Support LayerNormalization

Layer normalization only support float32 data type.

Signed-off-by: zhao.xia <zhao.xia@verisilicon.com>
This commit is contained in:
zhao.xia 2021-05-20 10:57:44 +08:00 committed by Kainan Cha
parent c3858af4fc
commit 88f7141cfe
4 changed files with 309 additions and 1 deletions

View File

@ -0,0 +1,45 @@
/****************************************************************************
*
* Copyright (c) 2021 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#ifndef TIM_VX_OPS_LAYERNOMALIZATION_H_
#define TIM_VX_OPS_LAYERNOMALIZATION_H_
#include <cstdint>
#include "tim/vx/operation.h"
namespace tim {
namespace vx {
namespace ops {
class LayerNormalization : public Operation {
public:
LayerNormalization(Graph* graph, int32_t axis = 0, float eps = 1e-5f);
protected:
int32_t axis_;
int32_t eps_;
};
} // namespace ops
} // namespace vx
} // namespace tim
#endif

View File

@ -54,7 +54,7 @@ Pad|PAD|Mapped|[tf.pad](https://tensorflow.google.cn/api_docs/python/tf/pad)
||IMAGEPROCESS|Unmapped
||MATRIXMUL|Unmapped|[tf.experimental.numpy.matmul](https://www.tensorflow.org/api_docs/python/tf/experimental/numpy/matmul)
||LSTMUNIT|Unmapped
||LAYER_NORM|Unmapped|[tf.keras.layers.LayerNormalization](https://tensorflow.google.cn/api_docs/python/tf/keras/layers/LayerNormalization)
|LayerNormalization|LAYER_NORM|Mapped|[tf.keras.layers.LayerNormalization](https://tensorflow.google.cn/api_docs/python/tf/keras/layers/LayerNormalization)
ReduceMin|REDUCE_MIN|Mapped|[tf.math.reduce_min](https://tensorflow.google.cn/api_docs/python/tf/math/reduce_min)
ReduceMax|REDUCE_MAX|Mapped|[tf.math.reduce_max](https://tensorflow.google.cn/api_docs/python/tf/math/reduce_max)
ReduceAny|REDUCE_ANY|Mapped|[tf.math.reduce_any](https://tensorflow.google.cn/api_docs/python/tf/math/reduce_any)

View File

@ -0,0 +1,45 @@
/****************************************************************************
*
* Copyright (c) 2021 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/ops/layernormalization.h"
#include <cassert>
#include "operation_private.h"
#include "vsi_nn_pub.h"
namespace tim {
namespace vx {
namespace ops {
LayerNormalization::LayerNormalization(Graph* graph, int32_t axis, float eps)
: Operation(graph, VSI_NN_OP_LAYER_NORM), axis_(axis), eps_(eps) {
// Layer normalization shares the parameters of instance normalization.
if (axis != 0) {
VSILOGE("Layer norm only support axis 0.");
assert(false);
}
this->impl()->node()->nn_param.instancenorm.eps = eps_;
}
} // namespace ops
} // namespace vx
} // namespace tim

View File

@ -0,0 +1,218 @@
/****************************************************************************
*
* Copyright (c) 2021 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/ops/layernormalization.h"
#include "gtest/gtest.h"
namespace {
template<typename T>
::testing::AssertionResult ArraysMatch(const std::vector<T>& expected,
const std::vector<T>& actual,
T abs_error){
for (size_t i = 0; i < expected.size(); ++i){
EXPECT_NEAR(expected[i], actual[i], abs_error) << "at index:" << i;
}
return ::testing::AssertionSuccess();
}
}
TEST(LayerNorm, axis_0_shape_3_6_1_float) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType io_shape({3, 6, 1});
tim::vx::ShapeType param_shape({6});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
io_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec param_spec(tim::vx::DataType::FLOAT32,
param_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
io_shape, tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto gamma_tensor = graph->CreateTensor(param_spec);
auto beta_tensor = graph->CreateTensor(param_spec);
auto output_tensor = graph->CreateTensor(output_spec);
std::vector<float> in_data = {
-2, 0, 2,
-3, 0, 3,
-4, 0, 4,
-5, 0, 5,
-6, 0, 6,
-7, 0, 7 };
std::vector<float> gamma = {
1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f
};
std::vector<float> beta = {
.0f, .0f, .0f,
.0f, .0f, .0f
};
std::vector<float> golden = {
-1.22474f, 0, 1.22474f,
-1.22474f, 0, 1.22474f,
-1.22474f, 0, 1.22474f,
-1.22474f, 0, 1.22474f,
-1.22474f, 0, 1.22474f,
-1.22474f, 0, 1.22474f,
};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
EXPECT_TRUE(gamma_tensor->CopyDataToTensor(gamma.data(), gamma.size() * sizeof(float)));
EXPECT_TRUE(beta_tensor->CopyDataToTensor(beta.data(), beta.size() * sizeof(float)));
auto op = graph->CreateOperation<tim::vx::ops::LayerNormalization>(0, 2e-5f);
(*op).BindInputs({input_tensor, beta_tensor, gamma_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output(18);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
}
TEST(LayerNorm, axis_0_shape_2_3_6_1_float) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType io_shape({2, 3, 6, 1});
tim::vx::ShapeType param_shape({6});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
io_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec param_spec(tim::vx::DataType::FLOAT32,
param_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
io_shape, tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto gamma_tensor = graph->CreateTensor(param_spec);
auto beta_tensor = graph->CreateTensor(param_spec);
auto output_tensor = graph->CreateTensor(output_spec);
std::vector<float> in_data = {
-2, 2, -2, 2, -2, 2,
-3, 3, -3, 3, -3, 3,
-4, 4, -4, 4, -4, 4,
-5, 5, -5, 5, -5, 5,
-6, 6, -6, 6, -6, 6,
-7, 7, -7, 7, -7, 7
};
std::vector<float> gamma = {
1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f
};
std::vector<float> beta = {
.0f, .0f, .0f,
.0f, .0f, .0f
};
std::vector<float> golden = {
-1.f, 1.f, -1.f, 1.f, -1.f, 1.f,
-1.f, 1.f, -1.f, 1.f, -1.f, 1.f,
-1.f, 1.f, -1.f, 1.f, -1.f, 1.f,
-1.f, 1.f, -1.f, 1.f, -1.f, 1.f,
-1.f, 1.f, -1.f, 1.f, -1.f, 1.f,
-1.f, 1.f, -1.f, 1.f, -1.f, 1.f,
};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
EXPECT_TRUE(gamma_tensor->CopyDataToTensor(gamma.data(), gamma.size() * sizeof(float)));
EXPECT_TRUE(beta_tensor->CopyDataToTensor(beta.data(), beta.size() * sizeof(float)));
auto op = graph->CreateOperation<tim::vx::ops::LayerNormalization>(0, 2e-5f);
(*op).BindInputs({input_tensor, beta_tensor, gamma_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output(36);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
}
#if 0
// Fail case
TEST(LayerNorm, axis_0_shape_3_6_1_uint8) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType io_shape({3, 6, 1});
tim::vx::ShapeType param_shape({6});
tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC, 1, 7);
tim::vx::Quantization output_quant(tim::vx::QuantType::ASYMMETRIC, 1.22474f, 1);
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8,
io_shape, tim::vx::TensorAttribute::INPUT, input_quant);
tim::vx::TensorSpec param_spec(tim::vx::DataType::FLOAT32,
param_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8,
io_shape, tim::vx::TensorAttribute::OUTPUT, output_quant);
auto input_tensor = graph->CreateTensor(input_spec);
auto gamma_tensor = graph->CreateTensor(param_spec);
auto beta_tensor = graph->CreateTensor(param_spec);
auto output_tensor = graph->CreateTensor(output_spec);
std::vector<float> in_data = {
5, 7, 9,
4, 7, 10,
3, 7, 11,
2, 7, 12,
1, 7, 13,
0, 7, 14 };
std::vector<float> gamma = {
1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f
};
std::vector<float> beta = {
.0f, .0f, .0f,
.0f, .0f, .0f
};
std::vector<float> golden = {
0, 1, 2,
0, 1, 2,
0, 1, 2,
0, 1, 2,
0, 1, 2,
0, 1, 2,
};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()));
EXPECT_TRUE(gamma_tensor->CopyDataToTensor(gamma.data(), gamma.size() * sizeof(float)));
EXPECT_TRUE(beta_tensor->CopyDataToTensor(beta.data(), beta.size() * sizeof(float)));
auto op = graph->CreateOperation<tim::vx::ops::LayerNormalization>(0, 2e-5f);
(*op).BindInputs({input_tensor, beta_tensor, gamma_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output(18);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
#endif