 , 224 , 3 , 1}}; +std::vector resnet50::input_bytes_list = {224 * 224 * 3 * 1 * sizeof(input_0_type)}; +std::vector> resnet50::output_size_list = {{1000 , 1}}; +std::vector> resnet50::inputs_tensor; +std::vector> resnet50::outputs_tensor; + +void resnet50::construct_graph + ( + std::shared_ptr graph, + const char *data_file_name + ) +{ + char *coef_data_ptr = get_const_data(data_file_name); + + tim::vx::Quantization convolution_1_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.06513651460409164, 0); + tim::vx::TensorSpec convolution_1_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_1_out0_quant); + auto convolution_1_out0 = graph->CreateTensor(convolution_1_out0_spec); + + tim::vx::ShapeType convolution_1_weight_shape({7,7,3,64}); + tim::vx::Quantization convolution_1_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0001737833663355559, 133); + tim::vx::TensorSpec convolution_1_weight_spec(tim::vx::DataType::UINT8, convolution_1_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_1_weight_quant); + auto convolution_1_weight = graph->CreateTensor(convolution_1_weight_spec, coef_data_ptr + 256); + + tim::vx::ShapeType convolution_1_bias_shape({64}); + tim::vx::Quantization convolution_1_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0001737833663355559, 0); + tim::vx::TensorSpec convolution_1_bias_spec(tim::vx::DataType::INT32, convolution_1_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_1_bias_quant); + auto convolution_1_bias = graph->CreateTensor(convolution_1_bias_spec, coef_data_ptr + 0); + + tim::vx::Quantization relu_4_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.06513651460409164, 0); + tim::vx::TensorSpec relu_4_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_4_out0_quant); + auto relu_4_out0 = graph->CreateTensor(relu_4_out0_spec); + + tim::vx::Quantization pooling_5_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.06513651460409164, 0); + tim::vx::TensorSpec pooling_5_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, pooling_5_out0_quant); + auto pooling_5_out0 = graph->CreateTensor(pooling_5_out0_spec); + + tim::vx::Quantization convolution_9_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.036857619881629944, 0); + tim::vx::TensorSpec convolution_9_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_9_out0_quant); + auto convolution_9_out0 = graph->CreateTensor(convolution_9_out0_spec); + + tim::vx::ShapeType convolution_9_weight_shape({1,1,64,64}); + tim::vx::Quantization convolution_9_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.004803352523595095, 175); + tim::vx::TensorSpec convolution_9_weight_spec(tim::vx::DataType::UINT8, convolution_9_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_9_weight_quant); + auto convolution_9_weight = graph->CreateTensor(convolution_9_weight_spec, coef_data_ptr + 2095712); + + tim::vx::ShapeType convolution_9_bias_shape({64}); + tim::vx::Quantization convolution_9_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00031287362799048424, 0); + tim::vx::TensorSpec convolution_9_bias_spec(tim::vx::DataType::INT32, convolution_9_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_9_bias_quant); + auto convolution_9_bias = graph->CreateTensor(convolution_9_bias_spec, coef_data_ptr + 2095456); + + tim::vx::Quantization relu_12_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.036857619881629944, 0); + tim::vx::TensorSpec relu_12_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_12_out0_quant); + auto relu_12_out0 = graph->CreateTensor(relu_12_out0_spec); + + tim::vx::Quantization convolution_13_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.06513651460409164, 0); + tim::vx::TensorSpec convolution_13_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_13_out0_quant); + auto convolution_13_out0 = graph->CreateTensor(convolution_13_out0_spec); + + tim::vx::ShapeType convolution_13_weight_shape({3,3,64,64}); + tim::vx::Quantization convolution_13_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0022254411596804857, 118); + tim::vx::TensorSpec convolution_13_weight_spec(tim::vx::DataType::UINT8, convolution_13_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_13_weight_quant); + auto convolution_13_weight = graph->CreateTensor(convolution_13_weight_spec, coef_data_ptr + 2100064); + + tim::vx::ShapeType convolution_13_bias_shape({64}); + tim::vx::Quantization convolution_13_bias_quant(tim::vx::QuantType::ASYMMETRIC, 8.202446770155802e-05, 0); + tim::vx::TensorSpec convolution_13_bias_spec(tim::vx::DataType::INT32, convolution_13_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_13_bias_quant); + auto convolution_13_bias = graph->CreateTensor(convolution_13_bias_spec, coef_data_ptr + 2099808); + + tim::vx::Quantization relu_16_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.06513651460409164, 0); + tim::vx::TensorSpec relu_16_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_16_out0_quant); + auto relu_16_out0 = graph->CreateTensor(relu_16_out0_spec); + + tim::vx::Quantization concat_231_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.06513651460409164, 0); + tim::vx::TensorSpec concat_231_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, concat_231_out0_quant); + auto concat_231_out0 = graph->CreateTensor(concat_231_out0_spec); + + tim::vx::Quantization convolution_232_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.05724356323480606, 0); + tim::vx::TensorSpec convolution_232_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_232_out0_quant); + auto convolution_232_out0 = graph->CreateTensor(convolution_232_out0_spec); + + tim::vx::ShapeType convolution_232_weight_shape({1,1,128,256}); + tim::vx::Quantization convolution_232_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.013699613511562347, 128); + tim::vx::TensorSpec convolution_232_weight_spec(tim::vx::DataType::UINT8, convolution_232_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_232_weight_quant); + auto convolution_232_weight = graph->CreateTensor(convolution_232_weight_spec, coef_data_ptr + 2062688); + + tim::vx::ShapeType convolution_232_bias_shape({256}); + tim::vx::Quantization convolution_232_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0008923450950533152, 0); + tim::vx::TensorSpec convolution_232_bias_spec(tim::vx::DataType::INT32, convolution_232_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_232_bias_quant); + auto convolution_232_bias = graph->CreateTensor(convolution_232_bias_spec, coef_data_ptr + 2061664); + + tim::vx::Quantization relu_21_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.05724356323480606, 0); + tim::vx::TensorSpec relu_21_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_21_out0_quant); + auto relu_21_out0 = graph->CreateTensor(relu_21_out0_spec); + + tim::vx::Quantization convolution_22_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.041045863181352615, 0); + tim::vx::TensorSpec convolution_22_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_22_out0_quant); + auto convolution_22_out0 = graph->CreateTensor(convolution_22_out0_spec); + + tim::vx::ShapeType convolution_22_weight_shape({1,1,256,64}); + tim::vx::Quantization convolution_22_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0044895135797560215, 147); + tim::vx::TensorSpec convolution_22_weight_spec(tim::vx::DataType::UINT8, convolution_22_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_22_weight_quant); + auto convolution_22_weight = graph->CreateTensor(convolution_22_weight_spec, coef_data_ptr + 2137184); + + tim::vx::ShapeType convolution_22_bias_shape({64}); + tim::vx::Quantization convolution_22_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0002569957578089088, 0); + tim::vx::TensorSpec convolution_22_bias_spec(tim::vx::DataType::INT32, convolution_22_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_22_bias_quant); + auto convolution_22_bias = graph->CreateTensor(convolution_22_bias_spec, coef_data_ptr + 2136928); + + tim::vx::Quantization relu_25_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.041045863181352615, 0); + tim::vx::TensorSpec relu_25_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_25_out0_quant); + auto relu_25_out0 = graph->CreateTensor(relu_25_out0_spec); + + tim::vx::Quantization convolution_26_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.033543918281793594, 0); + tim::vx::TensorSpec convolution_26_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_26_out0_quant); + auto convolution_26_out0 = graph->CreateTensor(convolution_26_out0_spec); + + tim::vx::ShapeType convolution_26_weight_shape({3,3,64,64}); + tim::vx::Quantization convolution_26_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0041098142974078655, 108); + tim::vx::TensorSpec convolution_26_weight_spec(tim::vx::DataType::UINT8, convolution_26_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_26_weight_quant); + auto convolution_26_weight = graph->CreateTensor(convolution_26_weight_spec, coef_data_ptr + 2153824); + + tim::vx::ShapeType convolution_26_bias_shape({64}); + tim::vx::Quantization convolution_26_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00016869087994564325, 0); + tim::vx::TensorSpec convolution_26_bias_spec(tim::vx::DataType::INT32, convolution_26_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_26_bias_quant); + auto convolution_26_bias = graph->CreateTensor(convolution_26_bias_spec, coef_data_ptr + 2153568); + + tim::vx::Quantization relu_29_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.033543918281793594, 0); + tim::vx::TensorSpec relu_29_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_29_out0_quant); + auto relu_29_out0 = graph->CreateTensor(relu_29_out0_spec); + + tim::vx::Quantization convolution_30_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.09178134053945541, 133); + tim::vx::TensorSpec convolution_30_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_30_out0_quant); + auto convolution_30_out0 = graph->CreateTensor(convolution_30_out0_spec); + + tim::vx::ShapeType convolution_30_weight_shape({1,1,64,256}); + tim::vx::Quantization convolution_30_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.01000303216278553, 111); + tim::vx::TensorSpec convolution_30_weight_spec(tim::vx::DataType::UINT8, convolution_30_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_30_weight_quant); + auto convolution_30_weight = graph->CreateTensor(convolution_30_weight_spec, coef_data_ptr + 2191712); + + tim::vx::ShapeType convolution_30_bias_shape({256}); + tim::vx::Quantization convolution_30_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00033554088440723717, 0); + tim::vx::TensorSpec convolution_30_bias_spec(tim::vx::DataType::INT32, convolution_30_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_30_bias_quant); + auto convolution_30_bias = graph->CreateTensor(convolution_30_bias_spec, coef_data_ptr + 2190688); + + tim::vx::Quantization add_33_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.05750435218214989, 0); + tim::vx::TensorSpec add_33_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, add_33_out0_quant); + auto add_33_out0 = graph->CreateTensor(add_33_out0_spec); + + tim::vx::Quantization relu_34_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.05750435218214989, 0); + tim::vx::TensorSpec relu_34_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_34_out0_quant); + auto relu_34_out0 = graph->CreateTensor(relu_34_out0_spec); + + tim::vx::Quantization convolution_35_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.03251691907644272, 0); + tim::vx::TensorSpec convolution_35_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_35_out0_quant); + auto convolution_35_out0 = graph->CreateTensor(convolution_35_out0_spec); + + tim::vx::ShapeType convolution_35_weight_shape({1,1,256,64}); + tim::vx::Quantization convolution_35_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0024991377722471952, 114); + tim::vx::TensorSpec convolution_35_weight_spec(tim::vx::DataType::UINT8, convolution_35_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_35_weight_quant); + auto convolution_35_weight = graph->CreateTensor(convolution_35_weight_spec, coef_data_ptr + 2208352); + + tim::vx::ShapeType convolution_35_bias_shape({64}); + tim::vx::Quantization convolution_35_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00014371129509527236, 0); + tim::vx::TensorSpec convolution_35_bias_spec(tim::vx::DataType::INT32, convolution_35_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_35_bias_quant); + auto convolution_35_bias = graph->CreateTensor(convolution_35_bias_spec, coef_data_ptr + 2208096); + + tim::vx::Quantization relu_38_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.03251691907644272, 0); + tim::vx::TensorSpec relu_38_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_38_out0_quant); + auto relu_38_out0 = graph->CreateTensor(relu_38_out0_spec); + + tim::vx::Quantization convolution_39_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.03924860432744026, 0); + tim::vx::TensorSpec convolution_39_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_39_out0_quant); + auto convolution_39_out0 = graph->CreateTensor(convolution_39_out0_spec); + + tim::vx::ShapeType convolution_39_weight_shape({3,3,64,64}); + tim::vx::Quantization convolution_39_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0032176407985389233, 128); + tim::vx::TensorSpec convolution_39_weight_spec(tim::vx::DataType::UINT8, convolution_39_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_39_weight_quant); + auto convolution_39_weight = graph->CreateTensor(convolution_39_weight_spec, coef_data_ptr + 2224992); + + tim::vx::ShapeType convolution_39_bias_shape({64}); + tim::vx::Quantization convolution_39_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00010462776845088229, 0); + tim::vx::TensorSpec convolution_39_bias_spec(tim::vx::DataType::INT32, convolution_39_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_39_bias_quant); + auto convolution_39_bias = graph->CreateTensor(convolution_39_bias_spec, coef_data_ptr + 2224736); + + tim::vx::Quantization relu_42_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.03924860432744026, 0); + tim::vx::TensorSpec relu_42_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_42_out0_quant); + auto relu_42_out0 = graph->CreateTensor(relu_42_out0_spec); + + tim::vx::Quantization convolution_43_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.08585022389888763, 141); + tim::vx::TensorSpec convolution_43_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_43_out0_quant); + auto convolution_43_out0 = graph->CreateTensor(convolution_43_out0_spec); + + tim::vx::ShapeType convolution_43_weight_shape({1,1,64,256}); + tim::vx::Quantization convolution_43_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.008329907432198524, 108); + tim::vx::TensorSpec convolution_43_weight_spec(tim::vx::DataType::UINT8, convolution_43_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_43_weight_quant); + auto convolution_43_weight = graph->CreateTensor(convolution_43_weight_spec, coef_data_ptr + 2262880); + + tim::vx::ShapeType convolution_43_bias_shape({256}); + tim::vx::Quantization convolution_43_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.000326937239151448, 0); + tim::vx::TensorSpec convolution_43_bias_spec(tim::vx::DataType::INT32, convolution_43_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_43_bias_quant); + auto convolution_43_bias = graph->CreateTensor(convolution_43_bias_spec, coef_data_ptr + 2261856); + + tim::vx::Quantization add_46_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.05717748776078224, 0); + tim::vx::TensorSpec add_46_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, add_46_out0_quant); + auto add_46_out0 = graph->CreateTensor(add_46_out0_spec); + + tim::vx::Quantization relu_47_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.05717748776078224, 0); + tim::vx::TensorSpec relu_47_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_47_out0_quant); + auto relu_47_out0 = graph->CreateTensor(relu_47_out0_spec); + + tim::vx::Quantization convolution_48_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.10674899071455002, 117); + tim::vx::TensorSpec convolution_48_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_48_out0_quant); + auto convolution_48_out0 = graph->CreateTensor(convolution_48_out0_spec); + + tim::vx::ShapeType convolution_48_weight_shape({1,1,256,512}); + tim::vx::Quantization convolution_48_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.006406530737876892, 147); + tim::vx::TensorSpec convolution_48_weight_spec(tim::vx::DataType::UINT8, convolution_48_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_48_weight_quant); + auto convolution_48_weight = graph->CreateTensor(convolution_48_weight_spec, coef_data_ptr + 2281312); + + tim::vx::ShapeType convolution_48_bias_shape({512}); + tim::vx::Quantization convolution_48_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0003663093375507742, 0); + tim::vx::TensorSpec convolution_48_bias_spec(tim::vx::DataType::INT32, convolution_48_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_48_bias_quant); + auto convolution_48_bias = graph->CreateTensor(convolution_48_bias_spec, coef_data_ptr + 2279264); + + tim::vx::Quantization convolution_51_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.025104688480496407, 0); + tim::vx::TensorSpec convolution_51_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_51_out0_quant); + auto convolution_51_out0 = graph->CreateTensor(convolution_51_out0_spec); + + tim::vx::ShapeType convolution_51_weight_shape({1,1,256,128}); + tim::vx::Quantization convolution_51_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0030040210112929344, 152); + tim::vx::TensorSpec convolution_51_weight_spec(tim::vx::DataType::UINT8, convolution_51_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_51_weight_quant); + auto convolution_51_weight = graph->CreateTensor(convolution_51_weight_spec, coef_data_ptr + 2412896); + + tim::vx::ShapeType convolution_51_bias_shape({128}); + tim::vx::Quantization convolution_51_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0001717623817967251, 0); + tim::vx::TensorSpec convolution_51_bias_spec(tim::vx::DataType::INT32, convolution_51_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_51_bias_quant); + auto convolution_51_bias = graph->CreateTensor(convolution_51_bias_spec, coef_data_ptr + 2412384); + + tim::vx::Quantization relu_54_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.025104688480496407, 0); + tim::vx::TensorSpec relu_54_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_54_out0_quant); + auto relu_54_out0 = graph->CreateTensor(relu_54_out0_spec); + + tim::vx::Quantization convolution_55_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.024383682757616043, 0); + tim::vx::TensorSpec convolution_55_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_55_out0_quant); + auto convolution_55_out0 = graph->CreateTensor(convolution_55_out0_spec); + + tim::vx::ShapeType convolution_55_weight_shape({3,3,128,128}); + tim::vx::Quantization convolution_55_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.003081039758399129, 129); + tim::vx::TensorSpec convolution_55_weight_spec(tim::vx::DataType::UINT8, convolution_55_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_55_weight_quant); + auto convolution_55_weight = graph->CreateTensor(convolution_55_weight_spec, coef_data_ptr + 2446176); + + tim::vx::ShapeType convolution_55_bias_shape({128}); + tim::vx::Quantization convolution_55_bias_quant(tim::vx::QuantType::ASYMMETRIC, 7.734854443697259e-05, 0); + tim::vx::TensorSpec convolution_55_bias_spec(tim::vx::DataType::INT32, convolution_55_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_55_bias_quant); + auto convolution_55_bias = graph->CreateTensor(convolution_55_bias_spec, coef_data_ptr + 2445664); + + tim::vx::Quantization relu_58_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.024383682757616043, 0); + tim::vx::TensorSpec relu_58_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_58_out0_quant); + auto relu_58_out0 = graph->CreateTensor(relu_58_out0_spec); + + tim::vx::Quantization convolution_59_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.10206783562898636, 139); + tim::vx::TensorSpec convolution_59_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_59_out0_quant); + auto convolution_59_out0 = graph->CreateTensor(convolution_59_out0_spec); + + tim::vx::ShapeType convolution_59_weight_shape({1,1,128,512}); + tim::vx::Quantization convolution_59_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.01444157399237156, 121); + tim::vx::TensorSpec convolution_59_weight_spec(tim::vx::DataType::UINT8, convolution_59_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_59_weight_quant); + auto convolution_59_weight = graph->CreateTensor(convolution_59_weight_spec, coef_data_ptr + 2595680); + + tim::vx::ShapeType convolution_59_bias_shape({512}); + tim::vx::Quantization convolution_59_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00035213876981288195, 0); + tim::vx::TensorSpec convolution_59_bias_spec(tim::vx::DataType::INT32, convolution_59_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_59_bias_quant); + auto convolution_59_bias = graph->CreateTensor(convolution_59_bias_spec, coef_data_ptr + 2593632); + + tim::vx::Quantization add_62_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.0565003827214241, 0); + tim::vx::TensorSpec add_62_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, add_62_out0_quant); + auto add_62_out0 = graph->CreateTensor(add_62_out0_spec); + + tim::vx::Quantization relu_63_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.0565003827214241, 0); + tim::vx::TensorSpec relu_63_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_63_out0_quant); + auto relu_63_out0 = graph->CreateTensor(relu_63_out0_spec); + + tim::vx::Quantization convolution_64_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.034951645880937576, 0); + tim::vx::TensorSpec convolution_64_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_64_out0_quant); + auto convolution_64_out0 = graph->CreateTensor(convolution_64_out0_spec); + + tim::vx::ShapeType convolution_64_weight_shape({1,1,512,128}); + tim::vx::Quantization convolution_64_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0016764937900006771, 102); + tim::vx::TensorSpec convolution_64_weight_spec(tim::vx::DataType::UINT8, convolution_64_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_64_weight_quant); + auto convolution_64_weight = graph->CreateTensor(convolution_64_weight_spec, coef_data_ptr + 2661728); + + tim::vx::ShapeType convolution_64_bias_shape({128}); + tim::vx::Quantization convolution_64_bias_quant(tim::vx::QuantType::ASYMMETRIC, 9.472254168940708e-05, 0); + tim::vx::TensorSpec convolution_64_bias_spec(tim::vx::DataType::INT32, convolution_64_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_64_bias_quant); + auto convolution_64_bias = graph->CreateTensor(convolution_64_bias_spec, coef_data_ptr + 2661216); + + tim::vx::Quantization relu_67_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.034951645880937576, 0); + tim::vx::TensorSpec relu_67_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_67_out0_quant); + auto relu_67_out0 = graph->CreateTensor(relu_67_out0_spec); + + tim::vx::Quantization convolution_68_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.03728686273097992, 0); + tim::vx::TensorSpec convolution_68_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_68_out0_quant); + auto convolution_68_out0 = graph->CreateTensor(convolution_68_out0_spec); + + tim::vx::ShapeType convolution_68_weight_shape({3,3,128,128}); + tim::vx::Quantization convolution_68_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0028692998457700014, 112); + tim::vx::TensorSpec convolution_68_weight_spec(tim::vx::DataType::UINT8, convolution_68_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_68_weight_quant); + auto convolution_68_weight = graph->CreateTensor(convolution_68_weight_spec, coef_data_ptr + 2727776); + + tim::vx::ShapeType convolution_68_bias_shape({128}); + tim::vx::Quantization convolution_68_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0001002867502393201, 0); + tim::vx::TensorSpec convolution_68_bias_spec(tim::vx::DataType::INT32, convolution_68_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_68_bias_quant); + auto convolution_68_bias = graph->CreateTensor(convolution_68_bias_spec, coef_data_ptr + 2727264); + + tim::vx::Quantization relu_71_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.03728686273097992, 0); + tim::vx::TensorSpec relu_71_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_71_out0_quant); + auto relu_71_out0 = graph->CreateTensor(relu_71_out0_spec); + + tim::vx::Quantization convolution_72_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.0714351087808609, 145); + tim::vx::TensorSpec convolution_72_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_72_out0_quant); + auto convolution_72_out0 = graph->CreateTensor(convolution_72_out0_spec); + + tim::vx::ShapeType convolution_72_weight_shape({1,1,128,512}); + tim::vx::Quantization convolution_72_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.014552710577845573, 98); + tim::vx::TensorSpec convolution_72_weight_spec(tim::vx::DataType::UINT8, convolution_72_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_72_weight_quant); + auto convolution_72_weight = graph->CreateTensor(convolution_72_weight_spec, coef_data_ptr + 2877280); + + tim::vx::ShapeType convolution_72_bias_shape({512}); + tim::vx::Quantization convolution_72_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0005426249117590487, 0); + tim::vx::TensorSpec convolution_72_bias_spec(tim::vx::DataType::INT32, convolution_72_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_72_bias_quant); + auto convolution_72_bias = graph->CreateTensor(convolution_72_bias_spec, coef_data_ptr + 2875232); + + tim::vx::Quantization add_75_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.06655561923980713, 0); + tim::vx::TensorSpec add_75_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, add_75_out0_quant); + auto add_75_out0 = graph->CreateTensor(add_75_out0_spec); + + tim::vx::Quantization relu_76_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.06655561923980713, 0); + tim::vx::TensorSpec relu_76_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_76_out0_quant); + auto relu_76_out0 = graph->CreateTensor(relu_76_out0_spec); + + tim::vx::Quantization convolution_77_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.02692987024784088, 0); + tim::vx::TensorSpec convolution_77_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_77_out0_quant); + auto convolution_77_out0 = graph->CreateTensor(convolution_77_out0_spec); + + tim::vx::ShapeType convolution_77_weight_shape({1,1,512,128}); + tim::vx::Quantization convolution_77_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.004116216208785772, 39); + tim::vx::TensorSpec convolution_77_weight_spec(tim::vx::DataType::UINT8, convolution_77_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_77_weight_quant); + auto convolution_77_weight = graph->CreateTensor(convolution_77_weight_spec, coef_data_ptr + 2943328); + + tim::vx::ShapeType convolution_77_bias_shape({128}); + tim::vx::Quantization convolution_77_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00027395732467994094, 0); + tim::vx::TensorSpec convolution_77_bias_spec(tim::vx::DataType::INT32, convolution_77_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_77_bias_quant); + auto convolution_77_bias = graph->CreateTensor(convolution_77_bias_spec, coef_data_ptr + 2942816); + + tim::vx::Quantization relu_80_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.02692987024784088, 0); + tim::vx::TensorSpec relu_80_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_80_out0_quant); + auto relu_80_out0 = graph->CreateTensor(relu_80_out0_spec); + + tim::vx::Quantization convolution_81_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.040409915149211884, 0); + tim::vx::TensorSpec convolution_81_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_81_out0_quant); + auto convolution_81_out0 = graph->CreateTensor(convolution_81_out0_spec); + + tim::vx::ShapeType convolution_81_weight_shape({3,3,128,128}); + tim::vx::Quantization convolution_81_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.008588027209043503, 87); + tim::vx::TensorSpec convolution_81_weight_spec(tim::vx::DataType::UINT8, convolution_81_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_81_weight_quant); + auto convolution_81_weight = graph->CreateTensor(convolution_81_weight_spec, coef_data_ptr + 3009376); + + tim::vx::ShapeType convolution_81_bias_shape({128}); + tim::vx::Quantization convolution_81_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00023127446183934808, 0); + tim::vx::TensorSpec convolution_81_bias_spec(tim::vx::DataType::INT32, convolution_81_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_81_bias_quant); + auto convolution_81_bias = graph->CreateTensor(convolution_81_bias_spec, coef_data_ptr + 3008864); + + tim::vx::Quantization relu_84_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.040409915149211884, 0); + tim::vx::TensorSpec relu_84_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_84_out0_quant); + auto relu_84_out0 = graph->CreateTensor(relu_84_out0_spec); + + tim::vx::Quantization convolution_85_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.07892583310604095, 145); + tim::vx::TensorSpec convolution_85_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_85_out0_quant); + auto convolution_85_out0 = graph->CreateTensor(convolution_85_out0_spec); + + tim::vx::ShapeType convolution_85_weight_shape({1,1,128,512}); + tim::vx::Quantization convolution_85_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.01371678151190281, 140); + tim::vx::TensorSpec convolution_85_weight_spec(tim::vx::DataType::UINT8, convolution_85_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_85_weight_quant); + auto convolution_85_weight = graph->CreateTensor(convolution_85_weight_spec, coef_data_ptr + 3158880); + + tim::vx::ShapeType convolution_85_bias_shape({512}); + tim::vx::Quantization convolution_85_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0005542939761653543, 0); + tim::vx::TensorSpec convolution_85_bias_spec(tim::vx::DataType::INT32, convolution_85_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_85_bias_quant); + auto convolution_85_bias = graph->CreateTensor(convolution_85_bias_spec, coef_data_ptr + 3156832); + + tim::vx::Quantization add_88_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.06780294328927994, 0); + tim::vx::TensorSpec add_88_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, add_88_out0_quant); + auto add_88_out0 = graph->CreateTensor(add_88_out0_spec); + + tim::vx::Quantization relu_89_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.06780294328927994, 0); + tim::vx::TensorSpec relu_89_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_89_out0_quant); + auto relu_89_out0 = graph->CreateTensor(relu_89_out0_spec); + + tim::vx::Quantization convolution_90_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.039215199649333954, 0); + tim::vx::TensorSpec convolution_90_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_90_out0_quant); + auto convolution_90_out0 = graph->CreateTensor(convolution_90_out0_spec); + + tim::vx::ShapeType convolution_90_weight_shape({1,1,512,128}); + tim::vx::Quantization convolution_90_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.003800247795879841, 116); + tim::vx::TensorSpec convolution_90_weight_spec(tim::vx::DataType::UINT8, convolution_90_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_90_weight_quant); + auto convolution_90_weight = graph->CreateTensor(convolution_90_weight_spec, coef_data_ptr + 3224928); + + tim::vx::ShapeType convolution_90_bias_shape({128}); + tim::vx::Quantization convolution_90_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00025766799808479846, 0); + tim::vx::TensorSpec convolution_90_bias_spec(tim::vx::DataType::INT32, convolution_90_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_90_bias_quant); + auto convolution_90_bias = graph->CreateTensor(convolution_90_bias_spec, coef_data_ptr + 3224416); + + tim::vx::Quantization relu_93_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.039215199649333954, 0); + tim::vx::TensorSpec relu_93_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_93_out0_quant); + auto relu_93_out0 = graph->CreateTensor(relu_93_out0_spec); + + tim::vx::Quantization convolution_94_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.03448693826794624, 0); + tim::vx::TensorSpec convolution_94_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_94_out0_quant); + auto convolution_94_out0 = graph->CreateTensor(convolution_94_out0_spec); + + tim::vx::ShapeType convolution_94_weight_shape({3,3,128,128}); + tim::vx::Quantization convolution_94_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.002774078631773591, 109); + tim::vx::TensorSpec convolution_94_weight_spec(tim::vx::DataType::UINT8, convolution_94_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_94_weight_quant); + auto convolution_94_weight = graph->CreateTensor(convolution_94_weight_spec, coef_data_ptr + 3290976); + + tim::vx::ShapeType convolution_94_bias_shape({128}); + tim::vx::Quantization convolution_94_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00010878605098696426, 0); + tim::vx::TensorSpec convolution_94_bias_spec(tim::vx::DataType::INT32, convolution_94_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_94_bias_quant); + auto convolution_94_bias = graph->CreateTensor(convolution_94_bias_spec, coef_data_ptr + 3290464); + + tim::vx::Quantization relu_97_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.03448693826794624, 0); + tim::vx::TensorSpec relu_97_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_97_out0_quant); + auto relu_97_out0 = graph->CreateTensor(relu_97_out0_spec); + + tim::vx::Quantization convolution_98_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.07904094457626343, 120); + tim::vx::TensorSpec convolution_98_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_98_out0_quant); + auto convolution_98_out0 = graph->CreateTensor(convolution_98_out0_spec); + + tim::vx::ShapeType convolution_98_weight_shape({1,1,128,512}); + tim::vx::Quantization convolution_98_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.008222552947700024, 119); + tim::vx::TensorSpec convolution_98_weight_spec(tim::vx::DataType::UINT8, convolution_98_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_98_weight_quant); + auto convolution_98_weight = graph->CreateTensor(convolution_98_weight_spec, coef_data_ptr + 3440480); + + tim::vx::ShapeType convolution_98_bias_shape({512}); + tim::vx::Quantization convolution_98_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00028357066912576556, 0); + tim::vx::TensorSpec convolution_98_bias_spec(tim::vx::DataType::INT32, convolution_98_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_98_bias_quant); + auto convolution_98_bias = graph->CreateTensor(convolution_98_bias_spec, coef_data_ptr + 3438432); + + tim::vx::Quantization add_101_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.06775879859924316, 0); + tim::vx::TensorSpec add_101_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, add_101_out0_quant); + auto add_101_out0 = graph->CreateTensor(add_101_out0_spec); + + tim::vx::Quantization relu_102_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.06775879859924316, 0); + tim::vx::TensorSpec relu_102_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_102_out0_quant); + auto relu_102_out0 = graph->CreateTensor(relu_102_out0_spec); + + tim::vx::Quantization convolution_103_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.09388317167758942, 137); + tim::vx::TensorSpec convolution_103_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_103_out0_quant); + auto convolution_103_out0 = graph->CreateTensor(convolution_103_out0_spec); + + tim::vx::ShapeType convolution_103_weight_shape({1,1,512,1024}); + tim::vx::Quantization convolution_103_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.004281576722860336, 116); + tim::vx::TensorSpec convolution_103_weight_spec(tim::vx::DataType::UINT8, convolution_103_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_103_weight_quant); + auto convolution_103_weight = graph->CreateTensor(convolution_103_weight_spec, coef_data_ptr + 3510112); + + tim::vx::ShapeType convolution_103_bias_shape({1024}); + tim::vx::Quantization convolution_103_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0002901144907809794, 0); + tim::vx::TensorSpec convolution_103_bias_spec(tim::vx::DataType::INT32, convolution_103_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_103_bias_quant); + auto convolution_103_bias = graph->CreateTensor(convolution_103_bias_spec, coef_data_ptr + 3506016); + + tim::vx::Quantization convolution_106_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.035920802503824234, 0); + tim::vx::TensorSpec convolution_106_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_106_out0_quant); + auto convolution_106_out0 = graph->CreateTensor(convolution_106_out0_spec); + + tim::vx::ShapeType convolution_106_weight_shape({1,1,512,256}); + tim::vx::Quantization convolution_106_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0029459758661687374, 86); + tim::vx::TensorSpec convolution_106_weight_spec(tim::vx::DataType::UINT8, convolution_106_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_106_weight_quant); + auto convolution_106_weight = graph->CreateTensor(convolution_106_weight_spec, coef_data_ptr + 4035424); + + tim::vx::ShapeType convolution_106_bias_shape({256}); + tim::vx::Quantization convolution_106_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00019961578072980046, 0); + tim::vx::TensorSpec convolution_106_bias_spec(tim::vx::DataType::INT32, convolution_106_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_106_bias_quant); + auto convolution_106_bias = graph->CreateTensor(convolution_106_bias_spec, coef_data_ptr + 4034400); + + tim::vx::Quantization relu_109_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.035920802503824234, 0); + tim::vx::TensorSpec relu_109_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_109_out0_quant); + auto relu_109_out0 = graph->CreateTensor(relu_109_out0_spec); + + tim::vx::Quantization convolution_110_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.029010910540819168, 0); + tim::vx::TensorSpec convolution_110_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_110_out0_quant); + auto convolution_110_out0 = graph->CreateTensor(convolution_110_out0_spec); + + tim::vx::ShapeType convolution_110_weight_shape({3,3,256,256}); + tim::vx::Quantization convolution_110_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0018829640466719866, 113); + tim::vx::TensorSpec convolution_110_weight_spec(tim::vx::DataType::UINT8, convolution_110_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_110_weight_quant); + auto convolution_110_weight = graph->CreateTensor(convolution_110_weight_spec, coef_data_ptr + 4167520); + + tim::vx::ShapeType convolution_110_bias_shape({256}); + tim::vx::Quantization convolution_110_bias_quant(tim::vx::QuantType::ASYMMETRIC, 6.763757846783847e-05, 0); + tim::vx::TensorSpec convolution_110_bias_spec(tim::vx::DataType::INT32, convolution_110_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_110_bias_quant); + auto convolution_110_bias = graph->CreateTensor(convolution_110_bias_spec, coef_data_ptr + 4166496); + + tim::vx::Quantization relu_113_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.029010910540819168, 0); + tim::vx::TensorSpec relu_113_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_113_out0_quant); + auto relu_113_out0 = graph->CreateTensor(relu_113_out0_spec); + + tim::vx::Quantization convolution_114_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.0766356959939003, 137); + tim::vx::TensorSpec convolution_114_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_114_out0_quant); + auto convolution_114_out0 = graph->CreateTensor(convolution_114_out0_spec); + + tim::vx::ShapeType convolution_114_weight_shape({1,1,256,1024}); + tim::vx::Quantization convolution_114_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.012337024323642254, 136); + tim::vx::TensorSpec convolution_114_weight_spec(tim::vx::DataType::UINT8, convolution_114_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_114_weight_quant); + auto convolution_114_weight = graph->CreateTensor(convolution_114_weight_spec, coef_data_ptr + 4761440); + + tim::vx::ShapeType convolution_114_bias_shape({1024}); + tim::vx::Quantization convolution_114_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00035790831316262484, 0); + tim::vx::TensorSpec convolution_114_bias_spec(tim::vx::DataType::INT32, convolution_114_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_114_bias_quant); + auto convolution_114_bias = graph->CreateTensor(convolution_114_bias_spec, coef_data_ptr + 4757344); + + tim::vx::Quantization add_117_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.05127289146184921, 0); + tim::vx::TensorSpec add_117_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, add_117_out0_quant); + auto add_117_out0 = graph->CreateTensor(add_117_out0_spec); + + tim::vx::Quantization relu_118_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.05127289146184921, 0); + tim::vx::TensorSpec relu_118_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_118_out0_quant); + auto relu_118_out0 = graph->CreateTensor(relu_118_out0_spec); + + tim::vx::Quantization convolution_119_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.021251065656542778, 0); + tim::vx::TensorSpec convolution_119_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_119_out0_quant); + auto convolution_119_out0 = graph->CreateTensor(convolution_119_out0_spec); + + tim::vx::ShapeType convolution_119_weight_shape({1,1,1024,256}); + tim::vx::Quantization convolution_119_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0021608914248645306, 74); + tim::vx::TensorSpec convolution_119_weight_spec(tim::vx::DataType::UINT8, convolution_119_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_119_weight_quant); + auto convolution_119_weight = graph->CreateTensor(convolution_119_weight_spec, coef_data_ptr + 5024608); + + tim::vx::ShapeType convolution_119_bias_shape({256}); + tim::vx::Quantization convolution_119_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00011079515388701111, 0); + tim::vx::TensorSpec convolution_119_bias_spec(tim::vx::DataType::INT32, convolution_119_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_119_bias_quant); + auto convolution_119_bias = graph->CreateTensor(convolution_119_bias_spec, coef_data_ptr + 5023584); + + tim::vx::Quantization relu_122_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.021251065656542778, 0); + tim::vx::TensorSpec relu_122_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_122_out0_quant); + auto relu_122_out0 = graph->CreateTensor(relu_122_out0_spec); + + tim::vx::Quantization convolution_123_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.017823796719312668, 0); + tim::vx::TensorSpec convolution_123_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_123_out0_quant); + auto convolution_123_out0 = graph->CreateTensor(convolution_123_out0_spec); + + tim::vx::ShapeType convolution_123_weight_shape({3,3,256,256}); + tim::vx::Quantization convolution_123_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.006218116730451584, 100); + tim::vx::TensorSpec convolution_123_weight_spec(tim::vx::DataType::UINT8, convolution_123_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_123_weight_quant); + auto convolution_123_weight = graph->CreateTensor(convolution_123_weight_spec, coef_data_ptr + 5287776); + + tim::vx::ShapeType convolution_123_bias_shape({256}); + tim::vx::Quantization convolution_123_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00013214160571806133, 0); + tim::vx::TensorSpec convolution_123_bias_spec(tim::vx::DataType::INT32, convolution_123_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_123_bias_quant); + auto convolution_123_bias = graph->CreateTensor(convolution_123_bias_spec, coef_data_ptr + 5286752); + + tim::vx::Quantization relu_126_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.017823796719312668, 0); + tim::vx::TensorSpec relu_126_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_126_out0_quant); + auto relu_126_out0 = graph->CreateTensor(relu_126_out0_spec); + + tim::vx::Quantization convolution_127_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.056391555815935135, 108); + tim::vx::TensorSpec convolution_127_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_127_out0_quant); + auto convolution_127_out0 = graph->CreateTensor(convolution_127_out0_spec); + + tim::vx::ShapeType convolution_127_weight_shape({1,1,256,1024}); + tim::vx::Quantization convolution_127_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.013343931175768375, 141); + tim::vx::TensorSpec convolution_127_weight_spec(tim::vx::DataType::UINT8, convolution_127_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_127_weight_quant); + auto convolution_127_weight = graph->CreateTensor(convolution_127_weight_spec, coef_data_ptr + 5881696); + + tim::vx::ShapeType convolution_127_bias_shape({1024}); + tim::vx::Quantization convolution_127_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0002378395147388801, 0); + tim::vx::TensorSpec convolution_127_bias_spec(tim::vx::DataType::INT32, convolution_127_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_127_bias_quant); + auto convolution_127_bias = graph->CreateTensor(convolution_127_bias_spec, coef_data_ptr + 5877600); + + tim::vx::Quantization add_130_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.05008764564990997, 0); + tim::vx::TensorSpec add_130_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, add_130_out0_quant); + auto add_130_out0 = graph->CreateTensor(add_130_out0_spec); + + tim::vx::Quantization relu_131_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.05008764564990997, 0); + tim::vx::TensorSpec relu_131_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_131_out0_quant); + auto relu_131_out0 = graph->CreateTensor(relu_131_out0_spec); + + tim::vx::Quantization convolution_132_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.020675403997302055, 0); + tim::vx::TensorSpec convolution_132_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_132_out0_quant); + auto convolution_132_out0 = graph->CreateTensor(convolution_132_out0_spec); + + tim::vx::ShapeType convolution_132_weight_shape({1,1,1024,256}); + tim::vx::Quantization convolution_132_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.002604473615065217, 132); + tim::vx::TensorSpec convolution_132_weight_spec(tim::vx::DataType::UINT8, convolution_132_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_132_weight_quant); + auto convolution_132_weight = graph->CreateTensor(convolution_132_weight_spec, coef_data_ptr + 6144864); + + tim::vx::ShapeType convolution_132_bias_shape({256}); + tim::vx::Quantization convolution_132_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0001304519537370652, 0); + tim::vx::TensorSpec convolution_132_bias_spec(tim::vx::DataType::INT32, convolution_132_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_132_bias_quant); + auto convolution_132_bias = graph->CreateTensor(convolution_132_bias_spec, coef_data_ptr + 6143840); + + tim::vx::Quantization relu_135_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.020675403997302055, 0); + tim::vx::TensorSpec relu_135_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_135_out0_quant); + auto relu_135_out0 = graph->CreateTensor(relu_135_out0_spec); + + tim::vx::Quantization convolution_136_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.02770310267806053, 0); + tim::vx::TensorSpec convolution_136_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_136_out0_quant); + auto convolution_136_out0 = graph->CreateTensor(convolution_136_out0_spec); + + tim::vx::ShapeType convolution_136_weight_shape({3,3,256,256}); + tim::vx::Quantization convolution_136_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.005561390426009893, 91); + tim::vx::TensorSpec convolution_136_weight_spec(tim::vx::DataType::UINT8, convolution_136_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_136_weight_quant); + auto convolution_136_weight = graph->CreateTensor(convolution_136_weight_spec, coef_data_ptr + 6408032); + + tim::vx::ShapeType convolution_136_bias_shape({256}); + tim::vx::Quantization convolution_136_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00011498399544507265, 0); + tim::vx::TensorSpec convolution_136_bias_spec(tim::vx::DataType::INT32, convolution_136_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_136_bias_quant); + auto convolution_136_bias = graph->CreateTensor(convolution_136_bias_spec, coef_data_ptr + 6407008); + + tim::vx::Quantization relu_139_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.02770310267806053, 0); + tim::vx::TensorSpec relu_139_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_139_out0_quant); + auto relu_139_out0 = graph->CreateTensor(relu_139_out0_spec); + + tim::vx::Quantization convolution_140_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.050987932831048965, 122); + tim::vx::TensorSpec convolution_140_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_140_out0_quant); + auto convolution_140_out0 = graph->CreateTensor(convolution_140_out0_spec); + + tim::vx::ShapeType convolution_140_weight_shape({1,1,256,1024}); + tim::vx::Quantization convolution_140_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.009768206626176834, 86); + tim::vx::TensorSpec convolution_140_weight_spec(tim::vx::DataType::UINT8, convolution_140_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_140_weight_quant); + auto convolution_140_weight = graph->CreateTensor(convolution_140_weight_spec, coef_data_ptr + 7001952); + + tim::vx::ShapeType convolution_140_bias_shape({1024}); + tim::vx::Quantization convolution_140_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0002706096274778247, 0); + tim::vx::TensorSpec convolution_140_bias_spec(tim::vx::DataType::INT32, convolution_140_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_140_bias_quant); + auto convolution_140_bias = graph->CreateTensor(convolution_140_bias_spec, coef_data_ptr + 6997856); + + tim::vx::Quantization add_143_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.06169896572828293, 0); + tim::vx::TensorSpec add_143_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, add_143_out0_quant); + auto add_143_out0 = graph->CreateTensor(add_143_out0_spec); + + tim::vx::Quantization relu_144_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.06169896572828293, 0); + tim::vx::TensorSpec relu_144_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_144_out0_quant); + auto relu_144_out0 = graph->CreateTensor(relu_144_out0_spec); + + tim::vx::Quantization convolution_145_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.01976320892572403, 0); + tim::vx::TensorSpec convolution_145_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_145_out0_quant); + auto convolution_145_out0 = graph->CreateTensor(convolution_145_out0_spec); + + tim::vx::ShapeType convolution_145_weight_shape({1,1,1024,256}); + tim::vx::Quantization convolution_145_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0022279482800513506, 72); + tim::vx::TensorSpec convolution_145_weight_spec(tim::vx::DataType::UINT8, convolution_145_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_145_weight_quant); + auto convolution_145_weight = graph->CreateTensor(convolution_145_weight_spec, coef_data_ptr + 7265120); + + tim::vx::ShapeType convolution_145_bias_shape({256}); + tim::vx::Quantization convolution_145_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00013746210606768727, 0); + tim::vx::TensorSpec convolution_145_bias_spec(tim::vx::DataType::INT32, convolution_145_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_145_bias_quant); + auto convolution_145_bias = graph->CreateTensor(convolution_145_bias_spec, coef_data_ptr + 7264096); + + tim::vx::Quantization relu_148_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.01976320892572403, 0); + tim::vx::TensorSpec relu_148_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_148_out0_quant); + auto relu_148_out0 = graph->CreateTensor(relu_148_out0_spec); + + tim::vx::Quantization convolution_149_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023187527433037758, 0); + tim::vx::TensorSpec convolution_149_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_149_out0_quant); + auto convolution_149_out0 = graph->CreateTensor(convolution_149_out0_spec); + + tim::vx::ShapeType convolution_149_weight_shape({3,3,256,256}); + tim::vx::Quantization convolution_149_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.004769242834299803, 123); + tim::vx::TensorSpec convolution_149_weight_spec(tim::vx::DataType::UINT8, convolution_149_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_149_weight_quant); + auto convolution_149_weight = graph->CreateTensor(convolution_149_weight_spec, coef_data_ptr + 7528288); + + tim::vx::ShapeType convolution_149_bias_shape({256}); + tim::vx::Quantization convolution_149_bias_quant(tim::vx::QuantType::ASYMMETRIC, 9.425554162589833e-05, 0); + tim::vx::TensorSpec convolution_149_bias_spec(tim::vx::DataType::INT32, convolution_149_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_149_bias_quant); + auto convolution_149_bias = graph->CreateTensor(convolution_149_bias_spec, coef_data_ptr + 7527264); + + tim::vx::Quantization relu_152_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.023187527433037758, 0); + tim::vx::TensorSpec relu_152_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_152_out0_quant); + auto relu_152_out0 = graph->CreateTensor(relu_152_out0_spec); + + tim::vx::Quantization convolution_153_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.057725995779037476, 120); + tim::vx::TensorSpec convolution_153_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_153_out0_quant); + auto convolution_153_out0 = graph->CreateTensor(convolution_153_out0_spec); + + tim::vx::ShapeType convolution_153_weight_shape({1,1,256,1024}); + tim::vx::Quantization convolution_153_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.01152096502482891, 112); + tim::vx::TensorSpec convolution_153_weight_spec(tim::vx::DataType::UINT8, convolution_153_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_153_weight_quant); + auto convolution_153_weight = graph->CreateTensor(convolution_153_weight_spec, coef_data_ptr + 8122208); + + tim::vx::ShapeType convolution_153_bias_shape({1024}); + tim::vx::Quantization convolution_153_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0002671426918823272, 0); + tim::vx::TensorSpec convolution_153_bias_spec(tim::vx::DataType::INT32, convolution_153_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_153_bias_quant); + auto convolution_153_bias = graph->CreateTensor(convolution_153_bias_spec, coef_data_ptr + 8118112); + + tim::vx::Quantization add_156_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.0601431243121624, 0); + tim::vx::TensorSpec add_156_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, add_156_out0_quant); + auto add_156_out0 = graph->CreateTensor(add_156_out0_spec); + + tim::vx::Quantization relu_157_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.0601431243121624, 0); + tim::vx::TensorSpec relu_157_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_157_out0_quant); + auto relu_157_out0 = graph->CreateTensor(relu_157_out0_spec); + + tim::vx::Quantization convolution_158_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.019502228125929832, 0); + tim::vx::TensorSpec convolution_158_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_158_out0_quant); + auto convolution_158_out0 = graph->CreateTensor(convolution_158_out0_spec); + + tim::vx::ShapeType convolution_158_weight_shape({1,1,1024,256}); + tim::vx::Quantization convolution_158_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0024551330134272575, 79); + tim::vx::TensorSpec convolution_158_weight_spec(tim::vx::DataType::UINT8, convolution_158_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_158_weight_quant); + auto convolution_158_weight = graph->CreateTensor(convolution_158_weight_spec, coef_data_ptr + 8385376); + + tim::vx::ShapeType convolution_158_bias_shape({256}); + tim::vx::Quantization convolution_158_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00014765937521588057, 0); + tim::vx::TensorSpec convolution_158_bias_spec(tim::vx::DataType::INT32, convolution_158_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_158_bias_quant); + auto convolution_158_bias = graph->CreateTensor(convolution_158_bias_spec, coef_data_ptr + 8384352); + + tim::vx::Quantization relu_161_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.019502228125929832, 0); + tim::vx::TensorSpec relu_161_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_161_out0_quant); + auto relu_161_out0 = graph->CreateTensor(relu_161_out0_spec); + + tim::vx::Quantization convolution_162_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.019909709692001343, 0); + tim::vx::TensorSpec convolution_162_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_162_out0_quant); + auto convolution_162_out0 = graph->CreateTensor(convolution_162_out0_spec); + + tim::vx::ShapeType convolution_162_weight_shape({3,3,256,256}); + tim::vx::Quantization convolution_162_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0050792936235666275, 120); + tim::vx::TensorSpec convolution_162_weight_spec(tim::vx::DataType::UINT8, convolution_162_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_162_weight_quant); + auto convolution_162_weight = graph->CreateTensor(convolution_162_weight_spec, coef_data_ptr + 8648544); + + tim::vx::ShapeType convolution_162_bias_shape({256}); + tim::vx::Quantization convolution_162_bias_quant(tim::vx::QuantType::ASYMMETRIC, 9.905754268402234e-05, 0); + tim::vx::TensorSpec convolution_162_bias_spec(tim::vx::DataType::INT32, convolution_162_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_162_bias_quant); + auto convolution_162_bias = graph->CreateTensor(convolution_162_bias_spec, coef_data_ptr + 8647520); + + tim::vx::Quantization relu_165_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.019909709692001343, 0); + tim::vx::TensorSpec relu_165_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_165_out0_quant); + auto relu_165_out0 = graph->CreateTensor(relu_165_out0_spec); + + tim::vx::Quantization convolution_166_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.04841376096010208, 118); + tim::vx::TensorSpec convolution_166_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_166_out0_quant); + auto convolution_166_out0 = graph->CreateTensor(convolution_166_out0_spec); + + tim::vx::ShapeType convolution_166_weight_shape({1,1,256,1024}); + tim::vx::Quantization convolution_166_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.008337733335793018, 101); + tim::vx::TensorSpec convolution_166_weight_spec(tim::vx::DataType::UINT8, convolution_166_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_166_weight_quant); + auto convolution_166_weight = graph->CreateTensor(convolution_166_weight_spec, coef_data_ptr + 9242464); + + tim::vx::ShapeType convolution_166_bias_shape({1024}); + tim::vx::Quantization convolution_166_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00016600184608250856, 0); + tim::vx::TensorSpec convolution_166_bias_spec(tim::vx::DataType::INT32, convolution_166_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_166_bias_quant); + auto convolution_166_bias = graph->CreateTensor(convolution_166_bias_spec, coef_data_ptr + 9238368); + + tim::vx::Quantization add_169_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.05369938164949417, 0); + tim::vx::TensorSpec add_169_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, add_169_out0_quant); + auto add_169_out0 = graph->CreateTensor(add_169_out0_spec); + + tim::vx::Quantization relu_170_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.05369938164949417, 0); + tim::vx::TensorSpec relu_170_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_170_out0_quant); + auto relu_170_out0 = graph->CreateTensor(relu_170_out0_spec); + + tim::vx::Quantization convolution_171_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.028263499960303307, 0); + tim::vx::TensorSpec convolution_171_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_171_out0_quant); + auto convolution_171_out0 = graph->CreateTensor(convolution_171_out0_spec); + + tim::vx::ShapeType convolution_171_weight_shape({1,1,1024,256}); + tim::vx::Quantization convolution_171_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.002423967467620969, 80); + tim::vx::TensorSpec convolution_171_weight_spec(tim::vx::DataType::UINT8, convolution_171_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_171_weight_quant); + auto convolution_171_weight = graph->CreateTensor(convolution_171_weight_spec, coef_data_ptr + 9505632); + + tim::vx::ShapeType convolution_171_bias_shape({256}); + tim::vx::Quantization convolution_171_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0001301655574934557, 0); + tim::vx::TensorSpec convolution_171_bias_spec(tim::vx::DataType::INT32, convolution_171_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_171_bias_quant); + auto convolution_171_bias = graph->CreateTensor(convolution_171_bias_spec, coef_data_ptr + 9504608); + + tim::vx::Quantization relu_174_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.028263499960303307, 0); + tim::vx::TensorSpec relu_174_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_174_out0_quant); + auto relu_174_out0 = graph->CreateTensor(relu_174_out0_spec); + + tim::vx::Quantization convolution_175_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.08250340074300766, 0); + tim::vx::TensorSpec convolution_175_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_175_out0_quant); + auto convolution_175_out0 = graph->CreateTensor(convolution_175_out0_spec); + + tim::vx::ShapeType convolution_175_weight_shape({3,3,256,256}); + tim::vx::Quantization convolution_175_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.004059859085828066, 125); + tim::vx::TensorSpec convolution_175_weight_spec(tim::vx::DataType::UINT8, convolution_175_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_175_weight_quant); + auto convolution_175_weight = graph->CreateTensor(convolution_175_weight_spec, coef_data_ptr + 9768800); + + tim::vx::ShapeType convolution_175_bias_shape({256}); + tim::vx::Quantization convolution_175_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00011474582424852997, 0); + tim::vx::TensorSpec convolution_175_bias_spec(tim::vx::DataType::INT32, convolution_175_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_175_bias_quant); + auto convolution_175_bias = graph->CreateTensor(convolution_175_bias_spec, coef_data_ptr + 9767776); + + tim::vx::Quantization relu_178_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.08250340074300766, 0); + tim::vx::TensorSpec relu_178_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_178_out0_quant); + auto relu_178_out0 = graph->CreateTensor(relu_178_out0_spec); + + tim::vx::Quantization convolution_179_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.09280265122652054, 87); + tim::vx::TensorSpec convolution_179_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_179_out0_quant); + auto convolution_179_out0 = graph->CreateTensor(convolution_179_out0_spec); + + tim::vx::ShapeType convolution_179_weight_shape({1,1,256,1024}); + tim::vx::Quantization convolution_179_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.007674170657992363, 78); + tim::vx::TensorSpec convolution_179_weight_spec(tim::vx::DataType::UINT8, convolution_179_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_179_weight_quant); + auto convolution_179_weight = graph->CreateTensor(convolution_179_weight_spec, coef_data_ptr + 10362720); + + tim::vx::ShapeType convolution_179_bias_shape({1024}); + tim::vx::Quantization convolution_179_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0006331451586447656, 0); + tim::vx::TensorSpec convolution_179_bias_spec(tim::vx::DataType::INT32, convolution_179_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_179_bias_quant); + auto convolution_179_bias = graph->CreateTensor(convolution_179_bias_spec, coef_data_ptr + 10358624); + + tim::vx::Quantization add_182_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.061852194368839264, 0); + tim::vx::TensorSpec add_182_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, add_182_out0_quant); + auto add_182_out0 = graph->CreateTensor(add_182_out0_spec); + + tim::vx::Quantization relu_183_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.061852194368839264, 0); + tim::vx::TensorSpec relu_183_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_183_out0_quant); + auto relu_183_out0 = graph->CreateTensor(relu_183_out0_spec); + + tim::vx::Quantization convolution_184_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.1570115089416504, 102); + tim::vx::TensorSpec convolution_184_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_184_out0_quant); + auto convolution_184_out0 = graph->CreateTensor(convolution_184_out0_spec); + + tim::vx::ShapeType convolution_184_weight_shape({1,1,1024,2048}); + tim::vx::Quantization convolution_184_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.021532153710722923, 131); + tim::vx::TensorSpec convolution_184_weight_spec(tim::vx::DataType::UINT8, convolution_184_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_184_weight_quant); + auto convolution_184_weight = graph->CreateTensor(convolution_184_weight_spec, coef_data_ptr + 10633056); + + tim::vx::ShapeType convolution_184_bias_shape({2048}); + tim::vx::Quantization convolution_184_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.001331810955889523, 0); + tim::vx::TensorSpec convolution_184_bias_spec(tim::vx::DataType::INT32, convolution_184_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_184_bias_quant); + auto convolution_184_bias = graph->CreateTensor(convolution_184_bias_spec, coef_data_ptr + 10624864); + + tim::vx::Quantization convolution_187_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.018865292891860008, 0); + tim::vx::TensorSpec convolution_187_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_187_out0_quant); + auto convolution_187_out0 = graph->CreateTensor(convolution_187_out0_spec); + + tim::vx::ShapeType convolution_187_weight_shape({1,1,1024,512}); + tim::vx::Quantization convolution_187_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0020486777648329735, 90); + tim::vx::TensorSpec convolution_187_weight_spec(tim::vx::DataType::UINT8, convolution_187_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_187_weight_quant); + auto convolution_187_weight = graph->CreateTensor(convolution_187_weight_spec, coef_data_ptr + 12732256); + + tim::vx::ShapeType convolution_187_bias_shape({512}); + tim::vx::Quantization convolution_187_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00012671521108131856, 0); + tim::vx::TensorSpec convolution_187_bias_spec(tim::vx::DataType::INT32, convolution_187_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_187_bias_quant); + auto convolution_187_bias = graph->CreateTensor(convolution_187_bias_spec, coef_data_ptr + 12730208); + + tim::vx::Quantization relu_190_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.018865292891860008, 0); + tim::vx::TensorSpec relu_190_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_190_out0_quant); + auto relu_190_out0 = graph->CreateTensor(relu_190_out0_spec); + + tim::vx::Quantization convolution_191_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.01558383647352457, 0); + tim::vx::TensorSpec convolution_191_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_191_out0_quant); + auto convolution_191_out0 = graph->CreateTensor(convolution_191_out0_spec); + + tim::vx::ShapeType convolution_191_weight_shape({3,3,512,512}); + tim::vx::Quantization convolution_191_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0030953562818467617, 75); + tim::vx::TensorSpec convolution_191_weight_spec(tim::vx::DataType::UINT8, convolution_191_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_191_weight_quant); + auto convolution_191_weight = graph->CreateTensor(convolution_191_weight_spec, coef_data_ptr + 13258592); + + tim::vx::ShapeType convolution_191_bias_shape({512}); + tim::vx::Quantization convolution_191_bias_quant(tim::vx::QuantType::ASYMMETRIC, 5.839480218128301e-05, 0); + tim::vx::TensorSpec convolution_191_bias_spec(tim::vx::DataType::INT32, convolution_191_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_191_bias_quant); + auto convolution_191_bias = graph->CreateTensor(convolution_191_bias_spec, coef_data_ptr + 13256544); + + tim::vx::Quantization relu_194_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.01558383647352457, 0); + tim::vx::TensorSpec relu_194_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_194_out0_quant); + auto relu_194_out0 = graph->CreateTensor(relu_194_out0_spec); + + tim::vx::Quantization convolution_195_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.08450666815042496, 120); + tim::vx::TensorSpec convolution_195_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_195_out0_quant); + auto convolution_195_out0 = graph->CreateTensor(convolution_195_out0_spec); + + tim::vx::ShapeType convolution_195_weight_shape({1,1,512,2048}); + tim::vx::Quantization convolution_195_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.02880563586950302, 92); + tim::vx::TensorSpec convolution_195_weight_spec(tim::vx::DataType::UINT8, convolution_195_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_195_weight_quant); + auto convolution_195_weight = graph->CreateTensor(convolution_195_weight_spec, coef_data_ptr + 15626080); + + tim::vx::ShapeType convolution_195_bias_shape({2048}); + tim::vx::Quantization convolution_195_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00044890231220051646, 0); + tim::vx::TensorSpec convolution_195_bias_spec(tim::vx::DataType::INT32, convolution_195_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_195_bias_quant); + auto convolution_195_bias = graph->CreateTensor(convolution_195_bias_spec, coef_data_ptr + 15617888); + + tim::vx::Quantization add_198_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.10979654639959335, 0); + tim::vx::TensorSpec add_198_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, add_198_out0_quant); + auto add_198_out0 = graph->CreateTensor(add_198_out0_spec); + + tim::vx::Quantization relu_199_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.10979654639959335, 0); + tim::vx::TensorSpec relu_199_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_199_out0_quant); + auto relu_199_out0 = graph->CreateTensor(relu_199_out0_spec); + + tim::vx::Quantization convolution_200_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.014015702530741692, 0); + tim::vx::TensorSpec convolution_200_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_200_out0_quant); + auto convolution_200_out0 = graph->CreateTensor(convolution_200_out0_spec); + + tim::vx::ShapeType convolution_200_weight_shape({1,1,2048,512}); + tim::vx::Quantization convolution_200_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.000780042028054595, 92); + tim::vx::TensorSpec convolution_200_weight_spec(tim::vx::DataType::UINT8, convolution_200_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_200_weight_quant); + auto convolution_200_weight = graph->CreateTensor(convolution_200_weight_spec, coef_data_ptr + 16676704); + + tim::vx::ShapeType convolution_200_bias_shape({512}); + tim::vx::Quantization convolution_200_bias_quant(tim::vx::QuantType::ASYMMETRIC, 8.564592280890793e-05, 0); + tim::vx::TensorSpec convolution_200_bias_spec(tim::vx::DataType::INT32, convolution_200_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_200_bias_quant); + auto convolution_200_bias = graph->CreateTensor(convolution_200_bias_spec, coef_data_ptr + 16674656); + + tim::vx::Quantization relu_203_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.014015702530741692, 0); + tim::vx::TensorSpec relu_203_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_203_out0_quant); + auto relu_203_out0 = graph->CreateTensor(relu_203_out0_spec); + + tim::vx::Quantization convolution_204_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.013254771009087563, 0); + tim::vx::TensorSpec convolution_204_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_204_out0_quant); + auto convolution_204_out0 = graph->CreateTensor(convolution_204_out0_spec); + + tim::vx::ShapeType convolution_204_weight_shape({3,3,512,512}); + tim::vx::Quantization convolution_204_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0051354775205254555, 94); + tim::vx::TensorSpec convolution_204_weight_spec(tim::vx::DataType::UINT8, convolution_204_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_204_weight_quant); + auto convolution_204_weight = graph->CreateTensor(convolution_204_weight_spec, coef_data_ptr + 17727328); + + tim::vx::ShapeType convolution_204_bias_shape({512}); + tim::vx::Quantization convolution_204_bias_quant(tim::vx::QuantType::ASYMMETRIC, 7.197732338681817e-05, 0); + tim::vx::TensorSpec convolution_204_bias_spec(tim::vx::DataType::INT32, convolution_204_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_204_bias_quant); + auto convolution_204_bias = graph->CreateTensor(convolution_204_bias_spec, coef_data_ptr + 17725280); + + tim::vx::Quantization relu_207_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.013254771009087563, 0); + tim::vx::TensorSpec relu_207_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_207_out0_quant); + auto relu_207_out0 = graph->CreateTensor(relu_207_out0_spec); + + tim::vx::Quantization convolution_208_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.09129555523395538, 118); + tim::vx::TensorSpec convolution_208_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_208_out0_quant); + auto convolution_208_out0 = graph->CreateTensor(convolution_208_out0_spec); + + tim::vx::ShapeType convolution_208_weight_shape({1,1,512,2048}); + tim::vx::Quantization convolution_208_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.026294764131307602, 118); + tim::vx::TensorSpec convolution_208_weight_spec(tim::vx::DataType::UINT8, convolution_208_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_208_weight_quant); + auto convolution_208_weight = graph->CreateTensor(convolution_208_weight_spec, coef_data_ptr + 20094816); + + tim::vx::ShapeType convolution_208_bias_shape({2048}); + tim::vx::Quantization convolution_208_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0003485310880932957, 0); + tim::vx::TensorSpec convolution_208_bias_spec(tim::vx::DataType::INT32, convolution_208_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_208_bias_quant); + auto convolution_208_bias = graph->CreateTensor(convolution_208_bias_spec, coef_data_ptr + 20086624); + + tim::vx::Quantization add_211_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.1367546170949936, 0); + tim::vx::TensorSpec add_211_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, add_211_out0_quant); + auto add_211_out0 = graph->CreateTensor(add_211_out0_spec); + + tim::vx::Quantization relu_212_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.1367546170949936, 0); + tim::vx::TensorSpec relu_212_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_212_out0_quant); + auto relu_212_out0 = graph->CreateTensor(relu_212_out0_spec); + + tim::vx::Quantization convolution_213_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.02462535724043846, 0); + tim::vx::TensorSpec convolution_213_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_213_out0_quant); + auto convolution_213_out0 = graph->CreateTensor(convolution_213_out0_spec); + + tim::vx::ShapeType convolution_213_weight_shape({1,1,2048,512}); + tim::vx::Quantization convolution_213_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0007146087591536343, 80); + tim::vx::TensorSpec convolution_213_weight_spec(tim::vx::DataType::UINT8, convolution_213_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_213_weight_quant); + auto convolution_213_weight = graph->CreateTensor(convolution_213_weight_spec, coef_data_ptr + 21145440); + + tim::vx::ShapeType convolution_213_bias_shape({512}); + tim::vx::Quantization convolution_213_bias_quant(tim::vx::QuantType::ASYMMETRIC, 9.772604971658438e-05, 0); + tim::vx::TensorSpec convolution_213_bias_spec(tim::vx::DataType::INT32, convolution_213_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_213_bias_quant); + auto convolution_213_bias = graph->CreateTensor(convolution_213_bias_spec, coef_data_ptr + 21143392); + + tim::vx::Quantization relu_216_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.02462535724043846, 0); + tim::vx::TensorSpec relu_216_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_216_out0_quant); + auto relu_216_out0 = graph->CreateTensor(relu_216_out0_spec); + + tim::vx::Quantization convolution_217_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.024887174367904663, 0); + tim::vx::TensorSpec convolution_217_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_217_out0_quant); + auto convolution_217_out0 = graph->CreateTensor(convolution_217_out0_spec); + + tim::vx::ShapeType convolution_217_weight_shape({3,3,512,512}); + tim::vx::Quantization convolution_217_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0030633925925940275, 126); + tim::vx::TensorSpec convolution_217_weight_spec(tim::vx::DataType::UINT8, convolution_217_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_217_weight_quant); + auto convolution_217_weight = graph->CreateTensor(convolution_217_weight_spec, coef_data_ptr + 22196064); + + tim::vx::ShapeType convolution_217_bias_shape({512}); + tim::vx::Quantization convolution_217_bias_quant(tim::vx::QuantType::ASYMMETRIC, 7.543713581981137e-05, 0); + tim::vx::TensorSpec convolution_217_bias_spec(tim::vx::DataType::INT32, convolution_217_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_217_bias_quant); + auto convolution_217_bias = graph->CreateTensor(convolution_217_bias_spec, coef_data_ptr + 22194016); + + tim::vx::Quantization relu_220_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.024887174367904663, 0); + tim::vx::TensorSpec relu_220_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_220_out0_quant); + auto relu_220_out0 = graph->CreateTensor(relu_220_out0_spec); + + tim::vx::Quantization convolution_221_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.1402689665555954, 109); + tim::vx::TensorSpec convolution_221_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, convolution_221_out0_quant); + auto convolution_221_out0 = graph->CreateTensor(convolution_221_out0_spec); + + tim::vx::ShapeType convolution_221_weight_shape({1,1,512,2048}); + tim::vx::Quantization convolution_221_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.030694643035531044, 77); + tim::vx::TensorSpec convolution_221_weight_spec(tim::vx::DataType::UINT8, convolution_221_weight_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_221_weight_quant); + auto convolution_221_weight = graph->CreateTensor(convolution_221_weight_spec, coef_data_ptr + 24563552); + + tim::vx::ShapeType convolution_221_bias_shape({2048}); + tim::vx::Quantization convolution_221_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0007639029063284397, 0); + tim::vx::TensorSpec convolution_221_bias_spec(tim::vx::DataType::INT32, convolution_221_bias_shape, + tim::vx::TensorAttribute::CONSTANT, convolution_221_bias_quant); + auto convolution_221_bias = graph->CreateTensor(convolution_221_bias_spec, coef_data_ptr + 24555360); + + tim::vx::Quantization add_224_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.16616259515285492, 0); + tim::vx::TensorSpec add_224_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, add_224_out0_quant); + auto add_224_out0 = graph->CreateTensor(add_224_out0_spec); + + tim::vx::Quantization relu_225_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.16616259515285492, 0); + tim::vx::TensorSpec relu_225_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, relu_225_out0_quant); + auto relu_225_out0 = graph->CreateTensor(relu_225_out0_spec); + + tim::vx::Quantization pooling_226_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.030994946137070656, 0); + tim::vx::TensorSpec pooling_226_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, pooling_226_out0_quant); + auto pooling_226_out0 = graph->CreateTensor(pooling_226_out0_spec); + + tim::vx::Quantization fullconnect_227_out0_quant(tim::vx::QuantType::ASYMMETRIC, 0.13894738256931305, 52); + tim::vx::TensorSpec fullconnect_227_out0_spec(tim::vx::DataType::UINT8, {}, + tim::vx::TensorAttribute::TRANSIENT, fullconnect_227_out0_quant); + auto fullconnect_227_out0 = graph->CreateTensor(fullconnect_227_out0_spec); + + tim::vx::ShapeType fullconnect_227_weight_shape({2048,1000}); + tim::vx::Quantization fullconnect_227_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.003711833618581295, 57); + tim::vx::TensorSpec fullconnect_227_weight_spec(tim::vx::DataType::UINT8, fullconnect_227_weight_shape, + tim::vx::TensorAttribute::CONSTANT, fullconnect_227_weight_quant); + auto fullconnect_227_weight = graph->CreateTensor(fullconnect_227_weight_spec, coef_data_ptr + 13664); + + tim::vx::ShapeType fullconnect_227_bias_shape({1000}); + tim::vx::Quantization fullconnect_227_bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.00011504808207973838, 0); + tim::vx::TensorSpec fullconnect_227_bias_spec(tim::vx::DataType::INT32, fullconnect_227_bias_shape, + tim::vx::TensorAttribute::CONSTANT, fullconnect_227_bias_quant); + auto fullconnect_227_bias = graph->CreateTensor(fullconnect_227_bias_spec, coef_data_ptr + 9664); + + tim::vx::ShapeType input_0_shape({224,224,3,1}); + tim::vx::Quantization input_0_quant(tim::vx::QuantType::ASYMMETRIC, 1.0, 0); + tim::vx::TensorSpec input_0_spec(tim::vx::DataType::UINT8, input_0_shape, + tim::vx::TensorAttribute::INPUT, input_0_quant); + auto input_0 = graph->CreateTensor(input_0_spec); + + tim::vx::ShapeType output_229_shape({1000,1}); + tim::vx::TensorSpec output_229_spec(tim::vx::DataType::FLOAT16, output_229_shape, + tim::vx::TensorAttribute::OUTPUT); + auto output_229 = graph->CreateTensor(output_229_spec); + + resnet50::inputs_tensor.push_back(input_0); + + resnet50::outputs_tensor.push_back(output_229); + + auto convolution_1 = graph->CreateOperation ( + 64, // weights + tim::vx::PadType::NONE, // padding + std::array({7,7}), // ksize + std::array({2,2}), // stride + std::array({1,1}), // dilation + std::array({3,3,3,3}), // pad + 0); // multiplier + + auto relu_4 = graph->CreateOperation (); + + auto pooling_5 = graph->CreateOperation ( + tim::vx::PoolType::MAX, // type + std::array({0,1,0,1}), // pad + std::array({3,3}), // ksize + std::array({2,2}), // stride + tim::vx::RoundType::CEILING); // round_type + + auto convolution_9 = graph->CreateOperation ( + 64, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_12 = graph->CreateOperation (); + + auto convolution_13 = graph->CreateOperation ( + 64, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_16 = graph->CreateOperation (); + + auto concat_231 = graph->CreateOperation ( + 2, // axis + 2); // input_cnt + + auto convolution_232 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_21 = graph->CreateOperation (); + + auto convolution_22 = graph->CreateOperation ( + 64, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_25 = graph->CreateOperation (); + + auto convolution_26 = graph->CreateOperation ( + 64, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_29 = graph->CreateOperation (); + + auto convolution_30 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto add_33 = graph->CreateOperation (); + + auto relu_34 = graph->CreateOperation (); + + auto convolution_35 = graph->CreateOperation ( + 64, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_38 = graph->CreateOperation (); + + auto convolution_39 = graph->CreateOperation ( + 64, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_42 = graph->CreateOperation (); + + auto convolution_43 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto add_46 = graph->CreateOperation (); + + auto relu_47 = graph->CreateOperation (); + + auto convolution_48 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({2,2}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto convolution_51 = graph->CreateOperation ( + 128, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({2,2}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_54 = graph->CreateOperation (); + + auto convolution_55 = graph->CreateOperation ( + 128, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_58 = graph->CreateOperation (); + + auto convolution_59 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto add_62 = graph->CreateOperation (); + + auto relu_63 = graph->CreateOperation (); + + auto convolution_64 = graph->CreateOperation ( + 128, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_67 = graph->CreateOperation (); + + auto convolution_68 = graph->CreateOperation ( + 128, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_71 = graph->CreateOperation (); + + auto convolution_72 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto add_75 = graph->CreateOperation (); + + auto relu_76 = graph->CreateOperation (); + + auto convolution_77 = graph->CreateOperation ( + 128, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_80 = graph->CreateOperation (); + + auto convolution_81 = graph->CreateOperation ( + 128, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_84 = graph->CreateOperation (); + + auto convolution_85 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto add_88 = graph->CreateOperation (); + + auto relu_89 = graph->CreateOperation (); + + auto convolution_90 = graph->CreateOperation ( + 128, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_93 = graph->CreateOperation (); + + auto convolution_94 = graph->CreateOperation ( + 128, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_97 = graph->CreateOperation (); + + auto convolution_98 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto add_101 = graph->CreateOperation (); + + auto relu_102 = graph->CreateOperation (); + + auto convolution_103 = graph->CreateOperation ( + 1024, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({2,2}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto convolution_106 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({2,2}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_109 = graph->CreateOperation (); + + auto convolution_110 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_113 = graph->CreateOperation (); + + auto convolution_114 = graph->CreateOperation ( + 1024, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto add_117 = graph->CreateOperation (); + + auto relu_118 = graph->CreateOperation (); + + auto convolution_119 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_122 = graph->CreateOperation (); + + auto convolution_123 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_126 = graph->CreateOperation (); + + auto convolution_127 = graph->CreateOperation ( + 1024, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto add_130 = graph->CreateOperation (); + + auto relu_131 = graph->CreateOperation (); + + auto convolution_132 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_135 = graph->CreateOperation (); + + auto convolution_136 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_139 = graph->CreateOperation (); + + auto convolution_140 = graph->CreateOperation ( + 1024, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto add_143 = graph->CreateOperation (); + + auto relu_144 = graph->CreateOperation (); + + auto convolution_145 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_148 = graph->CreateOperation (); + + auto convolution_149 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_152 = graph->CreateOperation (); + + auto convolution_153 = graph->CreateOperation ( + 1024, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto add_156 = graph->CreateOperation (); + + auto relu_157 = graph->CreateOperation (); + + auto convolution_158 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_161 = graph->CreateOperation (); + + auto convolution_162 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_165 = graph->CreateOperation (); + + auto convolution_166 = graph->CreateOperation ( + 1024, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto add_169 = graph->CreateOperation (); + + auto relu_170 = graph->CreateOperation (); + + auto convolution_171 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_174 = graph->CreateOperation (); + + auto convolution_175 = graph->CreateOperation ( + 256, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_178 = graph->CreateOperation (); + + auto convolution_179 = graph->CreateOperation ( + 1024, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto add_182 = graph->CreateOperation (); + + auto relu_183 = graph->CreateOperation (); + + auto convolution_184 = graph->CreateOperation ( + 2048, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({2,2}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto convolution_187 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({2,2}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_190 = graph->CreateOperation (); + + auto convolution_191 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_194 = graph->CreateOperation (); + + auto convolution_195 = graph->CreateOperation ( + 2048, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto add_198 = graph->CreateOperation (); + + auto relu_199 = graph->CreateOperation (); + + auto convolution_200 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_203 = graph->CreateOperation (); + + auto convolution_204 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_207 = graph->CreateOperation (); + + auto convolution_208 = graph->CreateOperation ( + 2048, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto add_211 = graph->CreateOperation (); + + auto relu_212 = graph->CreateOperation (); + + auto convolution_213 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto relu_216 = graph->CreateOperation (); + + auto convolution_217 = graph->CreateOperation ( + 512, // weights + tim::vx::PadType::NONE, // padding + std::array({3,3}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({1,1,1,1}), // pad + 0); // multiplier + + auto relu_220 = graph->CreateOperation (); + + auto convolution_221 = graph->CreateOperation ( + 2048, // weights + tim::vx::PadType::NONE, // padding + std::array({1,1}), // ksize + std::array({1,1}), // stride + std::array({1,1}), // dilation + std::array({0,0,0,0}), // pad + 0); // multiplier + + auto add_224 = graph->CreateOperation (); + + auto relu_225 = graph->CreateOperation (); + + auto pooling_226 = graph->CreateOperation ( + tim::vx::PoolType::AVG, // type + std::array({0,0,0,0}), // pad + std::array({7,7}), // ksize + std::array({1,1}), // stride + tim::vx::RoundType::CEILING); // round_type + + auto fullconnect_227 = graph->CreateOperation ( + 2, // axis + 1000); // weights + + auto softmax_228 = graph->CreateOperation ( + 1.0, // beta + 0); // axis + + (*convolution_1) + .BindInputs({input_0, convolution_1_weight, convolution_1_bias}) + .BindOutputs({convolution_1_out0}); + + (*relu_4) + .BindInputs({convolution_1_out0}) + .BindOutputs({relu_4_out0}); + + (*pooling_5) + .BindInputs({relu_4_out0}) + .BindOutputs({pooling_5_out0}); + + (*convolution_9) + .BindInputs({pooling_5_out0, convolution_9_weight, convolution_9_bias}) + .BindOutputs({convolution_9_out0}); + + (*relu_12) + .BindInputs({convolution_9_out0}) + .BindOutputs({relu_12_out0}); + + (*convolution_13) + .BindInputs({relu_12_out0, convolution_13_weight, convolution_13_bias}) + .BindOutputs({convolution_13_out0}); + + (*relu_16) + .BindInputs({convolution_13_out0}) + .BindOutputs({relu_16_out0}); + + (*concat_231) + .BindInputs({pooling_5_out0,relu_16_out0}) + .BindOutputs({concat_231_out0}); + + (*convolution_232) + .BindInputs({concat_231_out0, convolution_232_weight, convolution_232_bias}) + .BindOutputs({convolution_232_out0}); + + (*relu_21) + .BindInputs({convolution_232_out0}) + .BindOutputs({relu_21_out0}); + + (*convolution_22) + .BindInputs({relu_21_out0, convolution_22_weight, convolution_22_bias}) + .BindOutputs({convolution_22_out0}); + + (*relu_25) + .BindInputs({convolution_22_out0}) + .BindOutputs({relu_25_out0}); + + (*convolution_26) + .BindInputs({relu_25_out0, convolution_26_weight, convolution_26_bias}) + .BindOutputs({convolution_26_out0}); + + (*relu_29) + .BindInputs({convolution_26_out0}) + .BindOutputs({relu_29_out0}); + + (*convolution_30) + .BindInputs({relu_29_out0, convolution_30_weight, convolution_30_bias}) + .BindOutputs({convolution_30_out0}); + + (*add_33) + .BindInputs({relu_21_out0,convolution_30_out0}) + .BindOutputs({add_33_out0}); + + (*relu_34) + .BindInputs({add_33_out0}) + .BindOutputs({relu_34_out0}); + + (*convolution_35) + .BindInputs({relu_34_out0, convolution_35_weight, convolution_35_bias}) + .BindOutputs({convolution_35_out0}); + + (*relu_38) + .BindInputs({convolution_35_out0}) + .BindOutputs({relu_38_out0}); + + (*convolution_39) + .BindInputs({relu_38_out0, convolution_39_weight, convolution_39_bias}) + .BindOutputs({convolution_39_out0}); + + (*relu_42) + .BindInputs({convolution_39_out0}) + .BindOutputs({relu_42_out0}); + + (*convolution_43) + .BindInputs({relu_42_out0, convolution_43_weight, convolution_43_bias}) + .BindOutputs({convolution_43_out0}); + + (*add_46) + .BindInputs({relu_34_out0,convolution_43_out0}) + .BindOutputs({add_46_out0}); + + (*relu_47) + .BindInputs({add_46_out0}) + .BindOutputs({relu_47_out0}); + + (*convolution_48) + .BindInputs({relu_47_out0, convolution_48_weight, convolution_48_bias}) + .BindOutputs({convolution_48_out0}); + + (*convolution_51) + .BindInputs({relu_47_out0, convolution_51_weight, convolution_51_bias}) + .BindOutputs({convolution_51_out0}); + + (*relu_54) + .BindInputs({convolution_51_out0}) + .BindOutputs({relu_54_out0}); + + (*convolution_55) + .BindInputs({relu_54_out0, convolution_55_weight, convolution_55_bias}) + .BindOutputs({convolution_55_out0}); + + (*relu_58) + .BindInputs({convolution_55_out0}) + .BindOutputs({relu_58_out0}); + + (*convolution_59) + .BindInputs({relu_58_out0, convolution_59_weight, convolution_59_bias}) + .BindOutputs({convolution_59_out0}); + + (*add_62) + .BindInputs({convolution_48_out0,convolution_59_out0}) + .BindOutputs({add_62_out0}); + + (*relu_63) + .BindInputs({add_62_out0}) + .BindOutputs({relu_63_out0}); + + (*convolution_64) + .BindInputs({relu_63_out0, convolution_64_weight, convolution_64_bias}) + .BindOutputs({convolution_64_out0}); + + (*relu_67) + .BindInputs({convolution_64_out0}) + .BindOutputs({relu_67_out0}); + + (*convolution_68) + .BindInputs({relu_67_out0, convolution_68_weight, convolution_68_bias}) + .BindOutputs({convolution_68_out0}); + + (*relu_71) + .BindInputs({convolution_68_out0}) + .BindOutputs({relu_71_out0}); + + (*convolution_72) + .BindInputs({relu_71_out0, convolution_72_weight, convolution_72_bias}) + .BindOutputs({convolution_72_out0}); + + (*add_75) + .BindInputs({relu_63_out0,convolution_72_out0}) + .BindOutputs({add_75_out0}); + + (*relu_76) + .BindInputs({add_75_out0}) + .BindOutputs({relu_76_out0}); + + (*convolution_77) + .BindInputs({relu_76_out0, convolution_77_weight, convolution_77_bias}) + .BindOutputs({convolution_77_out0}); + + (*relu_80) + .BindInputs({convolution_77_out0}) + .BindOutputs({relu_80_out0}); + + (*convolution_81) + .BindInputs({relu_80_out0, convolution_81_weight, convolution_81_bias}) + .BindOutputs({convolution_81_out0}); + + (*relu_84) + .BindInputs({convolution_81_out0}) + .BindOutputs({relu_84_out0}); + + (*convolution_85) + .BindInputs({relu_84_out0, convolution_85_weight, convolution_85_bias}) + .BindOutputs({convolution_85_out0}); + + (*add_88) + .BindInputs({relu_76_out0,convolution_85_out0}) + .BindOutputs({add_88_out0}); + + (*relu_89) + .BindInputs({add_88_out0}) + .BindOutputs({relu_89_out0}); + + (*convolution_90) + .BindInputs({relu_89_out0, convolution_90_weight, convolution_90_bias}) + .BindOutputs({convolution_90_out0}); + + (*relu_93) + .BindInputs({convolution_90_out0}) + .BindOutputs({relu_93_out0}); + + (*convolution_94) + .BindInputs({relu_93_out0, convolution_94_weight, convolution_94_bias}) + .BindOutputs({convolution_94_out0}); + + (*relu_97) + .BindInputs({convolution_94_out0}) + .BindOutputs({relu_97_out0}); + + (*convolution_98) + .BindInputs({relu_97_out0, convolution_98_weight, convolution_98_bias}) + .BindOutputs({convolution_98_out0}); + + (*add_101) + .BindInputs({relu_89_out0,convolution_98_out0}) + .BindOutputs({add_101_out0}); + + (*relu_102) + .BindInputs({add_101_out0}) + .BindOutputs({relu_102_out0}); + + (*convolution_103) + .BindInputs({relu_102_out0, convolution_103_weight, convolution_103_bias}) + .BindOutputs({convolution_103_out0}); + + (*convolution_106) + .BindInputs({relu_102_out0, convolution_106_weight, convolution_106_bias}) + .BindOutputs({convolution_106_out0}); + + (*relu_109) + .BindInputs({convolution_106_out0}) + .BindOutputs({relu_109_out0}); + + (*convolution_110) + .BindInputs({relu_109_out0, convolution_110_weight, convolution_110_bias}) + .BindOutputs({convolution_110_out0}); + + (*relu_113) + .BindInputs({convolution_110_out0}) + .BindOutputs({relu_113_out0}); + + (*convolution_114) + .BindInputs({relu_113_out0, convolution_114_weight, convolution_114_bias}) + .BindOutputs({convolution_114_out0}); + + (*add_117) + .BindInputs({convolution_103_out0,convolution_114_out0}) + .BindOutputs({add_117_out0}); + + (*relu_118) + .BindInputs({add_117_out0}) + .BindOutputs({relu_118_out0}); + + (*convolution_119) + .BindInputs({relu_118_out0, convolution_119_weight, convolution_119_bias}) + .BindOutputs({convolution_119_out0}); + + (*relu_122) + .BindInputs({convolution_119_out0}) + .BindOutputs({relu_122_out0}); + + (*convolution_123) + .BindInputs({relu_122_out0, convolution_123_weight, convolution_123_bias}) + .BindOutputs({convolution_123_out0}); + + (*relu_126) + .BindInputs({convolution_123_out0}) + .BindOutputs({relu_126_out0}); + + (*convolution_127) + .BindInputs({relu_126_out0, convolution_127_weight, convolution_127_bias}) + .BindOutputs({convolution_127_out0}); + + (*add_130) + .BindInputs({relu_118_out0,convolution_127_out0}) + .BindOutputs({add_130_out0}); + + (*relu_131) + .BindInputs({add_130_out0}) + .BindOutputs({relu_131_out0}); + + (*convolution_132) + .BindInputs({relu_131_out0, convolution_132_weight, convolution_132_bias}) + .BindOutputs({convolution_132_out0}); + + (*relu_135) + .BindInputs({convolution_132_out0}) + .BindOutputs({relu_135_out0}); + + (*convolution_136) + .BindInputs({relu_135_out0, convolution_136_weight, convolution_136_bias}) + .BindOutputs({convolution_136_out0}); + + (*relu_139) + .BindInputs({convolution_136_out0}) + .BindOutputs({relu_139_out0}); + + (*convolution_140) + .BindInputs({relu_139_out0, convolution_140_weight, convolution_140_bias}) + .BindOutputs({convolution_140_out0}); + + (*add_143) + .BindInputs({relu_131_out0,convolution_140_out0}) + .BindOutputs({add_143_out0}); + + (*relu_144) + .BindInputs({add_143_out0}) + .BindOutputs({relu_144_out0}); + + (*convolution_145) + .BindInputs({relu_144_out0, convolution_145_weight, convolution_145_bias}) + .BindOutputs({convolution_145_out0}); + + (*relu_148) + .BindInputs({convolution_145_out0}) + .BindOutputs({relu_148_out0}); + + (*convolution_149) + .BindInputs({relu_148_out0, convolution_149_weight, convolution_149_bias}) + .BindOutputs({convolution_149_out0}); + + (*relu_152) + .BindInputs({convolution_149_out0}) + .BindOutputs({relu_152_out0}); + + (*convolution_153) + .BindInputs({relu_152_out0, convolution_153_weight, convolution_153_bias}) + .BindOutputs({convolution_153_out0}); + + (*add_156) + .BindInputs({relu_144_out0,convolution_153_out0}) + .BindOutputs({add_156_out0}); + + (*relu_157) + .BindInputs({add_156_out0}) + .BindOutputs({relu_157_out0}); + + (*convolution_158) + .BindInputs({relu_157_out0, convolution_158_weight, convolution_158_bias}) + .BindOutputs({convolution_158_out0}); + + (*relu_161) + .BindInputs({convolution_158_out0}) + .BindOutputs({relu_161_out0}); + + (*convolution_162) + .BindInputs({relu_161_out0, convolution_162_weight, convolution_162_bias}) + .BindOutputs({convolution_162_out0}); + + (*relu_165) + .BindInputs({convolution_162_out0}) + .BindOutputs({relu_165_out0}); + + (*convolution_166) + .BindInputs({relu_165_out0, convolution_166_weight, convolution_166_bias}) + .BindOutputs({convolution_166_out0}); + + (*add_169) + .BindInputs({relu_157_out0,convolution_166_out0}) + .BindOutputs({add_169_out0}); + + (*relu_170) + .BindInputs({add_169_out0}) + .BindOutputs({relu_170_out0}); + + (*convolution_171) + .BindInputs({relu_170_out0, convolution_171_weight, convolution_171_bias}) + .BindOutputs({convolution_171_out0}); + + (*relu_174) + .BindInputs({convolution_171_out0}) + .BindOutputs({relu_174_out0}); + + (*convolution_175) + .BindInputs({relu_174_out0, convolution_175_weight, convolution_175_bias}) + .BindOutputs({convolution_175_out0}); + + (*relu_178) + .BindInputs({convolution_175_out0}) + .BindOutputs({relu_178_out0}); + + (*convolution_179) + .BindInputs({relu_178_out0, convolution_179_weight, convolution_179_bias}) + .BindOutputs({convolution_179_out0}); + + (*add_182) + .BindInputs({relu_170_out0,convolution_179_out0}) + .BindOutputs({add_182_out0}); + + (*relu_183) + .BindInputs({add_182_out0}) + .BindOutputs({relu_183_out0}); + + (*convolution_184) + .BindInputs({relu_183_out0, convolution_184_weight, convolution_184_bias}) + .BindOutputs({convolution_184_out0}); + + (*convolution_187) + .BindInputs({relu_183_out0, convolution_187_weight, convolution_187_bias}) + .BindOutputs({convolution_187_out0}); + + (*relu_190) + .BindInputs({convolution_187_out0}) + .BindOutputs({relu_190_out0}); + + (*convolution_191) + .BindInputs({relu_190_out0, convolution_191_weight, convolution_191_bias}) + .BindOutputs({convolution_191_out0}); + + (*relu_194) + .BindInputs({convolution_191_out0}) + .BindOutputs({relu_194_out0}); + + (*convolution_195) + .BindInputs({relu_194_out0, convolution_195_weight, convolution_195_bias}) + .BindOutputs({convolution_195_out0}); + + (*add_198) + .BindInputs({convolution_184_out0,convolution_195_out0}) + .BindOutputs({add_198_out0}); + + (*relu_199) + .BindInputs({add_198_out0}) + .BindOutputs({relu_199_out0}); + + (*convolution_200) + .BindInputs({relu_199_out0, convolution_200_weight, convolution_200_bias}) + .BindOutputs({convolution_200_out0}); + + (*relu_203) + .BindInputs({convolution_200_out0}) + .BindOutputs({relu_203_out0}); + + (*convolution_204) + .BindInputs({relu_203_out0, convolution_204_weight, convolution_204_bias}) + .BindOutputs({convolution_204_out0}); + + (*relu_207) + .BindInputs({convolution_204_out0}) + .BindOutputs({relu_207_out0}); + + (*convolution_208) + .BindInputs({relu_207_out0, convolution_208_weight, convolution_208_bias}) + .BindOutputs({convolution_208_out0}); + + (*add_211) + .BindInputs({relu_199_out0,convolution_208_out0}) + .BindOutputs({add_211_out0}); + + (*relu_212) + .BindInputs({add_211_out0}) + .BindOutputs({relu_212_out0}); + + (*convolution_213) + .BindInputs({relu_212_out0, convolution_213_weight, convolution_213_bias}) + .BindOutputs({convolution_213_out0}); + + (*relu_216) + .BindInputs({convolution_213_out0}) + .BindOutputs({relu_216_out0}); + + (*convolution_217) + .BindInputs({relu_216_out0, convolution_217_weight, convolution_217_bias}) + .BindOutputs({convolution_217_out0}); + + (*relu_220) + .BindInputs({convolution_217_out0}) + .BindOutputs({relu_220_out0}); + + (*convolution_221) + .BindInputs({relu_220_out0, convolution_221_weight, convolution_221_bias}) + .BindOutputs({convolution_221_out0}); + + (*add_224) + .BindInputs({relu_212_out0,convolution_221_out0}) + .BindOutputs({add_224_out0}); + + (*relu_225) + .BindInputs({add_224_out0}) + .BindOutputs({relu_225_out0}); + + (*pooling_226) + .BindInputs({relu_225_out0}) + .BindOutputs({pooling_226_out0}); + + (*fullconnect_227) + .BindInputs({pooling_226_out0, fullconnect_227_weight, fullconnect_227_bias}) + .BindOutputs({fullconnect_227_out0}); + + (*softmax_228) + .BindInputs({fullconnect_227_out0}) + .BindOutputs({output_229}); + + free(coef_data_ptr); +} + +} // namespace acuitylite diff --git a/samples/multi_device/vx_resnet50.h b/samples/multi_device/vx_resnet50.h new file mode 100644 index 0000000..dc9aeac --- /dev/null +++ b/samples/multi_device/vx_resnet50.h @@ -0,0 +1,34 @@ +/**************************************************************************** +* Generated by ACUITY 6.6.0 +* Match timvx 1.1.30 +* +* Neural Network appliction network definition header file +****************************************************************************/ +#ifndef _VX_RESNET50_H +#define _VX_RESNET50_H + +#include "tim/vx/operation.h" +#include "tim/vx/tensor.h" +#include "tim/vx/graph.h" +#include "tim/vx/ops.h" + +namespace acuitylite +{ + +class resnet50 +{ + public: + using input_0_type = uint8_t; + using output_0_type = uint16_t; + static std::vector> input_size_list; + static std::vector input_bytes_list; + static std::vector> output_size_list; + static std::vector> inputs_tensor; + static std::vector> outputs_tensor; + + static void construct_graph(std::shared_ptr graph, const char *data_file_name); +}; + +} // namespace acuitylite + +#endif