Add shuffle_channel support & test for tim::vx
Signed-off-by: Chen Xin <jack.chen@verisilicon.com>
This commit is contained in:
parent
b226777ad3
commit
6f2e92ffa6
|
|
@ -3,3 +3,4 @@
|
|||
BasedOnStyle: Google
|
||||
DerivePointerAlignment: false
|
||||
ReflowComments: false
|
||||
SortIncludes: false
|
||||
|
|
@ -0,0 +1,51 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2021 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#ifndef TIM_VX_OPS_SHUFFLE_H_
|
||||
#define TIM_VX_OPS_SHUFFLE_H_
|
||||
#include "tim/vx/operation.h"
|
||||
|
||||
namespace tim {
|
||||
namespace vx {
|
||||
namespace ops {
|
||||
|
||||
/**
|
||||
* ## Channel_Shuffle
|
||||
*
|
||||
* ```
|
||||
* channel_shuffle(in_tensor, num_groups, index_axis) : output_channel[k * num_groups + g] = input_channel[g * group_size + k]
|
||||
where group_size = num_channels(Corresponding index_axis) / num_groups. The number of channels must be divisible by num_groups
|
||||
* ```
|
||||
*/
|
||||
|
||||
class shuffle_channel : public Operation {
|
||||
public:
|
||||
explicit shuffle_channel(Graph* graph, int32_t num_groups, int32_t index_axis);
|
||||
std::shared_ptr<Operation> Clone(std::shared_ptr<Graph>& graph) const override;
|
||||
};
|
||||
|
||||
} // namespace ops
|
||||
} // namespace vx
|
||||
} // namespace tim
|
||||
|
||||
#endif /* TIM_VX_OPS_SHUFFLE_H_ */
|
||||
|
|
@ -22,14 +22,12 @@
|
|||
*
|
||||
*****************************************************************************/
|
||||
#include "tim/vx/graph.h"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "context_private.h"
|
||||
#include "graph_private.h"
|
||||
#include "tensor_private.h"
|
||||
#include "operation_private.h"
|
||||
|
||||
#include "tensor_private.h"
|
||||
#include "tim/vx/context.h"
|
||||
#include "tim/vx/ops/nbg.h"
|
||||
#include "vsi_nn_pub.h"
|
||||
|
|
@ -125,8 +123,10 @@ bool GraphImpl::Compile() {
|
|||
vsi_nn_SetGraphVersion(graph_, major, minor, patch);
|
||||
|
||||
std::call_once(setio_once_, [&status, this]() {
|
||||
status = (vsi_nn_SetGraphInputs(this->graph_, this->inputs_.data(), this->inputs_.size()) &&
|
||||
vsi_nn_SetGraphOutputs(this->graph_, this->outputs_.data(), this->outputs_.size()));
|
||||
status = (vsi_nn_SetGraphInputs(this->graph_, this->inputs_.data(),
|
||||
this->inputs_.size()) &&
|
||||
vsi_nn_SetGraphOutputs(this->graph_, this->outputs_.data(),
|
||||
this->outputs_.size()));
|
||||
});
|
||||
|
||||
std::call_once(setup_once_, [&status, this]() {
|
||||
|
|
@ -143,8 +143,10 @@ bool GraphImpl::Compile() {
|
|||
bool GraphImpl::CompileToBinary(void* buf, size_t* size) {
|
||||
bool status = true;
|
||||
std::call_once(setio_once_, [&status, this]() {
|
||||
status = (vsi_nn_SetGraphInputs(this->graph_, this->inputs_.data(), this->inputs_.size()) &&
|
||||
vsi_nn_SetGraphOutputs(this->graph_,this->outputs_.data(), this->outputs_.size()));
|
||||
status = (vsi_nn_SetGraphInputs(this->graph_, this->inputs_.data(),
|
||||
this->inputs_.size()) &&
|
||||
vsi_nn_SetGraphOutputs(this->graph_, this->outputs_.data(),
|
||||
this->outputs_.size()));
|
||||
});
|
||||
|
||||
std::call_once(setup_once_, [&status, this]() {
|
||||
|
|
|
|||
|
|
@ -97,6 +97,8 @@ Unstack|UNSTACK|Mapped|[tf.unstack](https://tensorflow.google.cn/api_docs/python
|
|||
Tile|TILE|Mapped|[tf.tile](https://tensorflow.google.cn/api_docs/python/tf/tile)
|
||||
GroupedConv2d|GROUPED_CONV2D|Mapped|[ANEURALNETWORKS_GROUPED_CONV_2D](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a847acf8d9f3d2343328c3dbe6d447c50)
|
||||
SpatialTransformer|SPATIAL_TRANSFORMER|Mapped|[SpatialTransformer](https://github.com/daerduoCarey/SpatialTransformerLayer)
|
||||
shuffle_channel|SHUFFLECHANNEL|Mapped|[ANEURALNETWORKS_CHANNEL_SHUFFLE](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a5b993c1211c4b1bc52fb595a3025251d)
|
||||
Gelu|GELU|Mapped|[tf.nn.gelu](https://tensorflow.google.cn/api_docs/python/tf/nn/gelu)
|
||||
||PROPOSAL|Planned 21Q3|[Faster-RCNN Proposal Layer](https://github.com/intel/caffe/blob/master/examples/faster-rcnn/lib/rpn/proposal_layer.py)
|
||||
||ROI_POOL|Planned 21Q3|[ANEURALNETWORKS_ROI_POOLING](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a6736198af337b2efbdb0b6b64dee7fe4)
|
||||
||ROI_ALIGN|Planned 21Q3|[ANEURALNETWORKS_ROI_ALIGN](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a2848b39dd4bfba78f2438fda0d9397a4)
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2020 Vivante Corporation
|
||||
* Copyright (c) 2021 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
|
|
@ -35,7 +35,7 @@ AddN::AddN(Graph* graph, uint32_t num_inputs)
|
|||
|
||||
std::shared_ptr<Operation> AddN::Clone(std::shared_ptr<Graph>& graph) const {
|
||||
return graph->CreateOperation<AddN>(this->impl_->input_cnt_);
|
||||
};
|
||||
}
|
||||
|
||||
} // namespace ops
|
||||
} // namespace vx
|
||||
|
|
|
|||
|
|
@ -70,11 +70,12 @@ TEST(AddN, shape_3_1_float32) {
|
|||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType io_shape({3, 1});
|
||||
tim::vx::ShapeType in_shape({3, 1});
|
||||
tim::vx::ShapeType out_shape({3, 1});
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||||
io_shape, tim::vx::TensorAttribute::INPUT);
|
||||
in_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||||
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
auto input_tensor_x = graph->CreateTensor(input_spec);
|
||||
auto input_tensor_y = graph->CreateTensor(input_spec);
|
||||
|
|
|
|||
|
|
@ -0,0 +1,47 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2021 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#include "operation_private.h"
|
||||
#include "tim/vx/ops/shuffle_channel.h"
|
||||
#include "vsi_nn_pub.h"
|
||||
namespace tim {
|
||||
namespace vx {
|
||||
namespace ops {
|
||||
|
||||
shuffle_channel::shuffle_channel(Graph* graph, int32_t num_groups,
|
||||
int32_t index_axis)
|
||||
: Operation(graph, VSI_NN_OP_SHUFFLECHANNEL, 1, 1) {
|
||||
this->impl()->node()->nn_param.shufflechannel.group_number = num_groups;
|
||||
this->impl()->node()->nn_param.shufflechannel.axis = index_axis;
|
||||
}
|
||||
|
||||
std::shared_ptr<Operation> shuffle_channel::Clone(
|
||||
std::shared_ptr<Graph>& graph) const {
|
||||
return graph->CreateOperation<shuffle_channel>(
|
||||
this->impl()->node()->nn_param.shufflechannel.group_number,
|
||||
this->impl()->node()->nn_param.shufflechannel.axis);
|
||||
}
|
||||
|
||||
} // namespace ops
|
||||
} // namespace vx
|
||||
} // namespace tim
|
||||
|
|
@ -0,0 +1,205 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2021 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#include "tim/vx/context.h"
|
||||
#include "tim/vx/graph.h"
|
||||
#include "tim/vx/ops/shuffle_channel.h"
|
||||
#include "tim/vx/types.h"
|
||||
#include "src/tim/vx/test_utils.h"
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
TEST(shuffle_channel, shape_3_6_groupnum2_dim1_float32) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType in_shape({3, 6}); //3 columns and 4 rows, w h c n
|
||||
tim::vx::ShapeType out_shape({3, 6});
|
||||
tim::vx::TensorSpec in_spec(tim::vx::DataType::FLOAT32,
|
||||
in_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32,
|
||||
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
auto in_tensor = graph->CreateTensor(in_spec);
|
||||
auto out_tensor = graph->CreateTensor(out_spec);
|
||||
|
||||
std::vector<float> in_data = {
|
||||
1, 2, 3,
|
||||
4, 5, 6,
|
||||
7, 8, 9,
|
||||
10, 11, 12,
|
||||
13, 14, 15,
|
||||
16, 17, 18
|
||||
};
|
||||
std::vector<float> golden = {
|
||||
1, 2, 3,
|
||||
10, 11, 12,
|
||||
4, 5, 6,
|
||||
13, 14, 15,
|
||||
7, 8, 9,
|
||||
16, 17, 18
|
||||
};
|
||||
|
||||
EXPECT_TRUE(in_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||
auto op = graph->CreateOperation<tim::vx::ops::shuffle_channel>(2, 1);
|
||||
(*op).BindInput(in_tensor).BindOutput(out_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
std::vector<float> output(golden.size());
|
||||
EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
||||
TEST(shuffle_channel, shape_4_2_2_groupnum2_dim0_float32) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType in_shape({4, 2, 2});
|
||||
tim::vx::ShapeType out_shape({4, 2, 2});
|
||||
tim::vx::TensorSpec in_spec(tim::vx::DataType::FLOAT32,
|
||||
in_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32,
|
||||
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
auto in_tensor = graph->CreateTensor(in_spec);
|
||||
auto out_tensor = graph->CreateTensor(out_spec);
|
||||
|
||||
std::vector<float> in_data = {
|
||||
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
||||
};
|
||||
std::vector<float> golden = {
|
||||
1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10, 12, 13, 15, 14, 16
|
||||
};
|
||||
|
||||
EXPECT_TRUE(in_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||
auto op = graph->CreateOperation<tim::vx::ops::shuffle_channel>(2, 0);
|
||||
(*op).BindInput(in_tensor).BindOutput(out_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
std::vector<float> output(golden.size());
|
||||
EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
||||
TEST(shuffle_channel, shape_1_4_2_2_groupnum2_dim1_float32) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType in_shape({1, 4, 2, 2});
|
||||
tim::vx::ShapeType out_shape({1, 4, 2, 2});
|
||||
tim::vx::TensorSpec in_spec(tim::vx::DataType::FLOAT32,
|
||||
in_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32,
|
||||
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
auto in_tensor = graph->CreateTensor(in_spec);
|
||||
auto out_tensor = graph->CreateTensor(out_spec);
|
||||
|
||||
std::vector<float> in_data = {
|
||||
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
||||
};
|
||||
std::vector<float> golden = {
|
||||
1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10, 12, 13, 15, 14, 16
|
||||
};
|
||||
|
||||
EXPECT_TRUE(in_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||
auto op = graph->CreateOperation<tim::vx::ops::shuffle_channel>(2, 1);
|
||||
(*op).BindInput(in_tensor).BindOutput(out_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
std::vector<float> output(golden.size());
|
||||
EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
||||
TEST(shuffle_channel, shape_4_1_2_2_groupnum4_dim0_float32) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType in_shape({4, 1, 2, 2});
|
||||
tim::vx::ShapeType out_shape({4, 1, 2, 2});
|
||||
tim::vx::TensorSpec in_spec(tim::vx::DataType::FLOAT32,
|
||||
in_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32,
|
||||
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
auto in_tensor = graph->CreateTensor(in_spec);
|
||||
auto out_tensor = graph->CreateTensor(out_spec);
|
||||
|
||||
std::vector<float> in_data = {
|
||||
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
||||
};
|
||||
std::vector<float> golden = {
|
||||
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
||||
};
|
||||
|
||||
EXPECT_TRUE(in_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||
auto op = graph->CreateOperation<tim::vx::ops::shuffle_channel>(4, 0);
|
||||
(*op).BindInput(in_tensor).BindOutput(out_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
std::vector<float> output(golden.size());
|
||||
EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
||||
TEST(shuffle_channel, shape_4_1_2_2_groupnum1_dim3_float32) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType in_shape({4, 1, 2, 2});
|
||||
tim::vx::ShapeType out_shape({4, 1, 2, 2});
|
||||
tim::vx::TensorSpec in_spec(tim::vx::DataType::FLOAT32,
|
||||
in_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32,
|
||||
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
auto in_tensor = graph->CreateTensor(in_spec);
|
||||
auto out_tensor = graph->CreateTensor(out_spec);
|
||||
|
||||
std::vector<float> in_data = {
|
||||
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
||||
};
|
||||
std::vector<float> golden = {
|
||||
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
||||
};
|
||||
|
||||
EXPECT_TRUE(in_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||
auto op = graph->CreateOperation<tim::vx::ops::shuffle_channel>(1, 3);
|
||||
(*op).BindInput(in_tensor).BindOutput(out_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
std::vector<float> output(golden.size());
|
||||
EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
Loading…
Reference in New Issue