Add Gelu support for tim::vx (#153)
* Add map for Gelu Signed-off-by: Chen Xin <jack.chen@verisilicon.com>
This commit is contained in:
parent
a364c3eafb
commit
5e09e98c1a
|
|
@ -63,6 +63,9 @@ namespace ops {
|
||||||
* - axis : describes the axis of the inputs when coerced to 2D.
|
* - axis : describes the axis of the inputs when coerced to 2D.
|
||||||
*
|
*
|
||||||
* Linear(x, a, b) : a*x + b.
|
* Linear(x, a, b) : a*x + b.
|
||||||
|
*
|
||||||
|
* Gelu(x) : x * P(X <= x), where P(x) ~ N(0, 1). https://tensorflow.google.cn/api_docs/python/tf/nn/gelu
|
||||||
|
|
||||||
* ```
|
* ```
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
|
@ -119,6 +122,13 @@ class Linear : public Operation {
|
||||||
float b_;
|
float b_;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
class Gelu : public Operation {
|
||||||
|
public:
|
||||||
|
explicit Gelu(Graph* graph, bool approximate = false);
|
||||||
|
std::shared_ptr<Operation> Clone(
|
||||||
|
std::shared_ptr<Graph>& graph) const override;
|
||||||
|
};
|
||||||
|
|
||||||
} // namespace ops
|
} // namespace ops
|
||||||
} // namespace vx
|
} // namespace vx
|
||||||
} // namespace tim
|
} // namespace tim
|
||||||
|
|
|
||||||
|
|
@ -107,6 +107,15 @@ std::shared_ptr<Operation> Linear::Clone(std::shared_ptr<Graph>& graph) const {
|
||||||
return graph->CreateOperation<Linear>(this->a_, this->b_);
|
return graph->CreateOperation<Linear>(this->a_, this->b_);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Gelu::Gelu(Graph* graph, bool approximate)
|
||||||
|
: Operation(graph, VSI_NN_OP_GELU){
|
||||||
|
this->impl()->node()->nn_param.gelu.approximate = approximate;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::shared_ptr<Operation> Gelu::Clone(std::shared_ptr<Graph>& graph) const {
|
||||||
|
return graph->CreateOperation<Gelu>(this->impl()->node()->nn_param.gelu.approximate);
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace ops
|
} // namespace ops
|
||||||
} // namespace vx
|
} // namespace vx
|
||||||
} // namespace tim
|
} // namespace tim
|
||||||
|
|
|
||||||
|
|
@ -26,6 +26,20 @@
|
||||||
#include "tim/vx/ops/activations.h"
|
#include "tim/vx/ops/activations.h"
|
||||||
|
|
||||||
#include "gtest/gtest.h"
|
#include "gtest/gtest.h"
|
||||||
|
#include "src/tim/vx/test_utils.h"
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
template<typename T>
|
||||||
|
::testing::AssertionResult ArraysMatch(const std::vector<T>& expected,
|
||||||
|
const std::vector<T>& actual,
|
||||||
|
T abs_error){
|
||||||
|
for (size_t i = 0; i < expected.size(); ++i){
|
||||||
|
EXPECT_NEAR(expected[i], actual[i], abs_error) << "at index:" << i;
|
||||||
|
}
|
||||||
|
|
||||||
|
return ::testing::AssertionSuccess();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
TEST(Linear, shape_5_1_fp32) {
|
TEST(Linear, shape_5_1_fp32) {
|
||||||
auto ctx = tim::vx::Context::Create();
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
|
@ -83,5 +97,128 @@ TEST(Linear, shape_5_1_fp32_omit_b) {
|
||||||
EXPECT_EQ(golden, output);
|
EXPECT_EQ(golden, output);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST(Gelu, shape_5_1_fp32) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType in_shape({5, 1});
|
||||||
|
tim::vx::ShapeType out_shape({5, 1});
|
||||||
|
tim::vx::TensorSpec in_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
in_shape, tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
auto in_tensor = graph->CreateTensor(in_spec);
|
||||||
|
auto out_tensor = graph->CreateTensor(out_spec);
|
||||||
|
|
||||||
|
std::vector<float> in_data = {
|
||||||
|
-3, -1, 0, 1, 3
|
||||||
|
};
|
||||||
|
std::vector<float> golden = {
|
||||||
|
-0.00404951, -0.15865529, 0, 0.8413447, 2.9959507
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(in_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Gelu>(false);
|
||||||
|
(*op).BindInput(in_tensor).BindOutput(out_tensor);
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
|
||||||
|
std::vector<float> output(golden.size());
|
||||||
|
EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Gelu, shape_5_1_fp32_approximate) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType in_shape({5, 1});
|
||||||
|
tim::vx::ShapeType out_shape({5, 1});
|
||||||
|
tim::vx::TensorSpec in_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
in_shape, tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
auto in_tensor = graph->CreateTensor(in_spec);
|
||||||
|
auto out_tensor = graph->CreateTensor(out_spec);
|
||||||
|
|
||||||
|
std::vector<float> in_data = {
|
||||||
|
-3, -1, 0, 1, 3
|
||||||
|
};
|
||||||
|
std::vector<float> golden = {
|
||||||
|
-0.00363752, -0.15880796, 0, 0.841192, 2.9963627
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(in_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Gelu>(true);
|
||||||
|
(*op).BindInput(in_tensor).BindOutput(out_tensor);
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
|
||||||
|
std::vector<float> output(golden.size());
|
||||||
|
EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Gelu, shape_5_1_uint8_Quantized) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType in_shape({5, 1});
|
||||||
|
tim::vx::ShapeType out_shape({5, 1});
|
||||||
|
|
||||||
|
const float InputMin = -127, InputMax = 128, OutputMin = -127, OutputMax = 128;
|
||||||
|
|
||||||
|
std::pair<float, int32_t> scalesAndZp;
|
||||||
|
|
||||||
|
scalesAndZp = QuantizationParams<uint8_t>(InputMin, InputMax);
|
||||||
|
std::vector<float> scalesInput = {scalesAndZp.first}; //scale
|
||||||
|
std::vector<int32_t> zeroPointsInput = {scalesAndZp.second}; //zero point
|
||||||
|
|
||||||
|
scalesAndZp = QuantizationParams<u_int8_t>(OutputMin, OutputMax);
|
||||||
|
std::vector<float> scalesOutput = {scalesAndZp.first};
|
||||||
|
std::vector<int32_t> zeroPointsOutput = {scalesAndZp.second};
|
||||||
|
|
||||||
|
|
||||||
|
tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 1,
|
||||||
|
scalesInput, zeroPointsInput);
|
||||||
|
tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 1,
|
||||||
|
scalesOutput, zeroPointsOutput);
|
||||||
|
|
||||||
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, in_shape,
|
||||||
|
tim::vx::TensorAttribute::INPUT, quantInput);
|
||||||
|
|
||||||
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, out_shape,
|
||||||
|
tim::vx::TensorAttribute::OUTPUT, quantOutput);
|
||||||
|
|
||||||
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||||||
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||||||
|
|
||||||
|
std::vector<float> in_float_data = {
|
||||||
|
-3, -1, 0, 1, 3
|
||||||
|
};
|
||||||
|
std::vector<float> golden_float = {
|
||||||
|
-0.00404951, -0.15865529, 0, 0.8413447, 2.9959507
|
||||||
|
};
|
||||||
|
|
||||||
|
std::vector<uint8_t> input_data =
|
||||||
|
Quantize<uint8_t>(in_float_data, scalesInput[0], zeroPointsInput[0]); //Quantification process
|
||||||
|
std::vector<uint8_t> golden =
|
||||||
|
Quantize<uint8_t>(golden_float, scalesOutput[0], zeroPointsOutput[0]);
|
||||||
|
std::vector<uint8_t> tolerance =
|
||||||
|
Quantize<uint8_t>(scalesInput, scalesOutput[0], zeroPointsOutput[0]);
|
||||||
|
|
||||||
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(input_data.data(), input_data.size()*4));
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Gelu>(false);
|
||||||
|
(*op).BindInput(input_tensor).BindOutput(output_tensor);
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
std::vector<uint8_t> output(golden.size());
|
||||||
|
|
||||||
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_TRUE(ArraysMatch(golden, output, tolerance[0]));
|
||||||
|
}
|
||||||
|
|
@ -100,7 +100,7 @@ TEST(AddN, shape_3_1_float32) {
|
||||||
EXPECT_EQ(golden, output);
|
EXPECT_EQ(golden, output);
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST(AddN, shape_2_2_uint8_QuantizedTest) {
|
TEST(AddN, shape_2_2_uint8_Quantized) {
|
||||||
auto ctx = tim::vx::Context::Create();
|
auto ctx = tim::vx::Context::Create();
|
||||||
auto graph = ctx->CreateGraph();
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
|
@ -111,11 +111,11 @@ TEST(AddN, shape_2_2_uint8_QuantizedTest) {
|
||||||
|
|
||||||
std::pair<float, int32_t> scalesAndZp;
|
std::pair<float, int32_t> scalesAndZp;
|
||||||
|
|
||||||
scalesAndZp = QuantizationParams<u_int8_t>(InputMin, InputMax);
|
scalesAndZp = QuantizationParams<uint8_t>(InputMin, InputMax);
|
||||||
std::vector<float> scalesInput = {scalesAndZp.first}; //scale
|
std::vector<float> scalesInput = {scalesAndZp.first}; //scale
|
||||||
std::vector<int32_t> zeroPointsInput = {scalesAndZp.second}; //zero point
|
std::vector<int32_t> zeroPointsInput = {scalesAndZp.second}; //zero point
|
||||||
|
|
||||||
scalesAndZp = QuantizationParams<u_int8_t>(OutputMin, OutputMax);
|
scalesAndZp = QuantizationParams<uint8_t>(OutputMin, OutputMax);
|
||||||
std::vector<float> scalesOutput = {scalesAndZp.first};
|
std::vector<float> scalesOutput = {scalesAndZp.first};
|
||||||
std::vector<int32_t> zeroPointsOutput = {scalesAndZp.second};
|
std::vector<int32_t> zeroPointsOutput = {scalesAndZp.second};
|
||||||
|
|
||||||
|
|
@ -147,11 +147,11 @@ TEST(AddN, shape_2_2_uint8_QuantizedTest) {
|
||||||
4.2, 11.2,
|
4.2, 11.2,
|
||||||
6.2, 17 };
|
6.2, 17 };
|
||||||
|
|
||||||
std::vector<u_int8_t> input_data_x =
|
std::vector<uint8_t> input_data_x =
|
||||||
Quantize<uint8_t>(in_float_data_x, scalesInput[0], zeroPointsInput[0]);//Quantification process
|
Quantize<uint8_t>(in_float_data_x, scalesInput[0], zeroPointsInput[0]);//Quantification process
|
||||||
std::vector<u_int8_t> input_data_y =
|
std::vector<uint8_t> input_data_y =
|
||||||
Quantize<uint8_t>(in_float_data_y, scalesInput[0], zeroPointsInput[0]);
|
Quantize<uint8_t>(in_float_data_y, scalesInput[0], zeroPointsInput[0]);
|
||||||
std::vector<u_int8_t> golden =
|
std::vector<uint8_t> golden =
|
||||||
Quantize<uint8_t>(golden_float, scalesOutput[0], zeroPointsOutput[0]);
|
Quantize<uint8_t>(golden_float, scalesOutput[0], zeroPointsOutput[0]);
|
||||||
|
|
||||||
EXPECT_TRUE(input_tensor_x->CopyDataToTensor(input_data_x.data(), input_data_x.size()*4));
|
EXPECT_TRUE(input_tensor_x->CopyDataToTensor(input_data_x.data(), input_data_x.size()*4));
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue