Fixed unreasonable type of parameter in broadcast (#505)
Change type of shape from int to uint & add ut for broadcast From github issue https://github.com/VeriSilicon/TIM-VX/issues/376 Define opversion to avoid incompatibility with upper level software Type: Code Improvement Signed-off-by: Feiyue Chen <Feiyue.Chen@verisilicon.com>
This commit is contained in:
parent
e8dab60cf2
commit
54b9c6750e
|
|
@ -24,7 +24,7 @@
|
|||
#ifndef OVXLIBXX_OPERATIONS_BROADCAST_H_
|
||||
#define OVXLIBXX_OPERATIONS_BROADCAST_H_
|
||||
#include "tim/vx/builtin_op.h"
|
||||
|
||||
#define BROADCAST_OPVERSION 1
|
||||
namespace tim {
|
||||
namespace vx {
|
||||
namespace ops {
|
||||
|
|
@ -45,12 +45,12 @@ namespace ops {
|
|||
|
||||
class Broadcast : public BuiltinOp {
|
||||
public:
|
||||
Broadcast(Graph* graph, const std::vector<int32_t>& shape, const std::vector<int32_t>& dimensions = {});
|
||||
Broadcast(Graph* graph, const std::vector<uint32_t>& shape, const std::vector<int32_t>& dimensions = {});
|
||||
|
||||
std::shared_ptr<Operation> Clone(std::shared_ptr<Graph>& graph) const override;
|
||||
|
||||
protected:
|
||||
const std::vector<int32_t> shape_;
|
||||
protected:
|
||||
std::vector<uint32_t> shape_;
|
||||
std::vector<int32_t> dimensions_;
|
||||
};
|
||||
|
||||
|
|
|
|||
|
|
@ -30,23 +30,24 @@
|
|||
namespace tim {
|
||||
namespace vx {
|
||||
namespace ops {
|
||||
Broadcast::Broadcast(Graph* graph, const std::vector<int32_t>& shape,
|
||||
Broadcast::Broadcast(Graph* graph, const std::vector <uint32_t>& shape,
|
||||
const std::vector<int32_t>& dimensions)
|
||||
: BuiltinOp(graph, VSI_NN_OP_EXPAND_BROADCAST),
|
||||
shape_(shape),
|
||||
dimensions_(dimensions) {
|
||||
this->impl()->node()->nn_param.expand_broadcast.dim_num = shape_.size();
|
||||
this->impl()->node()->nn_param.expand_broadcast.shape = (uint32_t*)shape_.data();
|
||||
this->impl()->node()->nn_param.expand_broadcast.shape = shape_.data();
|
||||
#ifdef VSI_EXPAND_BROADCAST_ENABLE_DIMENSIONS
|
||||
this->impl()->node()->nn_param.expand_broadcast.dimensions_num = dimensions_.size();
|
||||
if (dimensions.size() > 0)
|
||||
{
|
||||
int dim_num = shape.size();
|
||||
for (uint32_t i = 0; i < dimensions.size(); ++i) {
|
||||
dimensions_[i] += (dimensions[i] < 0 ? dim_num : 0U);
|
||||
for (uint32_t i = 0; i < dimensions.size(); i++)
|
||||
{
|
||||
dimensions_[i] += (dimensions[i] < 0 ? shape_.size() : 0U );
|
||||
}
|
||||
this->impl()->node()->nn_param.expand_broadcast.dimensions = (uint32_t*)dimensions_.data();
|
||||
} else {
|
||||
} else
|
||||
{
|
||||
this->impl()->node()->nn_param.expand_broadcast.dimensions = nullptr;
|
||||
}
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -62,7 +62,7 @@ TEST(Broadcast, ScalarTo2D_2x3) {
|
|||
std::vector<float> golden = {
|
||||
2.25f, 2.25f, 2.25f, 2.25f, 2.25f, 2.25f,
|
||||
};
|
||||
std::vector<int32_t> shape = {3, 2};
|
||||
std::vector<uint32_t> shape = {3, 2};
|
||||
|
||||
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
||||
in_data.size() * sizeof(float)));
|
||||
|
|
@ -93,7 +93,7 @@ TEST(Broadcast, 1DTo2D) {
|
|||
std::vector<float> golden = {
|
||||
1.f, 2.f, 3.f, 1.f, 2.f, 3.f,
|
||||
};
|
||||
std::vector<int32_t> shape = {3, 2};
|
||||
std::vector<uint32_t> shape = {3, 2};
|
||||
|
||||
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
||||
in_data.size() * sizeof(float)));
|
||||
|
|
@ -125,7 +125,7 @@ TEST(Broadcast, 1DTo2D_WithDims0) {
|
|||
1.f, 2.f,
|
||||
1.f, 2.f,
|
||||
};
|
||||
std::vector<int32_t> shape = {2, 2};
|
||||
std::vector<uint32_t> shape = {2, 2};
|
||||
std::vector<int32_t> dimensions = {0};
|
||||
|
||||
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
||||
|
|
@ -158,7 +158,7 @@ TEST(Broadcast, 1DTo2D_WithDims1) {
|
|||
1.f, 1.f,
|
||||
2.f, 2.f,
|
||||
};
|
||||
std::vector<int32_t> shape = {2, 2};
|
||||
std::vector<uint32_t> shape = {2, 2};
|
||||
std::vector<int32_t> dimensions = {1};
|
||||
|
||||
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
||||
|
|
@ -170,6 +170,44 @@ TEST(Broadcast, 1DTo2D_WithDims1) {
|
|||
CheckResult(graph, golden, output_tensor);
|
||||
}
|
||||
|
||||
TEST(Broadcast, 1DTo2D_WithDimsMinus2) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType input_shape({3});
|
||||
tim::vx::ShapeType output_shape({3, 2});
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
||||
tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
std::vector<float> in_data = {
|
||||
1.f, 2.f, 3.f
|
||||
};
|
||||
std::vector<float> golden = {
|
||||
1.f, 2.f, 3.f,
|
||||
1.f, 2.f, 3.f
|
||||
};
|
||||
std::vector<uint32_t> shape = {3, 2};
|
||||
std::vector<int32_t> dimensions = {-2};
|
||||
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
||||
in_data.size() * sizeof(float)));
|
||||
|
||||
auto op = graph->CreateOperation<tim::vx::ops::Broadcast>(shape, dimensions);
|
||||
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
||||
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
std::vector<float> output(golden.size());
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
||||
TEST(Broadcast, 1DTo3D_WithDims0) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
|
@ -190,7 +228,7 @@ TEST(Broadcast, 1DTo3D_WithDims0) {
|
|||
std::vector<float> golden = {
|
||||
1.f, 2.f, 1.f, 2.f, 1.f, 2.f, 1.f, 2.f,
|
||||
};
|
||||
std::vector<int32_t> shape = {2, 2, 2};
|
||||
std::vector<uint32_t> shape = {2, 2, 2};
|
||||
std::vector<int32_t> dimensions = {0};
|
||||
|
||||
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
||||
|
|
@ -222,7 +260,7 @@ TEST(Broadcast, 1DTo3D_WithDims1) {
|
|||
std::vector<float> golden = {
|
||||
1.f, 1.f, 2.f, 2.f, 1.f, 1.f, 2.f, 2.f,
|
||||
};
|
||||
std::vector<int32_t> shape = {2, 2, 2};
|
||||
std::vector<uint32_t> shape = {2, 2, 2};
|
||||
std::vector<int32_t> dimensions = {1};
|
||||
|
||||
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
||||
|
|
@ -254,7 +292,7 @@ TEST(Broadcast, 1DTo3D_WithDims2) {
|
|||
std::vector<float> golden = {
|
||||
1.f, 1.f, 1.f, 1.f, 2.f, 2.f, 2.f, 2.f,
|
||||
};
|
||||
std::vector<int32_t> shape = {2, 2, 2};
|
||||
std::vector<uint32_t> shape = {2, 2, 2};
|
||||
std::vector<int32_t> dimensions = {2};
|
||||
|
||||
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
||||
|
|
@ -286,7 +324,7 @@ TEST(Broadcast, 2DTo3D_WithDims02) {
|
|||
std::vector<float> golden = {
|
||||
1.f, 5.f, 1.f, 5.f, 2.f, 6.f, 2.f, 6.f,
|
||||
};
|
||||
std::vector<int32_t> shape = {2, 2, 2};
|
||||
std::vector<uint32_t> shape = {2, 2, 2};
|
||||
std::vector<int32_t> dimensions = {0, 2};
|
||||
|
||||
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
||||
|
|
@ -318,7 +356,7 @@ TEST(Broadcast, 2DTo3D_WithDims12) {
|
|||
std::vector<float> golden = {
|
||||
1.f, 1.f, 5.f, 5.f, 2.f, 2.f, 6.f, 6.f,
|
||||
};
|
||||
std::vector<int32_t> shape = {2, 2, 2};
|
||||
std::vector<uint32_t> shape = {2, 2, 2};
|
||||
std::vector<int32_t> dimensions = {1, 2};
|
||||
|
||||
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
|
||||
|
|
|
|||
Loading…
Reference in New Issue