Fixed unreasonable type of parameter in broadcast (#505)

Change type of shape from int to uint & add ut for broadcast
From github issue https://github.com/VeriSilicon/TIM-VX/issues/376
Define opversion to avoid incompatibility with upper level software

Type: Code Improvement

Signed-off-by: Feiyue Chen <Feiyue.Chen@verisilicon.com>
This commit is contained in:
Chen Feiyue 2024-01-04 21:38:05 +08:00 committed by GitHub
parent e8dab60cf2
commit 54b9c6750e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 58 additions and 19 deletions

View File

@ -24,7 +24,7 @@
#ifndef OVXLIBXX_OPERATIONS_BROADCAST_H_
#define OVXLIBXX_OPERATIONS_BROADCAST_H_
#include "tim/vx/builtin_op.h"
#define BROADCAST_OPVERSION 1
namespace tim {
namespace vx {
namespace ops {
@ -45,12 +45,12 @@ namespace ops {
class Broadcast : public BuiltinOp {
public:
Broadcast(Graph* graph, const std::vector<int32_t>& shape, const std::vector<int32_t>& dimensions = {});
Broadcast(Graph* graph, const std::vector<uint32_t>& shape, const std::vector<int32_t>& dimensions = {});
std::shared_ptr<Operation> Clone(std::shared_ptr<Graph>& graph) const override;
protected:
const std::vector<int32_t> shape_;
protected:
std::vector<uint32_t> shape_;
std::vector<int32_t> dimensions_;
};

View File

@ -30,23 +30,24 @@
namespace tim {
namespace vx {
namespace ops {
Broadcast::Broadcast(Graph* graph, const std::vector<int32_t>& shape,
Broadcast::Broadcast(Graph* graph, const std::vector <uint32_t>& shape,
const std::vector<int32_t>& dimensions)
: BuiltinOp(graph, VSI_NN_OP_EXPAND_BROADCAST),
shape_(shape),
dimensions_(dimensions) {
this->impl()->node()->nn_param.expand_broadcast.dim_num = shape_.size();
this->impl()->node()->nn_param.expand_broadcast.shape = (uint32_t*)shape_.data();
this->impl()->node()->nn_param.expand_broadcast.shape = shape_.data();
#ifdef VSI_EXPAND_BROADCAST_ENABLE_DIMENSIONS
this->impl()->node()->nn_param.expand_broadcast.dimensions_num = dimensions_.size();
if (dimensions.size() > 0)
{
int dim_num = shape.size();
for (uint32_t i = 0; i < dimensions.size(); ++i) {
dimensions_[i] += (dimensions[i] < 0 ? dim_num : 0U);
for (uint32_t i = 0; i < dimensions.size(); i++)
{
dimensions_[i] += (dimensions[i] < 0 ? shape_.size() : 0U );
}
this->impl()->node()->nn_param.expand_broadcast.dimensions = (uint32_t*)dimensions_.data();
} else {
} else
{
this->impl()->node()->nn_param.expand_broadcast.dimensions = nullptr;
}
#endif

View File

@ -62,7 +62,7 @@ TEST(Broadcast, ScalarTo2D_2x3) {
std::vector<float> golden = {
2.25f, 2.25f, 2.25f, 2.25f, 2.25f, 2.25f,
};
std::vector<int32_t> shape = {3, 2};
std::vector<uint32_t> shape = {3, 2};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
in_data.size() * sizeof(float)));
@ -93,7 +93,7 @@ TEST(Broadcast, 1DTo2D) {
std::vector<float> golden = {
1.f, 2.f, 3.f, 1.f, 2.f, 3.f,
};
std::vector<int32_t> shape = {3, 2};
std::vector<uint32_t> shape = {3, 2};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
in_data.size() * sizeof(float)));
@ -125,7 +125,7 @@ TEST(Broadcast, 1DTo2D_WithDims0) {
1.f, 2.f,
1.f, 2.f,
};
std::vector<int32_t> shape = {2, 2};
std::vector<uint32_t> shape = {2, 2};
std::vector<int32_t> dimensions = {0};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
@ -158,7 +158,7 @@ TEST(Broadcast, 1DTo2D_WithDims1) {
1.f, 1.f,
2.f, 2.f,
};
std::vector<int32_t> shape = {2, 2};
std::vector<uint32_t> shape = {2, 2};
std::vector<int32_t> dimensions = {1};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
@ -170,6 +170,44 @@ TEST(Broadcast, 1DTo2D_WithDims1) {
CheckResult(graph, golden, output_tensor);
}
TEST(Broadcast, 1DTo2D_WithDimsMinus2) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({3});
tim::vx::ShapeType output_shape({3, 2});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto output_tensor = graph->CreateTensor(output_spec);
std::vector<float> in_data = {
1.f, 2.f, 3.f
};
std::vector<float> golden = {
1.f, 2.f, 3.f,
1.f, 2.f, 3.f
};
std::vector<uint32_t> shape = {3, 2};
std::vector<int32_t> dimensions = {-2};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
in_data.size() * sizeof(float)));
auto op = graph->CreateOperation<tim::vx::ops::Broadcast>(shape, dimensions);
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output(golden.size());
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(Broadcast, 1DTo3D_WithDims0) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
@ -190,7 +228,7 @@ TEST(Broadcast, 1DTo3D_WithDims0) {
std::vector<float> golden = {
1.f, 2.f, 1.f, 2.f, 1.f, 2.f, 1.f, 2.f,
};
std::vector<int32_t> shape = {2, 2, 2};
std::vector<uint32_t> shape = {2, 2, 2};
std::vector<int32_t> dimensions = {0};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
@ -222,7 +260,7 @@ TEST(Broadcast, 1DTo3D_WithDims1) {
std::vector<float> golden = {
1.f, 1.f, 2.f, 2.f, 1.f, 1.f, 2.f, 2.f,
};
std::vector<int32_t> shape = {2, 2, 2};
std::vector<uint32_t> shape = {2, 2, 2};
std::vector<int32_t> dimensions = {1};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
@ -254,7 +292,7 @@ TEST(Broadcast, 1DTo3D_WithDims2) {
std::vector<float> golden = {
1.f, 1.f, 1.f, 1.f, 2.f, 2.f, 2.f, 2.f,
};
std::vector<int32_t> shape = {2, 2, 2};
std::vector<uint32_t> shape = {2, 2, 2};
std::vector<int32_t> dimensions = {2};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
@ -286,7 +324,7 @@ TEST(Broadcast, 2DTo3D_WithDims02) {
std::vector<float> golden = {
1.f, 5.f, 1.f, 5.f, 2.f, 6.f, 2.f, 6.f,
};
std::vector<int32_t> shape = {2, 2, 2};
std::vector<uint32_t> shape = {2, 2, 2};
std::vector<int32_t> dimensions = {0, 2};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
@ -318,7 +356,7 @@ TEST(Broadcast, 2DTo3D_WithDims12) {
std::vector<float> golden = {
1.f, 1.f, 5.f, 5.f, 2.f, 2.f, 6.f, 6.f,
};
std::vector<int32_t> shape = {2, 2, 2};
std::vector<uint32_t> shape = {2, 2, 2};
std::vector<int32_t> dimensions = {1, 2};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),