diff --git a/src/tim/vx/ops/addn_test.cc b/src/tim/vx/ops/addn_test.cc new file mode 100644 index 0000000..9ac2b50 --- /dev/null +++ b/src/tim/vx/ops/addn_test.cc @@ -0,0 +1,168 @@ +/**************************************************************************** +* +* Copyright (c) 2021 Vivante Corporation +* +* Permission is hereby granted, free of charge, to any person obtaining a +* copy of this software and associated documentation files (the "Software"), +* to deal in the Software without restriction, including without limitation +* the rights to use, copy, modify, merge, publish, distribute, sublicense, +* and/or sell copies of the Software, and to permit persons to whom the +* Software is furnished to do so, subject to the following conditions: +* +* The above copyright notice and this permission notice shall be included in +* all copies or substantial portions of the Software. +* +* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +* DEALINGS IN THE SOFTWARE. +* +*****************************************************************************/ +#include "tim/vx/context.h" +#include "tim/vx/graph.h" +#include "tim/vx/ops/addn.h" +#include "tim/vx/types.h" +#include "src/tim/vx/test_utils.h" + +#include "gtest/gtest.h" + +TEST(AddN, shape_2_2_int32) { + auto ctx = tim::vx::Context::Create(); + auto graph = ctx->CreateGraph(); + + tim::vx::ShapeType io_shape({2, 2}); + tim::vx::TensorSpec input_spec(tim::vx::DataType::INT32, + io_shape, tim::vx::TensorAttribute::INPUT); + tim::vx::TensorSpec output_spec(tim::vx::DataType::INT32, + io_shape, tim::vx::TensorAttribute::OUTPUT); + + auto input_tensor_x = graph->CreateTensor(input_spec); + auto input_tensor_y = graph->CreateTensor(input_spec); + auto output_tensor = graph->CreateTensor(output_spec); + + std::vector in_data_x = { + 3, 5, + 4, 8 }; + std::vector in_data_y = { + 1, 6, + 2, 9 }; + std::vector golden = { + 4, 11, + 6, 17 }; //correct answer + + EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()*4)); + EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()*4)); + auto op = graph->CreateOperation(2); //To refer to the AddN function definition to give the parameters + (*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor}); + + EXPECT_TRUE(graph->Compile()); + EXPECT_TRUE(graph->Run()); + std::vector output(4); + + EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); + EXPECT_EQ(golden, output); +} + +TEST(AddN, shape_3_1_float32) { + auto ctx = tim::vx::Context::Create(); + auto graph = ctx->CreateGraph(); + + tim::vx::ShapeType io_shape({3, 1}); + tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, + io_shape, tim::vx::TensorAttribute::INPUT); + tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, + io_shape, tim::vx::TensorAttribute::OUTPUT); + + auto input_tensor_x = graph->CreateTensor(input_spec); + auto input_tensor_y = graph->CreateTensor(input_spec); + auto output_tensor = graph->CreateTensor(output_spec); + + std::vector in_data_x = { + 3, 5, 7 }; + std::vector in_data_y = { + 1, 6, 2 }; + std::vector golden = { + 4, 11, 9 }; + + EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()*4)); + EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()*4)); + auto op = graph->CreateOperation(2); + (*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor}); + + EXPECT_TRUE(graph->Compile()); + EXPECT_TRUE(graph->Run()); + std::vector output(3); + + EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); + EXPECT_EQ(golden, output); +} + +TEST(AddN, shape_2_2_uint8_QuantizedTest) { + auto ctx = tim::vx::Context::Create(); + auto graph = ctx->CreateGraph(); + + tim::vx::ShapeType in_shape({2, 2}); + tim::vx::ShapeType out_shape({2, 2}); + + float InputMin = -127, InputMax = 128, OutputMin = -127, OutputMax = 128; + + std::pair scalesAndZp; + + scalesAndZp = QuantizationParams(InputMin, InputMax); + std::vector scalesInput = {scalesAndZp.first}; //scale + std::vector zeroPointsInput = {scalesAndZp.second}; //zero point + + scalesAndZp = QuantizationParams(OutputMin, OutputMax); + std::vector scalesOutput = {scalesAndZp.first}; + std::vector zeroPointsOutput = {scalesAndZp.second}; + + + tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 1, + scalesInput, zeroPointsInput); + tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 1, + scalesOutput, zeroPointsOutput); + + tim::vx::TensorSpec input_spec_x(tim::vx::DataType::UINT8, in_shape, + tim::vx::TensorAttribute::INPUT, quantInput); + tim::vx::TensorSpec input_spec_y(tim::vx::DataType::UINT8, in_shape, + tim::vx::TensorAttribute::INPUT, quantInput); + + tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, out_shape, + tim::vx::TensorAttribute::OUTPUT, quantOutput); + + auto input_tensor_x = graph->CreateTensor(input_spec_x); + auto input_tensor_y = graph->CreateTensor(input_spec_y); + auto output_tensor = graph->CreateTensor(output_spec); + + std::vector in_float_data_x = { + 3.1, 5.1, + 4.1, 8 }; + std::vector in_float_data_y = { + 1.1, 6.1, + 2.1, 9 }; + std::vector golden_float = { + 4.2, 11.2, + 6.2, 17 }; + + std::vector input_data_x = + Quantize(in_float_data_x, scalesInput[0], zeroPointsInput[0]);//Quantification process + std::vector input_data_y = + Quantize(in_float_data_y, scalesInput[0], zeroPointsInput[0]); + std::vector golden = + Quantize(golden_float, scalesOutput[0], zeroPointsOutput[0]); + + EXPECT_TRUE(input_tensor_x->CopyDataToTensor(input_data_x.data(), input_data_x.size()*4)); + EXPECT_TRUE(input_tensor_y->CopyDataToTensor(input_data_y.data(), input_data_y.size()*4)); + auto op = graph->CreateOperation(2); + (*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor}); + + EXPECT_TRUE(graph->Compile()); + EXPECT_TRUE(graph->Run()); + std::vector output(4); + + EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); + EXPECT_EQ(golden, output); +} \ No newline at end of file