Fixed BidirectionalSequenceRnn bugs

Added layout inference for BidirectionalRnn
Fixed wrong datatype and wrong output order of internal about backward rnn
Corrected golden in BidirectionalRnn&BidirectionalRnnExt unit test
Modified  copyright and log message

Type: Bug Fix
Signed-off-by: Feiyue Chen <Feiyue.Chen@verisilicon.com>
This commit is contained in:
Feiyue Chen 2022-11-22 14:20:21 +08:00 committed by Sven
parent 05a1c561af
commit c231c54a66
7 changed files with 146 additions and 36 deletions

View File

@ -65,6 +65,7 @@
#include "ops/unidirectional_lstm_layout_inference.h"
#include "ops/broadcast_layout_inference.h"
#include "ops/unidirectional_rnn_layout_inference.h"
#include "ops/bidirectional_rnn_layout_inference.h"
#include <algorithm>
#include <deque>
@ -269,6 +270,7 @@ std::vector<std::shared_ptr<vx::Tensor>> HandleLayoutInfer(
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_LSTM_OVXLIB, UnidirectionalLstm);
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_EXPAND_BROADCAST, Broadcast);
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_UNIDIRECTIONAL_SEQUENCE_RNN, UnidirectionalRnn);
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_BIDIRECTIONAL_SEQUENCE_RNN, BidirectionalRnn);
REGIST_LOGICAL_LAYOUT_INFERENCE(VSI_NN_OP_LOGICAL_OPS);
REGIST_REDUCE_LAYOUT_INFERENCE(VSI_NN_OP_REDUCE);
// use default layout inference

View File

@ -0,0 +1,99 @@
/****************************************************************************
*
* Copyright (c) 2022 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#ifndef TIM_LAYOUT_INFER_BIDIRECTIONAL_RNN_LAYOUT_INFERENCE_H_
#define TIM_LAYOUT_INFER_BIDIRECTIONAL_RNN_LAYOUT_INFERENCE_H_
#include "tim/vx/ops/reshape.h"
#include "tim/vx/ops/nbg.h"
#include "tim/vx/ops/transpose.h"
#include "tim/vx/ops/batchnorm.h"
#include "tim/vx/ops/clip.h"
#include "ops/op_layout_inference.h"
#include "permute_vector.h"
#include "builtin_op_impl.h"
namespace tim {
namespace transform {
class BidirectionalRnnLayoutInfer : public OpLayoutInfer {
public:
BidirectionalRnnLayoutInfer(
const std::shared_ptr<vx::Operation> op,
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
: OpLayoutInfer(op, context) {}
// reverse any applied permute on it's input tensor
void OnInputs(
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
ReverseInputsPermuteVector();
auto cloned_op = op_->Clone(context_->infer_graph_);
for (const auto& i_src : op_->impl()->InputsTensor()) {
std::shared_ptr<vx::Tensor> infer_tensor;
std::shared_ptr<IPermuteVector> required_pv;
if ((i_src->IsConstTensor() &&
!(i_src->GetSpec().attr_ & vx::TensorAttribute::INPUT))) {
infer_tensor = context_->infer_graph_->CreateTensor(
i_src->GetSpec(), i_src->GetDataRef());
context_->UpdateTensorMap(i_src, infer_tensor);
}
if (i_src->GetId() == (uint32_t)-1) {
infer_tensor = context_->infer_graph_->CreateTensorPlaceHolder();
context_->UpdateTensorMap(i_src, infer_tensor);
}
required_pv = MakeShared(i_src->GetShape().size());
context_->SetPermuteVector(i_src, required_pv);
}
for (const auto& i_src : op_->impl()->InputsTensor()) {
(*cloned_op).BindInput(context_->GetMapedTensor(i_src));
}
std::vector<std::shared_ptr<IPermuteVector>> required_pv_lst;
for (auto out_tensor : op_->impl()->OutputsTensor()) {
std::shared_ptr<vx::Tensor> infer_tensor;
if (out_tensor->GetId() == (uint32_t)-1) {
out_tensor = context_->infer_graph_->CreateTensorPlaceHolder();
}
required_pv_lst.push_back(MakeShared(out_tensor->GetShape().size()));
}
auto out_infer = CreateOutputsTensor(required_pv_lst);
(*cloned_op).BindOutputs(out_infer);
uint32_t i = 0;
for (auto out_tensor : op_->impl()->OutputsTensor()) {
context_->SetPermuteVector(out_tensor, required_pv_lst[i++]);
next_tensors.push_back(out_tensor);
}
}
};
} // namespace transform
} // namespace tim
#endif

View File

@ -339,8 +339,8 @@ static vsi_bool op_setup
output_tensor = vsi_nn_internal_new_tensor( self, &attr, 0.0f );
rnncell_out1 = output_tensor->t;
if (reshape_output_tensors[time_step - 1 - i]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
inputs[BI_RNN_BW_INPUT_WEIGHT_I]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
if (reshape_output_tensors[i]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
inputs[BI_RNN_FW_INPUT_WEIGHT_I]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_I].qnt_type == VSI_NN_QNT_TYPE_NONE &&
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_I].vx_type == VSI_NN_TYPE_NONE)
{
@ -349,16 +349,16 @@ static vsi_bool op_setup
if (last_step_h_state_fw &&
last_step_h_state_fw->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
inputs[BI_RNN_BW_INPUT_WEIGHT_H]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
inputs[BI_RNN_FW_INPUT_WEIGHT_H]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_H].qnt_type == VSI_NN_QNT_TYPE_NONE &&
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_H].vx_type == VSI_NN_TYPE_NONE)
{
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_H].vx_type = VSI_NN_TYPE_FLOAT32;
}
if (has_aux_input&&
aux_reshape_output_tensors[time_step - 1 - i]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
inputs[BI_RNN_BW_AUX_INPUT_WEIGHT]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
if (has_aux_input &&
aux_reshape_output_tensors[i]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
inputs[BI_RNN_FW_AUX_INPUT_WEIGHT]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_AUX].qnt_type == VSI_NN_QNT_TYPE_NONE &&
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_AUX].vx_type == VSI_NN_TYPE_NONE)
{
@ -410,8 +410,17 @@ static vsi_bool op_setup
vsi_nn_tensor_t* rnncell_out1 = NULL;
/* rnncell output */
vsi_nn_internal_init_tensor_attr(&attr,
if(curr_param->merge_outputs)
{
vsi_nn_internal_init_tensor_attr(&attr,
&outputs[BI_RNN_FW_OUTPUT_OUTPUT]->attr.dtype, use_virtual_tensor);
}
else
{
vsi_nn_internal_init_tensor_attr(&attr,
&outputs[BI_RNN_BW_OUTPUT_OUTPUT]->attr.dtype, use_virtual_tensor);
}
output_tensor = vsi_nn_internal_new_tensor( self, &attr, 0.0f );
rnncell_out0 = output_tensor->t;
@ -438,7 +447,7 @@ static vsi_bool op_setup
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_H].vx_type = VSI_NN_TYPE_FLOAT32;
}
if (has_aux_input&&
if (has_aux_input &&
aux_reshape_output_tensors[time_step - 1 - i]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
inputs[BI_RNN_BW_AUX_INPUT_WEIGHT]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_AUX].qnt_type == VSI_NN_QNT_TYPE_NONE &&
@ -481,7 +490,7 @@ static vsi_bool op_setup
/* reshape output to 3-dims */
output_tensor = vsi_nn_rnn_reshape_cell_output(self,
rnncell_out0, (uint32_t)batch_size, use_virtual_tensor);
rnncell_reshape_output_tensors_bw[i] = output_tensor->t;
rnncell_reshape_output_tensors_bw[time_step - 1 - i] = output_tensor->t;
}
if(curr_param->merge_outputs)

View File

@ -1,6 +1,6 @@
/****************************************************************************
*
* Copyright (c) 2020 Vivante Corporation
* Copyright (c) 2022 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
@ -45,7 +45,7 @@ vsi_nn_activation_e downcast_act_type(BidirectionalSequenceRnn::ActivationType a
case BidirectionalSequenceRnn::ActivationType::kHARDSIGMOID:
return VSI_NN_ACT_HARD_SIGMOID;
default: {
VSILOGW("Not supported activition type for RNN = %d", static_cast<int32_t>(act));
VSILOGW("Not supported activition type for BidirectionalSequenceRNN = %d", static_cast<int32_t>(act));
return VSI_NN_ACT_NONE;
}
}

View File

@ -1,6 +1,6 @@
/****************************************************************************
*
* Copyright (c) 2021 Vivante Corporation
* Copyright (c) 2022 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),

View File

@ -29,7 +29,7 @@
#include "test_utils.h"
TEST(BidirectionalSequenceRnnExt, shape_2_3_4_float_sigmoid) {
TEST(BidirectionalSequenceRnnExt, shape_2_3_2_float_sigmoid) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
@ -98,7 +98,7 @@ TEST(BidirectionalSequenceRnnExt, shape_2_3_4_float_sigmoid) {
std::vector<float> bias_data = {
0.1, 0.1, 0.1, 0.1,
0.0, 0.0, 0.0, 0.0,
0.1, 0.1, 0.1, 0.1, //bug 不能被获取到
0.1, 0.1, 0.1, 0.1,
0.0, 0.0, 0.0, 0.0,
};
std::vector<float> state_in_data = {
@ -113,15 +113,15 @@ TEST(BidirectionalSequenceRnnExt, shape_2_3_4_float_sigmoid) {
0.5986, 0.5986, 0.5986, 0.5986,
0.6899, 0.6899, 0.6899, 0.6899,
0.7685, 0.7685, 0.7685, 0.7685,
0.8320, 0.8320, 0.8320, 0.8320,
0.8807, 0.8807, 0.8807, 0.8807,
0.9168, 0.9168, 0.9168, 0.9168,
0.6754, 0.6754, 0.6754, 0.6754,
0.7599, 0.7599, 0.7599, 0.7599,
0.8273, 0.8273, 0.8273, 0.8273,
0.8628, 0.8628, 0.8628, 0.8628,
0.9068, 0.9068, 0.9068, 0.9068,
0.9374, 0.9374, 0.9374, 0.9374,
0.6754, 0.6754, 0.6754, 0.6754,
0.7599, 0.7599, 0.7599, 0.7599,
0.8273, 0.8273, 0.8273, 0.8273
0.8320, 0.8320, 0.8320, 0.8320,
0.8807, 0.8807, 0.8807, 0.8807,
0.9168, 0.9168, 0.9168, 0.9168,
};
std::vector<float> state_out_golden = {
0.8628, 0.8628, 0.8628, 0.8628,

View File

@ -1,6 +1,6 @@
/****************************************************************************
*
* Copyright (c) 2021 Vivante Corporation
* Copyright (c) 2022 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
@ -29,19 +29,19 @@
#include "test_utils.h"
TEST(BidirectionalSequenceRnn, shape_2_3_4_float_sigmoid) {
TEST(BidirectionalSequenceRnn, shape_2_3_2_float_sigmoid) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
uint32_t input_size = 2, batch_size = 3, num_units = 4;
uint32_t input_size = 2, batch_size = 3, time_step = 2, num_units = 4;
tim::vx::ShapeType input_shape({input_size, batch_size, 2});
tim::vx::ShapeType input_shape({input_size, batch_size, time_step});
tim::vx::ShapeType weights_shape({input_size, num_units});
tim::vx::ShapeType recurrent_weights_shape({num_units, num_units});
tim::vx::ShapeType bias_shape({num_units});
tim::vx::ShapeType recurrent_bias_shape({num_units});
tim::vx::ShapeType state_in_shape({num_units, batch_size});
tim::vx::ShapeType output_shape({num_units, batch_size, 2});
tim::vx::ShapeType output_shape({num_units, batch_size, time_step});
tim::vx::ShapeType state_out_shape({num_units, batch_size});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
@ -123,12 +123,12 @@ TEST(BidirectionalSequenceRnn, shape_2_3_4_float_sigmoid) {
0.9374, 0.9374, 0.9374, 0.9374,
};
std::vector<float> bw_output_golden = {
0.8320, 0.8320, 0.8320, 0.8320,
0.8807, 0.8807, 0.8807, 0.8807,
0.9168, 0.9168, 0.9168, 0.9168,
0.6754, 0.6754, 0.6754, 0.6754,
0.7599, 0.7599, 0.7599, 0.7599,
0.8273, 0.8273, 0.8273, 0.8273
0.8273, 0.8273, 0.8273, 0.8273,
0.8320, 0.8320, 0.8320, 0.8320,
0.8807, 0.8807, 0.8807, 0.8807,
0.9168, 0.9168, 0.9168, 0.9168,
};
std::vector<float> bw_state_out_golden = {
0.6754, 0.6754, 0.6754, 0.6754,
@ -183,19 +183,19 @@ TEST(BidirectionalSequenceRnn, shape_2_3_4_float_sigmoid) {
EXPECT_TRUE(ArraysMatch(bw_state_out_golden, bw_state_out,1e-3f));
}
TEST(BidirectionalSequenceRnn, shape_2_3_4_float_relu) {
TEST(BidirectionalSequenceRnn, shape_2_3_2_float_relu) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
uint32_t input_size = 2, batch_size = 3, num_units = 4;
uint32_t input_size = 2, batch_size = 3, num_units = 4, time_step = 2;
tim::vx::ShapeType input_shape({input_size, batch_size, 2});
tim::vx::ShapeType input_shape({input_size, batch_size, time_step});
tim::vx::ShapeType weights_shape({input_size, num_units});
tim::vx::ShapeType recurrent_weights_shape({num_units, num_units});
tim::vx::ShapeType bias_shape({num_units});
tim::vx::ShapeType recurrent_bias_shape({num_units});
tim::vx::ShapeType state_in_shape({num_units, batch_size});
tim::vx::ShapeType output_shape({num_units, batch_size, 2});
tim::vx::ShapeType output_shape({num_units, batch_size, time_step});
tim::vx::ShapeType state_out_shape({num_units, batch_size});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
@ -277,12 +277,12 @@ TEST(BidirectionalSequenceRnn, shape_2_3_4_float_relu) {
2.88, 2.88, 2.88, 2.88,
};
std::vector<float> bw_output_golden = {
1.6, 1.6, 1.6, 1.6,
2.0, 2.0, 2.0, 2.0,
2.4, 2.4, 2.4, 2.4,
1.04, 1.04, 1.04, 1.04,
1.6, 1.6, 1.6, 1.6,
2.16, 2.16, 2.16, 2.16,
1.6, 1.6, 1.6, 1.6,
2.0, 2.0, 2.0, 2.0,
2.4, 2.4, 2.4, 2.4,
};
std::vector<float> bw_state_out_golden = {
1.04, 1.04, 1.04, 1.04,