fixed prelu layoutinfer bug & added cases (#628)

Type: bug fix

Signed-off-by: Chen <jack.chen@verisilicon.com>
Co-authored-by: Chen <jack.chen@verisilicon.com>
This commit is contained in:
chxin66 2023-08-07 13:17:46 +08:00 committed by GitHub
parent f0cf45fdaa
commit 6a5694e557
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 161 additions and 34 deletions

View File

@ -25,6 +25,7 @@
#define TIM_LAYOUT_INFER_ACTIVATION_LAYOUT_INFERENCE_H_
#include "tim/vx/ops/activations.h"
#include "tim/vx/ops/reshape.h"
#include "ops/op_layout_inference.h"
#include "permute_vector.h"
@ -67,49 +68,54 @@ class PReluLayoutInfer : public OpLayoutInfer {
void OnInputs(
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
auto src_input = op_->impl()->InputsTensor()[0];
auto input_shape = src_input->GetShape();
auto src_slope = op_->impl()->InputsTensor()[1];
auto slope_shape = src_slope->GetShape();
auto input_pv = context_->GetPermuteVector(src_input);
std::vector<uint32_t> boardcast_shape;
for (uint32_t i = 0; i < input_shape.size(); ++i) {
if (i < slope_shape.size()) {
boardcast_shape.push_back(slope_shape[i]);
} else {
boardcast_shape.push_back(1);
}
}
if (src_slope->IsConstTensor()) {
std::shared_ptr<vx::Tensor> infer_tensor;
std::shared_ptr<IPermuteVector> slope_pv;
std::vector<uint8_t> dataRef(src_slope->GetSpec().GetByteSize());
src_slope->CopyDataFromTensor(dataRef.data());
auto infer_slope = context_->infer_graph_->CreateTensor(
src_slope->GetSpec(), (const void*)dataRef.data());
slope_pv = MakeShared(src_slope->GetShape().size());
std::vector<uint8_t> dataRef(src_slope->GetSpec().GetByteSize());
src_slope->CopyDataFromTensor(dataRef.data());
auto infer_slope_spec = src_slope->GetSpec();
infer_slope_spec.SetShape(boardcast_shape);
auto infer_slope = context_->infer_graph_->CreateTensor(
infer_slope_spec, (const void*)dataRef.data());
if(!input_pv->IsAligned()){
// compute transpose param
std::vector<uint32_t> perm;
for(uint32_t i = 0,j=0; i< input_pv->Rank(); i++,j++){
if(j == slope_pv->Rank()) break;
if(input_pv->At(i) < slope_pv->Rank()){
perm.push_back(input_pv->At(i));
}
else i++; // if dims of input is higher than slope
}
auto out_slope = context_->infer_graph_->CreateTensor(src_slope->GetSpec().AsTransientSpec());
auto permute = context_->infer_graph_->CreateOperation<vx::ops::Transpose>(perm);
(*permute).BindInput(infer_slope).BindOutput(out_slope);
context_->UpdateTensorMap(src_slope, out_slope);
}
else {
context_->UpdateTensorMap(src_slope, infer_slope);
}
context_->SetPermuteVector(src_slope,slope_pv);
if (!input_pv->IsAligned()) {
//The dimension of slop is already the same as input, directly use input_pv to convert
auto out_slope = PermuteConstTensor(infer_slope, input_pv);
context_->UpdateTensorMap(src_slope, out_slope);
} else {
context_->UpdateTensorMap(src_slope, infer_slope);
}
} else {
auto infer_slope_spec = src_slope->GetSpec().AsTransientSpec();
auto reshape_out = context_->infer_graph_->CreateTensor(infer_slope_spec);
boardcast_shape = MapMultipleAxis(input_pv->AsStdVec(), boardcast_shape);
auto reshape = context_->infer_graph_->CreateOperation<vx::ops::Reshape>(boardcast_shape);
(*reshape)
.BindInput(context_->GetMapedTensor(src_slope))
.BindOutput(reshape_out);
context_->UpdateTensorMap(src_slope, reshape_out);
}
else{
VSILOGE("Slope tensor cannot be handled yet if not constant.");
assert(false);
}
auto axis = MapAxis(input_pv->AsStdVec(),
op_->impl()->node()->nn_param.prelu.axis);
context_->SetPermuteVector(src_slope, input_pv);
auto axis =
MapAxis(input_pv->AsStdVec(), op_->impl()->node()->nn_param.prelu.axis);
auto prelu = context_->infer_graph_->CreateOperation<vx::ops::Prelu>(axis);
auto out_infer = CreateOutputsTensor(input_pv);
(*prelu).BindInput(context_->GetMapedTensor(src_input)).BindInput(
context_->GetMapedTensor(src_slope));
(*prelu)
.BindInput(context_->GetMapedTensor(src_input))
.BindInput(context_->GetMapedTensor(src_slope));
(*prelu).BindOutput(out_infer[0]);
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], input_pv);
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);

View File

@ -0,0 +1,121 @@
/****************************************************************************
*
* Copyright (c) 2020-2023 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/ops.h"
#include "test_utils.h"
#include "gtest/gtest.h"
#include "tim/transform/layout_inference.h"
#include "permute_vector.h"
TEST(Prelu, alpha_boardcast) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2,2,3,1}); //input_pv={1,2,0,3}
tim::vx::ShapeType alph_shape({3,1,1}); //pv={0,1,2}
tim::vx::ShapeType output_shape({3,2,2,1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec alpha_spec(tim::vx::DataType::FLOAT32, alph_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
std::vector<float> in_data = {0.4, -0.2, 0.3, -0.4, 0.5, -0.6, 0.4, -0.2, 0.3, -0.4, 0.5, -0.6};
std::vector<float> alpha_data = {1,2,3};
std::vector<float> golden = {0.4, 0.5, 0.3, -0.2, -1.2, -1.2, 0.3, 0.4, 0.5, -0.4, -0.4, -1.8};
auto input = graph->CreateTensor(input_spec);
auto alpha = graph->CreateTensor(alpha_spec, alpha_data.data());
auto output = graph->CreateTensor(output_spec);
auto prelu = graph->CreateOperation<tim::vx::ops::Prelu>(0);
(*prelu).BindInputs({input, alpha}).BindOutputs({output});
std::map<std::shared_ptr<tim::vx::Tensor>,
std::shared_ptr<tim::transform::IPermuteVector>>
tensor_pv_map;
std::shared_ptr<tim::transform::IPermuteVector> pv =
std::make_shared<tim::transform::PermuteVector<4>>(
std::initializer_list<uint32_t>({1,2,0,3}));
tensor_pv_map.insert({input, pv});
auto transform = tim::transform::LayoutInference(graph, ctx, tensor_pv_map);
auto infer_graph = transform.first;
EXPECT_TRUE(infer_graph->Compile());
auto graph_io_map = transform.second;
auto infer_input = graph_io_map[graph->InputsTensor()[0]];
auto infer_output = graph_io_map[graph->OutputsTensor()[0]];
EXPECT_TRUE(infer_input->CopyDataToTensor(in_data.data(), in_data.size()));
EXPECT_TRUE(infer_graph->Run());
std::vector<float> out(golden.size());
EXPECT_TRUE(infer_output->CopyDataFromTensor(out.data()));
EXPECT_TRUE(ArraysMatch(golden, out, 1e-5f));
}
TEST(Prelu, alpha_as_input) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2,2,3,1}); //input_pv={1,2,0,3}
tim::vx::ShapeType alph_shape({3,1,1}); //pv={0,1,2}
tim::vx::ShapeType output_shape({3,2,2,1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec alpha_spec(tim::vx::DataType::FLOAT32, alph_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
std::vector<float> in_data = {0.4, -0.2, 0.3, -0.4, 0.5, -0.6, 0.4, -0.2, 0.3, -0.4, 0.5, -0.6};
std::vector<float> alpha_data = {1,2,3};
std::vector<float> golden = {0.4, 0.5, 0.3, -0.2, -1.2, -1.2, 0.3, 0.4, 0.5, -0.4, -0.4, -1.8};
auto input = graph->CreateTensor(input_spec);
auto alpha = graph->CreateTensor(alpha_spec);
auto output = graph->CreateTensor(output_spec);
auto prelu = graph->CreateOperation<tim::vx::ops::Prelu>(0);
(*prelu).BindInputs({input, alpha}).BindOutputs({output});
std::map<std::shared_ptr<tim::vx::Tensor>,
std::shared_ptr<tim::transform::IPermuteVector>>
tensor_pv_map;
std::shared_ptr<tim::transform::IPermuteVector> pv =
std::make_shared<tim::transform::PermuteVector<4>>(
std::initializer_list<uint32_t>({1,2,0,3}));
tensor_pv_map.insert({input, pv});
auto transform = tim::transform::LayoutInference(graph, ctx, tensor_pv_map);
auto infer_graph = transform.first;
EXPECT_TRUE(infer_graph->Compile());
auto graph_io_map = transform.second;
auto infer_input = graph_io_map[graph->InputsTensor()[0]];
auto infer_alpha = graph_io_map[graph->InputsTensor()[1]];
auto infer_output = graph_io_map[graph->OutputsTensor()[0]];
EXPECT_TRUE(infer_input->CopyDataToTensor(in_data.data(), in_data.size()));
EXPECT_TRUE(infer_alpha->CopyDataToTensor(alpha_data.data(), alpha_data.size()));
EXPECT_TRUE(infer_graph->Run());
std::vector<float> out(golden.size());
EXPECT_TRUE(infer_output->CopyDataFromTensor(out.data()));
EXPECT_TRUE(ArraysMatch(golden, out, 1e-5f));
}