Add ScatterND
Signed-off-by: zhao.xia <zhao.xia@verisilicon.com>
This commit is contained in:
parent
39bd5ddd32
commit
8a15abf12b
|
|
@ -0,0 +1,52 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2021 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#ifndef TIM_VX_OPS_SCATTERND_H_
|
||||
#define TIM_VX_OPS_SCATTERND_H_
|
||||
#include "tim/vx/operation.h"
|
||||
|
||||
namespace tim {
|
||||
namespace vx {
|
||||
namespace ops {
|
||||
|
||||
/**
|
||||
* ## ScatterND
|
||||
*
|
||||
* Scatter updates into a new tensor according to indices.
|
||||
*
|
||||
* - shape : The shape of the resulting tensor.
|
||||
*/
|
||||
|
||||
class ScatterND : public Operation {
|
||||
public:
|
||||
ScatterND(Graph* graph, const std::vector<uint32_t>& shape);
|
||||
|
||||
protected:
|
||||
const std::vector<uint32_t> shape_;
|
||||
};
|
||||
|
||||
} // namespace ops
|
||||
} // namespace vx
|
||||
} // namespace tim
|
||||
|
||||
#endif /* TIM_VX_OPS_SCATTERND_H_ */
|
||||
|
|
@ -32,8 +32,8 @@ extern "C" {
|
|||
|
||||
typedef struct _vsi_nn_scatter_nd_param
|
||||
{
|
||||
uint32_t dim_num;
|
||||
uint32_t* shape;
|
||||
uint32_t dim_num;
|
||||
const uint32_t* shape;
|
||||
} vsi_nn_scatter_nd_param;
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
|
|
|||
|
|
@ -90,7 +90,7 @@ Mish|MISH|Mapped|[tfa.activations.mish](https://tensorflow.google.cn/addons/api_
|
|||
Resize1d|RESIZE_1D|Mapped|[Onnx.resize 1D image](https://github.com/onnx/onnx/blob/master/docs/Operators.md#resize)
|
||||
|Linear|LINEAR|Unmapped|[tf.keras.activations.linear](https://www.tensorflow.org/api_docs/python/tf/keras/activations/linear)
|
||||
||MOMENTS|Unmapped|[tf.moments](https://tensorflow.google.cn/api_docs/python/tf/nn/moments)
|
||||
||SCATTER_ND|Unmapped|[tf.scatter_nd](https://tensorflow.google.cn/api_docs/python/tf/scatter_nd)
|
||||
ScatterND|SCATTER_ND|Mapped|[tf.scatter_nd](https://tensorflow.google.cn/api_docs/python/tf/scatter_nd)
|
||||
||PROPOSAL|Unmapped|[Faster-RCNN Proposal Layer](https://github.com/intel/caffe/blob/master/examples/faster-rcnn/lib/rpn/proposal_layer.py)
|
||||
||MATRIXMUL|Unmapped|[tf.experimental.numpy.matmul](https://www.tensorflow.org/api_docs/python/tf/experimental/numpy/matmul)
|
||||
||SIGNAL_FRAME|Unmapped|[tf.signal.frame](https://tensorflow.google.cn/api_docs/python/tf/signal/frame)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,40 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2021 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#include "tim/vx/ops/scatternd.h"
|
||||
|
||||
#include "operation_private.h"
|
||||
#include "vsi_nn_pub.h"
|
||||
|
||||
namespace tim {
|
||||
namespace vx {
|
||||
namespace ops {
|
||||
|
||||
ScatterND::ScatterND(Graph* graph, const std::vector<uint32_t>& shape)
|
||||
: Operation(graph, VSI_NN_OP_SCATTER_ND), shape_(shape) {
|
||||
this->impl()->node()->nn_param.scatter_nd.dim_num = shape_.size();
|
||||
this->impl()->node()->nn_param.scatter_nd.shape = shape_.data();
|
||||
}
|
||||
} // namespace ops
|
||||
} // namespace vx
|
||||
} // namespace tim
|
||||
|
|
@ -0,0 +1,124 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2021 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#include "tim/vx/context.h"
|
||||
#include "tim/vx/graph.h"
|
||||
#include "tim/vx/ops/scatternd.h"
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
TEST(ScatterND, shape_4_4_4) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType indices_shape({1,2});
|
||||
tim::vx::ShapeType updates_shape({4,4,2});
|
||||
tim::vx::ShapeType out_shape({4, 4, 4});
|
||||
tim::vx::TensorSpec indices_spec(tim::vx::DataType::INT32,
|
||||
indices_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec updates_spec(tim::vx::DataType::FLOAT32,
|
||||
updates_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||||
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
auto indices_tensor = graph->CreateTensor(indices_spec);
|
||||
auto updates_tensor = graph->CreateTensor(updates_spec);
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
std::vector<int32_t> indices_data = { 0, 2 };
|
||||
std::vector<float> updates_data = {
|
||||
5,5,5,5, 6,6,6,6,
|
||||
7,7,7,7, 8,8,8,8,
|
||||
1,1,1,1, 2,2,2,2,
|
||||
3,3,3,3, 4,4,4,4,
|
||||
};
|
||||
std::vector<float> golden = {
|
||||
5,5,5,5, 6,6,6,6,
|
||||
7,7,7,7, 8,8,8,8,
|
||||
0,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0,
|
||||
1,1,1,1, 2,2,2,2,
|
||||
3,3,3,3, 4,4,4,4,
|
||||
0,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0,
|
||||
};
|
||||
|
||||
EXPECT_TRUE(indices_tensor->CopyDataToTensor(
|
||||
indices_data.data(), indices_data.size()*sizeof(int32_t)));
|
||||
EXPECT_TRUE(updates_tensor->CopyDataToTensor(
|
||||
updates_data.data(), updates_data.size()*sizeof(int32_t)));
|
||||
std::vector<uint32_t> shape = {4, 4, 4};
|
||||
auto op = graph->CreateOperation<tim::vx::ops::ScatterND>(shape);
|
||||
(*op).BindInputs({indices_tensor, updates_tensor}).BindOutputs({output_tensor});
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
EXPECT_TRUE(graph->Run());
|
||||
std::vector<float> output(golden.size());
|
||||
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
||||
TEST(ScatterND, shape_9) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType indices_shape({4});
|
||||
tim::vx::ShapeType updates_shape({4});
|
||||
tim::vx::ShapeType out_shape({9});
|
||||
tim::vx::Quantization updates_quant(tim::vx::QuantType::ASYMMETRIC, 0.5, 0);
|
||||
tim::vx::Quantization output_quant(tim::vx::QuantType::ASYMMETRIC, 0.5, 0);
|
||||
tim::vx::TensorSpec indices_spec(tim::vx::DataType::INT32,
|
||||
indices_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec updates_spec(tim::vx::DataType::UINT8,
|
||||
updates_shape, tim::vx::TensorAttribute::INPUT, updates_quant);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8,
|
||||
out_shape, tim::vx::TensorAttribute::OUTPUT, output_quant);
|
||||
|
||||
auto indices_tensor = graph->CreateTensor(indices_spec);
|
||||
auto updates_tensor = graph->CreateTensor(updates_spec);
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
std::vector<int32_t> indices_data = { 4, 3, 1, 7 };
|
||||
std::vector<uint8_t> updates_data = {
|
||||
18, 20, 22, 24
|
||||
};
|
||||
std::vector<uint8_t> golden = {
|
||||
0, 22, 0, 20, 18, 0, 0, 24, 0
|
||||
};
|
||||
|
||||
EXPECT_TRUE(indices_tensor->CopyDataToTensor(
|
||||
indices_data.data(), indices_data.size()));
|
||||
EXPECT_TRUE(updates_tensor->CopyDataToTensor(
|
||||
updates_data.data(), updates_data.size()));
|
||||
std::vector<uint32_t> shape = {9};
|
||||
auto op = graph->CreateOperation<tim::vx::ops::ScatterND>(shape);
|
||||
(*op).BindInputs({indices_tensor, updates_tensor}).BindOutputs({output_tensor});
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
EXPECT_TRUE(graph->Run());
|
||||
std::vector<uint8_t> output(golden.size());
|
||||
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
Loading…
Reference in New Issue