add op: maxpoolwithargmax2 and maxpoolgrad

This commit is contained in:
qin.chen 2022-07-27 14:35:54 +08:00 committed by Sven
parent 84d76e5251
commit 9ebddb5452
7 changed files with 945 additions and 0 deletions

View File

@ -53,6 +53,8 @@
#include "tim/vx/ops/logsoftmax.h"
#include "tim/vx/ops/matmul.h"
#include "tim/vx/ops/maxpoolwithargmax.h"
#include "tim/vx/ops/maxpoolwithargmax2.h"
#include "tim/vx/ops/maxpoolgrad.h"
#include "tim/vx/ops/maxunpool2d.h"
#include "tim/vx/ops/moments.h"
#include "tim/vx/ops/nbg.h"

View File

@ -0,0 +1,70 @@
/****************************************************************************
*
* Copyright (c) 2021 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#ifndef TIM_VX_OPS_MAXPOOLGRAD_H_
#define TIM_VX_OPS_MAXPOOLGRAD_H_
#include "tim/vx/operation.h"
namespace tim {
namespace vx {
namespace ops {
/**
* ## MaxpooGrad
*
* Acquire the gradient of 2-D Max pooling operation's input tensor. \
* Like the tensorflow_XLA op SelectAndScatter, see https://tensorflow.google.cn/xla/operation_semantics?hl=en#selectandscatter.
*
* - padding : AUTO, VALID or SAME.
* - ksize : filter size.
* - stride : stride along each spatial axis.
* - round_type : CEILING or FLOOR.
*
* * Inputs:
*
* - 0 : input tensor of 2-D Max pooling.
* - 1 : gradient of 2-D Max pooling output tensor.
*/
class MaxpoolGrad: public Operation {
public:
MaxpoolGrad(Graph* graph, PadType padding,
const std::array<uint32_t, 2>& ksize,
const std::array<uint32_t, 2>& stride,
RoundType round_type = RoundType::FLOOR,
DataLayout layout = DataLayout::WHCN);
std::shared_ptr<Operation> Clone(
std::shared_ptr<Graph>& graph) const override;
protected:
const PadType padding_;
const std::array<uint32_t, 2> ksize_;
const std::array<uint32_t, 2> stride_;
const RoundType round_type_;
};
} // namespace ops
} // namespace vx
} // namespace tim
#endif /*TIM_VX_OPS_MAXPOOLGRAD_H_*/

View File

@ -0,0 +1,68 @@
/****************************************************************************
*
* Copyright (c) 2021 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#ifndef TIM_VX_OPS_MAXPOOLWITHARGMAX2_H_
#define TIM_VX_OPS_MAXPOOLWITHARGMAX2_H_
#include <array>
#include "tim/vx/direct_map_op.h"
#include "tim/vx/types.h"
namespace tim {
namespace vx {
namespace ops {
/**
* ## MaxpoolWithArgmax2
*
* Performs an 2-D Max pooling operation and return indices(which start at the beginning of the input tensor).
*
* - padding : AUTO, VALID or SAME.
* - ksize : filter size.
* - stride : stride along each spatial axis.
* - round_type : CEILING or FLOOR.
*/
class MaxpoolWithArgmax2 : public DirectMapOp {
public:
MaxpoolWithArgmax2(Graph* graph, PadType padding,
const std::array<uint32_t, 2>& ksize,
const std::array<uint32_t, 2>& stride,
RoundType round_type = RoundType::FLOOR,
DataLayout layout = DataLayout::WHCN);
std::shared_ptr<Operation> Clone(std::shared_ptr<Graph>& graph) const override;
protected:
const PadType padding_;
const std::array<uint32_t, 2> ksize_;
const std::array<uint32_t, 2> stride_;
const RoundType round_type_;
};
} // namespace ops
} // namespace vx
} // namespace tim
#endif /* TIM_VX_OPS_MAXPOOLWITHARGMAX2_H_ */

View File

@ -0,0 +1,162 @@
/****************************************************************************
*
* Copyright (c) 2021 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/ops.h"
#include "vsi_nn_pub.h"
#include "op_impl.h"
#include <array>
namespace tim {
namespace vx {
namespace ops {
class MaxpoolGradImpl : public OpImpl {
public:
enum {
TENSOR_BEFORE_POOL = 0,
UPDATES_TENSOR,
INPUT_CNT,
OUT_CNT = 1,
};
MaxpoolGradImpl(Graph* graph, PadType padding,
const std::array<uint32_t, 2>& ksize,
const std::array<uint32_t, 2>& stride,
int input_cnt, int output_cnt,
RoundType round_type,
DataLayout layout)
: OpImpl(graph, -1, input_cnt, output_cnt, layout),
padding_(padding),
ksize_(ksize),
stride_(stride),
round_type_(round_type) {
maxpoolwithargmax2_ = graph->CreateOperation<tim::vx::ops::MaxpoolWithArgmax2>(
padding_, ksize_, stride_, round_type_, layout_);
}
~MaxpoolGradImpl() {}
MaxpoolGradImpl& BindInput(const std::shared_ptr<Tensor>& tensor) override {
in_tensors_[input_tensor_index] = tensor;
if (this->input_tensor_index == INPUT_CNT - 1) {
tim::vx::ShapeType in_shape = in_tensors_[TENSOR_BEFORE_POOL]->GetShape();
tim::vx::ShapeType updates_shape = in_tensors_[UPDATES_TENSOR]->GetShape();
tim::vx::ShapeType idx_flattened_shape({CalFlattenedShape(updates_shape)});
tim::vx::ShapeType out_flattened_shape({CalFlattenedShape(in_shape)});
tim::vx::TensorSpec pool_out_spec_indices(tim::vx::DataType::INT32,
updates_shape, tim::vx::TensorAttribute::TRANSIENT);
tim::vx::TensorSpec pool_out_spec_values(tim::vx::DataType::FLOAT32,
updates_shape, tim::vx::TensorAttribute::OUTPUT);
tim::vx::TensorSpec idx_flattened_spec(tim::vx::DataType::INT32,
idx_flattened_shape, tim::vx::TensorAttribute::TRANSIENT);
tim::vx::TensorSpec upd_flattened_spec(tim::vx::DataType::FLOAT32,
idx_flattened_shape, tim::vx::TensorAttribute::TRANSIENT);
tim::vx::TensorSpec out_flattened_spec(tim::vx::DataType::FLOAT32,
out_flattened_shape, tim::vx::TensorAttribute::TRANSIENT);
auto pool_out_indices_tensor = graph_->CreateTensor(pool_out_spec_indices);
auto pool_out_values_tensor = graph_->CreateTensor(pool_out_spec_values);
auto idx_flattened_tensor = graph_->CreateTensor(idx_flattened_spec);
auto upd_flattened_tensor = graph_->CreateTensor(upd_flattened_spec);
auto out_flattened_tensor = graph_->CreateTensor(out_flattened_spec);
(*maxpoolwithargmax2_).BindInput(in_tensors_[TENSOR_BEFORE_POOL])
.BindOutputs({pool_out_values_tensor, pool_out_indices_tensor});
flatten_idx = graph_->CreateOperation<tim::vx::ops::Reshape>(idx_flattened_shape);
(*flatten_idx).BindInput(pool_out_indices_tensor).BindOutput(idx_flattened_tensor);
flatten_upd = graph_->CreateOperation<tim::vx::ops::Reshape>(idx_flattened_shape);
(*flatten_upd).BindInput(in_tensors_[UPDATES_TENSOR]).BindOutput(upd_flattened_tensor);
scatternd_ = graph_->CreateOperation<tim::vx::ops::ScatterND>(out_flattened_shape);
(*scatternd_).BindInputs({idx_flattened_tensor, upd_flattened_tensor}).BindOutput(out_flattened_tensor);
reshape_like_input_ = graph_->CreateOperation<tim::vx::ops::Reshape>(in_shape);
(*reshape_like_input_).BindInput(out_flattened_tensor);
}
this->input_tensor_index++;
return *this;
}
MaxpoolGradImpl& BindOutput(const std::shared_ptr<Tensor>& tensor) override {
out_tensors_[output_tensor_index] = tensor;
(*reshape_like_input_).BindOutput(tensor);
this->output_tensor_index++;
return *this;
}
vsi_nn_node_t* node() override { return nullptr; }
std::vector<std::shared_ptr<Tensor>> InputsTensor() override {
return inputs_tensor_;
}
std::vector<std::shared_ptr<Tensor>> OutputsTensor() override {
return outputs_tensor_;
}
private:
const PadType padding_;
const std::array<uint32_t, 2> ksize_;
const std::array<uint32_t, 2> stride_;
const RoundType round_type_;
std::shared_ptr<tim::vx::Operation> maxpoolwithargmax2_;
std::shared_ptr<tim::vx::Operation> flatten_idx;
std::shared_ptr<tim::vx::Operation> flatten_upd;
std::shared_ptr<tim::vx::Operation> scatternd_;
std::shared_ptr<tim::vx::Operation> reshape_like_input_;
std::array<std::shared_ptr<tim::vx::Tensor>, INPUT_CNT> in_tensors_;
std::array<std::shared_ptr<tim::vx::Tensor>, OUT_CNT> out_tensors_;
uint32_t CalFlattenedShape(const tim::vx::ShapeType& shape) {
uint32_t out = 1;
for(auto& x: shape) {
out *= x;
}
return out;
}
};
MaxpoolGrad::MaxpoolGrad(Graph* graph, PadType padding,
const std::array<uint32_t, 2>& ksize,
const std::array<uint32_t, 2>& stride,
RoundType round_type,
DataLayout layout)
: padding_(padding),
ksize_(ksize),
stride_(stride),
round_type_(round_type) {
impl_ = std::make_unique<MaxpoolGradImpl>(graph, padding, ksize, stride, 0, 0, round_type, layout);
}
std::shared_ptr<Operation> MaxpoolGrad::Clone(
std::shared_ptr<Graph>& graph) const {
return graph->CreateOperation<MaxpoolGrad>(
this->padding_, this->ksize_, this->stride_, this->round_type_,
this->impl_->layout_);
}
} // namespace ops
} // namespace vx
} // namespace tim

View File

@ -0,0 +1,209 @@
/****************************************************************************
*
* Copyright (c) 2021 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/ops/maxpoolgrad.h"
#include "tim/vx/ops/scatternd.h"
#include "tim/vx/ops/reshape.h"
#include "gtest/gtest.h"
TEST(Fuse_MaxpoolGrad, without_overlay) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType in_shape({6, 4, 1, 1});
tim::vx::ShapeType updates_shape({2, 2, 1, 1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
in_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec updates_spec(tim::vx::DataType::FLOAT32,
updates_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
in_shape, tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto updates_tensor = graph->CreateTensor(updates_spec);
auto output_tensor = graph->CreateTensor(output_spec);
std::vector<float> in_data = {
7, 2, 5, 3, 10, 2,
3, 8, 9, 3, 4, 2,
1, 5, 7, 5, 6, 1,
0, 6, 2, 7, 2, 8};
std::vector<float> updates_data = {
2, 6,
3, 1
};
std::vector<float> golden = {
0, 0, 0, 0, 6, 0,
0, 0, 2, 0, 0, 0,
0, 0, 3, 0, 0, 0,
0, 0, 0, 0, 0, 1};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
EXPECT_TRUE(updates_tensor->CopyDataToTensor(updates_data.data(), updates_data.size() * sizeof(float)));
std::array<uint32_t, 2> ksize = {3, 2};
std::array<uint32_t, 2> stride = {3, 2};
auto op = graph->CreateOperation<tim::vx::ops::MaxpoolGrad>(
tim::vx::PadType::VALID, ksize, stride);
(*op).BindInputs({input_tensor, updates_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output_values(golden.size());
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output_values.data()));
EXPECT_EQ(golden, output_values);
}
TEST(Fuse_MaxpoolGrad, with_overlay) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType in_shape({5, 4, 1, 1});
tim::vx::ShapeType updates_shape({2, 2, 1, 1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
in_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec updates_spec(tim::vx::DataType::FLOAT32,
updates_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
in_shape, tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto updates_tensor = graph->CreateTensor(updates_spec);
auto output_tensor = graph->CreateTensor(input_spec);
std::vector<float> in_data = {
7, 2, 5, 3, 8,
3, 8, 9, 3, 4,
1, 5, 7, 5, 6,
0, 6, 2, 10, 2};
std::vector<float> updates_data = {
2, 6,
3, 1
};
std::vector<float> golden = {
0, 0, 0, 0, 0,
0, 0, 8, 0, 0,
0, 0, 3, 0, 0,
0, 0, 0, 1, 0};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
EXPECT_TRUE(updates_tensor->CopyDataToTensor(updates_data.data(), updates_data.size() * sizeof(float)));
std::array<uint32_t, 2> ksize = {3, 2};
std::array<uint32_t, 2> stride = {2, 2};
auto op = graph->CreateOperation<tim::vx::ops::MaxpoolGrad>(
tim::vx::PadType::VALID, ksize, stride);
(*op).BindInputs({input_tensor, updates_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output_values(golden.size());
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output_values.data()));
EXPECT_EQ(golden, output_values);
}
TEST(Fuse_MaxpoolGrad, with_overlay_multi_channel_multi_batch) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType in_shape({5, 4, 2, 2});
tim::vx::ShapeType updates_shape({2, 2, 2, 2});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
in_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec updates_spec(tim::vx::DataType::FLOAT32,
updates_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
in_shape, tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto updates_tensor = graph->CreateTensor(updates_spec);
auto output_tensor = graph->CreateTensor(input_spec);
std::vector<float> in_data = {
7, 2, 5, 3, 8,
3, 8, 9, 3, 4,
1, 5, 7, 5, 6,
0, 6, 2, 10, 2,
7, 2, 5, 3, 8,
3, 8, 9, 3, 4,
1, 5, 7, 5, 6,
0, 6, 2, 10, 2,
7, 2, 5, 3, 8,
3, 8, 9, 3, 4,
1, 5, 7, 5, 6,
0, 6, 2, 10, 2,
7, 2, 5, 3, 8,
3, 8, 9, 3, 4,
1, 5, 7, 5, 6,
0, 6, 2, 10, 2};
std::vector<float> updates_data = {
2, 6,
3, 1,
2, 6,
3, 1,
2, 6,
3, 1,
2, 6,
3, 1,
};
std::vector<float> golden = {
0, 0, 0, 0, 0,
0, 0, 8, 0, 0,
0, 0, 3, 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 0, 0,
0, 0, 8, 0, 0,
0, 0, 3, 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 0, 0,
0, 0, 8, 0, 0,
0, 0, 3, 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 0, 0,
0, 0, 8, 0, 0,
0, 0, 3, 0, 0,
0, 0, 0, 1, 0};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
EXPECT_TRUE(updates_tensor->CopyDataToTensor(updates_data.data(), updates_data.size() * sizeof(float)));
std::array<uint32_t, 2> ksize = {3, 2};
std::array<uint32_t, 2> stride = {2, 2};
auto op = graph->CreateOperation<tim::vx::ops::MaxpoolGrad>(
tim::vx::PadType::VALID, ksize, stride);
(*op).BindInputs({input_tensor, updates_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output_values(golden.size());
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output_values.data()));
EXPECT_EQ(golden, output_values);
}

View File

@ -0,0 +1,64 @@
/****************************************************************************
*
* Copyright (c) 2021 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/ops/maxpoolwithargmax2.h"
#include "direct_map_op_impl.h"
#include "type_utils.h"
#include "vsi_nn_pub.h"
namespace tim {
namespace vx {
namespace ops {
MaxpoolWithArgmax2::MaxpoolWithArgmax2(Graph* graph, PadType padding,
const std::array<uint32_t, 2>& ksize,
const std::array<uint32_t, 2>& stride,
RoundType round_type,
DataLayout layout)
: DirectMapOp(graph, VSI_NN_OP_MAXPOOLWITHARGMAX, 1, 2, layout),
padding_(padding),
ksize_(ksize),
stride_(stride),
round_type_(round_type) {
this->impl()->node()->nn_param.pool.type = TranslatePoolType(PoolType::MAX);
this->impl()->node()->nn_param.pool.round_type =
TranslateRoundType(round_type_);
this->impl()->node()->nn_param.pool.ksize[0] = ksize_[0];
this->impl()->node()->nn_param.pool.ksize[1] = ksize_[1];
this->impl()->node()->nn_param.pool.stride[0] = stride_[0];
this->impl()->node()->nn_param.pool.stride[1] = stride_[1];
this->impl()->node()->nn_param.pool.pad_type = TranslatePadType(padding_);
this->SetRoundingPolicy(OverflowPolicy::SATURATE, RoundingPolicy::RTNE, round_type_);
}
std::shared_ptr<Operation> MaxpoolWithArgmax2::Clone(
std::shared_ptr<Graph>& graph) const {
return graph->CreateOperation<MaxpoolWithArgmax2>(
this->padding_, this->ksize_, this->stride_, this->round_type_,
this->impl_->layout_);
}
} // namespace ops
} // namespace vx
} // namespace tim

View File

@ -0,0 +1,370 @@
/****************************************************************************
*
* Copyright (c) 2021 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/ops/maxpoolwithargmax2.h"
#include "tim/vx/ops/scatternd.h"
#include "tim/vx/ops/reshape.h"
#include "gtest/gtest.h"
TEST(MaxpoolWithArgmax2, without_overlay) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType in_shape({6, 4, 1, 1});
tim::vx::ShapeType out_shape({2, 2, 1, 1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
in_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::INT32,
out_shape, tim::vx::TensorAttribute::OUTPUT);
tim::vx::TensorSpec output_spec_values(tim::vx::DataType::FLOAT32,
out_shape, tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto output_tensor_indices = graph->CreateTensor(output_spec_indices);
auto output_tensor_values = graph->CreateTensor(output_spec_values);
std::vector<float> in_data = {
7, 2, 5, 3, 10, 2,
3, 8, 9, 3, 4, 2,
1, 5, 7, 5, 6, 1,
0, 6, 2, 7, 2, 8};
std::vector<float> values_golden = {
9, 10,
7, 8 };
std::vector<int32_t> indices_golden = {
8, 4,
14, 23 };
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4));
std::array<uint32_t, 2> ksize = {3, 2};
std::array<uint32_t, 2> stride = {3, 2};
auto op = graph->CreateOperation<tim::vx::ops::MaxpoolWithArgmax2>(
tim::vx::PadType::VALID, ksize, stride);
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output_values(4);
std::vector<int32_t> output_indices(4);
EXPECT_TRUE(output_tensor_values->CopyDataFromTensor(output_values.data()));
EXPECT_TRUE(output_tensor_indices->CopyDataFromTensor(output_indices.data()));
EXPECT_EQ(values_golden, output_values);
EXPECT_EQ(indices_golden, output_indices);
}
TEST(MaxpoolWithArgmax2, with_overlay) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType in_shape({5, 4, 1, 1});
tim::vx::ShapeType out_shape({2, 2, 1, 1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
in_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::INT32,
out_shape, tim::vx::TensorAttribute::OUTPUT);
tim::vx::TensorSpec output_spec_values(tim::vx::DataType::FLOAT32,
out_shape, tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto output_tensor_indices = graph->CreateTensor(output_spec_indices);
auto output_tensor_values = graph->CreateTensor(output_spec_values);
std::vector<float> in_data = {
7, 2, 5, 3, 8,
3, 8, 9, 3, 4,
1, 5, 7, 5, 6,
0, 6, 2, 10, 2};
std::vector<float> values_golden = {
9, 9,
7, 10 };
std::vector<int32_t> indices_golden = {
7, 7,
12, 18 };
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4));
std::array<uint32_t, 2> ksize = {3, 2};
std::array<uint32_t, 2> stride = {2, 2};
auto op = graph->CreateOperation<tim::vx::ops::MaxpoolWithArgmax2>(
tim::vx::PadType::VALID, ksize, stride);
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output_values(4);
std::vector<int32_t> output_indices(4);
EXPECT_TRUE(output_tensor_values->CopyDataFromTensor(output_values.data()));
EXPECT_TRUE(output_tensor_indices->CopyDataFromTensor(output_indices.data()));
EXPECT_EQ(values_golden, output_values);
EXPECT_EQ(indices_golden, output_indices);
}
TEST(MaxpoolGrad, without_overlay) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType in_shape({6, 4, 1, 1});
tim::vx::ShapeType out_shape({2, 2, 1, 1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
in_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::INT32,
out_shape, tim::vx::TensorAttribute::TRANSIENT);
tim::vx::TensorSpec output_spec_values(tim::vx::DataType::FLOAT32,
out_shape, tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto output_tensor_indices = graph->CreateTensor(output_spec_indices);
auto output_tensor_values = graph->CreateTensor(output_spec_values);
auto output_tensor = graph->CreateTensor(input_spec);
std::vector<float> in_data = {
7, 2, 5, 3, 10, 2,
3, 8, 9, 3, 4, 2,
1, 5, 7, 5, 6, 1,
0, 6, 2, 7, 2, 8};
std::vector<float> updates_data = {
2, 6,
3, 1
};
std::vector<float> golden = {
0, 0, 0, 0, 6, 0,
0, 0, 2, 0, 0, 0,
0, 0, 3, 0, 0, 0,
0, 0, 0, 0, 0, 1};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4));
std::array<uint32_t, 2> ksize = {3, 2};
std::array<uint32_t, 2> stride = {3, 2};
auto op = graph->CreateOperation<tim::vx::ops::MaxpoolWithArgmax2>(
tim::vx::PadType::VALID, ksize, stride);
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices});
std::vector<uint32_t> shape = {4};
tim::vx::TensorSpec input_spec_indices(tim::vx::DataType::INT32,
shape, tim::vx::TensorAttribute::TRANSIENT);
auto input_tensor_indices = graph->CreateTensor(input_spec_indices);
auto op1 = graph->CreateOperation<tim::vx::ops::Reshape>(shape);
(*op1).BindInputs({output_tensor_indices}).BindOutputs({input_tensor_indices});
std::vector<uint32_t> out2_shape = {24};
tim::vx::TensorSpec updates_spec(tim::vx::DataType::FLOAT32,
shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output2_spec(tim::vx::DataType::FLOAT32,
out2_shape, tim::vx::TensorAttribute::TRANSIENT);
auto updates_tensor = graph->CreateTensor(updates_spec);
auto output2_tensor = graph->CreateTensor(output2_spec);
EXPECT_TRUE(updates_tensor->CopyDataToTensor(
updates_data.data(), updates_data.size() * 4));
auto op2 = graph->CreateOperation<tim::vx::ops::ScatterND>(out2_shape);
(*op2).BindInputs({input_tensor_indices, updates_tensor}).BindOutputs({output2_tensor});
auto op3 = graph->CreateOperation<tim::vx::ops::Reshape>(in_shape);
(*op3).BindInputs({output2_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output_values(24);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output_values.data()));
EXPECT_EQ(golden, output_values);
}
TEST(MaxpoolGrad, with_overlay) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType in_shape({5, 4, 1, 1});
tim::vx::ShapeType out_shape({2, 2, 1, 1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
in_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::INT32,
out_shape, tim::vx::TensorAttribute::TRANSIENT);
tim::vx::TensorSpec output_spec_values(tim::vx::DataType::FLOAT32,
out_shape, tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto output_tensor_indices = graph->CreateTensor(output_spec_indices);
auto output_tensor_values = graph->CreateTensor(output_spec_values);
auto output_tensor = graph->CreateTensor(input_spec);
std::vector<float> in_data = {
7, 2, 5, 3, 8,
3, 8, 9, 3, 4,
1, 5, 7, 5, 6,
0, 6, 2, 10, 2};
std::vector<float> updates_data = {
2, 6,
3, 1
};
std::vector<float> golden = {
0, 0, 0, 0, 0,
0, 0, 8, 0, 0,
0, 0, 3, 0, 0,
0, 0, 0, 1, 0};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4));
std::array<uint32_t, 2> ksize = {3, 2};
std::array<uint32_t, 2> stride = {2, 2};
auto op = graph->CreateOperation<tim::vx::ops::MaxpoolWithArgmax2>(
tim::vx::PadType::VALID, ksize, stride);
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices});
std::vector<uint32_t> shape = {4};
tim::vx::TensorSpec input_spec_indices(tim::vx::DataType::INT32,
shape, tim::vx::TensorAttribute::TRANSIENT);
auto input_tensor_indices = graph->CreateTensor(input_spec_indices);
auto op1 = graph->CreateOperation<tim::vx::ops::Reshape>(shape);
(*op1).BindInputs({output_tensor_indices}).BindOutputs({input_tensor_indices});
std::vector<uint32_t> out2_shape = {20};
tim::vx::TensorSpec updates_spec(tim::vx::DataType::FLOAT32,
shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output2_spec(tim::vx::DataType::FLOAT32,
out2_shape, tim::vx::TensorAttribute::TRANSIENT);
auto updates_tensor = graph->CreateTensor(updates_spec);
auto output2_tensor = graph->CreateTensor(output2_spec);
EXPECT_TRUE(updates_tensor->CopyDataToTensor(
updates_data.data(), updates_data.size() * 4));
auto op2 = graph->CreateOperation<tim::vx::ops::ScatterND>(out2_shape);
(*op2).BindInputs({input_tensor_indices, updates_tensor}).BindOutputs({output2_tensor});
auto op3 = graph->CreateOperation<tim::vx::ops::Reshape>(in_shape);
(*op3).BindInputs({output2_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output_values(20);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output_values.data()));
EXPECT_EQ(golden, output_values);
}
TEST(MaxpoolGrad, with_overlay_multi_channel_multi_batch) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType in_shape({5, 4, 2, 2});
tim::vx::ShapeType out_shape({2, 2, 2, 2});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
in_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::INT32,
out_shape, tim::vx::TensorAttribute::TRANSIENT);
tim::vx::TensorSpec output_spec_values(tim::vx::DataType::FLOAT32,
out_shape, tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto output_tensor_indices = graph->CreateTensor(output_spec_indices);
auto output_tensor_values = graph->CreateTensor(output_spec_values);
auto output_tensor = graph->CreateTensor(input_spec);
std::vector<float> in_data = {
7, 2, 5, 3, 8,
3, 8, 9, 3, 4,
1, 5, 7, 5, 6,
0, 6, 2, 10, 2,
7, 2, 5, 3, 8,
3, 8, 9, 3, 4,
1, 5, 7, 5, 6,
0, 6, 2, 10, 2,
7, 2, 5, 3, 8,
3, 8, 9, 3, 4,
1, 5, 7, 5, 6,
0, 6, 2, 10, 2,
7, 2, 5, 3, 8,
3, 8, 9, 3, 4,
1, 5, 7, 5, 6,
0, 6, 2, 10, 2};
std::vector<float> updates_data = {
2, 6,
3, 1,
2, 6,
3, 1,
2, 6,
3, 1,
2, 6,
3, 1,
};
std::vector<float> golden = {
0, 0, 0, 0, 0,
0, 0, 8, 0, 0,
0, 0, 3, 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 0, 0,
0, 0, 8, 0, 0,
0, 0, 3, 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 0, 0,
0, 0, 8, 0, 0,
0, 0, 3, 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 0, 0,
0, 0, 8, 0, 0,
0, 0, 3, 0, 0,
0, 0, 0, 1, 0};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4));
std::array<uint32_t, 2> ksize = {3, 2};
std::array<uint32_t, 2> stride = {2, 2};
auto op = graph->CreateOperation<tim::vx::ops::MaxpoolWithArgmax2>(
tim::vx::PadType::VALID, ksize, stride);
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices});
std::vector<uint32_t> shape = {16};
tim::vx::TensorSpec input_spec_indices(tim::vx::DataType::INT32,
shape, tim::vx::TensorAttribute::TRANSIENT);
auto input_tensor_indices = graph->CreateTensor(input_spec_indices);
auto op1 = graph->CreateOperation<tim::vx::ops::Reshape>(shape);
(*op1).BindInputs({output_tensor_indices}).BindOutputs({input_tensor_indices});
std::vector<uint32_t> out2_shape = {80};
tim::vx::TensorSpec updates_spec(tim::vx::DataType::FLOAT32,
shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output2_spec(tim::vx::DataType::FLOAT32,
out2_shape, tim::vx::TensorAttribute::TRANSIENT);
auto updates_tensor = graph->CreateTensor(updates_spec);
auto output2_tensor = graph->CreateTensor(output2_spec);
EXPECT_TRUE(updates_tensor->CopyDataToTensor(
updates_data.data(), updates_data.size() * 4));
auto op2 = graph->CreateOperation<tim::vx::ops::ScatterND>(out2_shape);
(*op2).BindInputs({input_tensor_indices, updates_tensor}).BindOutputs({output2_tensor});
auto op3 = graph->CreateOperation<tim::vx::ops::Reshape>(in_shape);
(*op3).BindInputs({output2_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output_values(80);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output_values.data()));
EXPECT_EQ(golden, output_values);
}