Fixed BidirectionalSequenceRnn bugs
Added layout inference for BidirectionalRnn Fixed wrong datatype and wrong output order of internal about backward rnn Corrected golden in BidirectionalRnn&BidirectionalRnnExt unit test Modified copyright and log message Type: Bug Fix Signed-off-by: Feiyue Chen <Feiyue.Chen@verisilicon.com>
This commit is contained in:
parent
05a1c561af
commit
c231c54a66
|
|
@ -65,6 +65,7 @@
|
||||||
#include "ops/unidirectional_lstm_layout_inference.h"
|
#include "ops/unidirectional_lstm_layout_inference.h"
|
||||||
#include "ops/broadcast_layout_inference.h"
|
#include "ops/broadcast_layout_inference.h"
|
||||||
#include "ops/unidirectional_rnn_layout_inference.h"
|
#include "ops/unidirectional_rnn_layout_inference.h"
|
||||||
|
#include "ops/bidirectional_rnn_layout_inference.h"
|
||||||
|
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <deque>
|
#include <deque>
|
||||||
|
|
@ -269,6 +270,7 @@ std::vector<std::shared_ptr<vx::Tensor>> HandleLayoutInfer(
|
||||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_LSTM_OVXLIB, UnidirectionalLstm);
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_LSTM_OVXLIB, UnidirectionalLstm);
|
||||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_EXPAND_BROADCAST, Broadcast);
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_EXPAND_BROADCAST, Broadcast);
|
||||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_UNIDIRECTIONAL_SEQUENCE_RNN, UnidirectionalRnn);
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_UNIDIRECTIONAL_SEQUENCE_RNN, UnidirectionalRnn);
|
||||||
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_BIDIRECTIONAL_SEQUENCE_RNN, BidirectionalRnn);
|
||||||
REGIST_LOGICAL_LAYOUT_INFERENCE(VSI_NN_OP_LOGICAL_OPS);
|
REGIST_LOGICAL_LAYOUT_INFERENCE(VSI_NN_OP_LOGICAL_OPS);
|
||||||
REGIST_REDUCE_LAYOUT_INFERENCE(VSI_NN_OP_REDUCE);
|
REGIST_REDUCE_LAYOUT_INFERENCE(VSI_NN_OP_REDUCE);
|
||||||
// use default layout inference
|
// use default layout inference
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,99 @@
|
||||||
|
/****************************************************************************
|
||||||
|
*
|
||||||
|
* Copyright (c) 2022 Vivante Corporation
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
* to deal in the Software without restriction, including without limitation
|
||||||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||||||
|
* Software is furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in
|
||||||
|
* all copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||||
|
* DEALINGS IN THE SOFTWARE.
|
||||||
|
*
|
||||||
|
*****************************************************************************/
|
||||||
|
#ifndef TIM_LAYOUT_INFER_BIDIRECTIONAL_RNN_LAYOUT_INFERENCE_H_
|
||||||
|
#define TIM_LAYOUT_INFER_BIDIRECTIONAL_RNN_LAYOUT_INFERENCE_H_
|
||||||
|
|
||||||
|
#include "tim/vx/ops/reshape.h"
|
||||||
|
#include "tim/vx/ops/nbg.h"
|
||||||
|
#include "tim/vx/ops/transpose.h"
|
||||||
|
#include "tim/vx/ops/batchnorm.h"
|
||||||
|
#include "tim/vx/ops/clip.h"
|
||||||
|
|
||||||
|
#include "ops/op_layout_inference.h"
|
||||||
|
#include "permute_vector.h"
|
||||||
|
#include "builtin_op_impl.h"
|
||||||
|
|
||||||
|
namespace tim {
|
||||||
|
namespace transform {
|
||||||
|
|
||||||
|
class BidirectionalRnnLayoutInfer : public OpLayoutInfer {
|
||||||
|
public:
|
||||||
|
BidirectionalRnnLayoutInfer(
|
||||||
|
const std::shared_ptr<vx::Operation> op,
|
||||||
|
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
|
||||||
|
: OpLayoutInfer(op, context) {}
|
||||||
|
|
||||||
|
// reverse any applied permute on it's input tensor
|
||||||
|
void OnInputs(
|
||||||
|
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
|
||||||
|
ReverseInputsPermuteVector();
|
||||||
|
|
||||||
|
auto cloned_op = op_->Clone(context_->infer_graph_);
|
||||||
|
|
||||||
|
for (const auto& i_src : op_->impl()->InputsTensor()) {
|
||||||
|
std::shared_ptr<vx::Tensor> infer_tensor;
|
||||||
|
std::shared_ptr<IPermuteVector> required_pv;
|
||||||
|
if ((i_src->IsConstTensor() &&
|
||||||
|
!(i_src->GetSpec().attr_ & vx::TensorAttribute::INPUT))) {
|
||||||
|
infer_tensor = context_->infer_graph_->CreateTensor(
|
||||||
|
i_src->GetSpec(), i_src->GetDataRef());
|
||||||
|
context_->UpdateTensorMap(i_src, infer_tensor);
|
||||||
|
}
|
||||||
|
if (i_src->GetId() == (uint32_t)-1) {
|
||||||
|
infer_tensor = context_->infer_graph_->CreateTensorPlaceHolder();
|
||||||
|
context_->UpdateTensorMap(i_src, infer_tensor);
|
||||||
|
}
|
||||||
|
required_pv = MakeShared(i_src->GetShape().size());
|
||||||
|
context_->SetPermuteVector(i_src, required_pv);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
for (const auto& i_src : op_->impl()->InputsTensor()) {
|
||||||
|
(*cloned_op).BindInput(context_->GetMapedTensor(i_src));
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
std::vector<std::shared_ptr<IPermuteVector>> required_pv_lst;
|
||||||
|
for (auto out_tensor : op_->impl()->OutputsTensor()) {
|
||||||
|
std::shared_ptr<vx::Tensor> infer_tensor;
|
||||||
|
if (out_tensor->GetId() == (uint32_t)-1) {
|
||||||
|
out_tensor = context_->infer_graph_->CreateTensorPlaceHolder();
|
||||||
|
}
|
||||||
|
required_pv_lst.push_back(MakeShared(out_tensor->GetShape().size()));
|
||||||
|
}
|
||||||
|
auto out_infer = CreateOutputsTensor(required_pv_lst);
|
||||||
|
|
||||||
|
(*cloned_op).BindOutputs(out_infer);
|
||||||
|
uint32_t i = 0;
|
||||||
|
for (auto out_tensor : op_->impl()->OutputsTensor()) {
|
||||||
|
context_->SetPermuteVector(out_tensor, required_pv_lst[i++]);
|
||||||
|
next_tensors.push_back(out_tensor);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace transform
|
||||||
|
} // namespace tim
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
@ -339,8 +339,8 @@ static vsi_bool op_setup
|
||||||
output_tensor = vsi_nn_internal_new_tensor( self, &attr, 0.0f );
|
output_tensor = vsi_nn_internal_new_tensor( self, &attr, 0.0f );
|
||||||
rnncell_out1 = output_tensor->t;
|
rnncell_out1 = output_tensor->t;
|
||||||
|
|
||||||
if (reshape_output_tensors[time_step - 1 - i]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
if (reshape_output_tensors[i]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
||||||
inputs[BI_RNN_BW_INPUT_WEIGHT_I]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
inputs[BI_RNN_FW_INPUT_WEIGHT_I]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
||||||
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_I].qnt_type == VSI_NN_QNT_TYPE_NONE &&
|
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_I].qnt_type == VSI_NN_QNT_TYPE_NONE &&
|
||||||
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_I].vx_type == VSI_NN_TYPE_NONE)
|
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_I].vx_type == VSI_NN_TYPE_NONE)
|
||||||
{
|
{
|
||||||
|
|
@ -349,16 +349,16 @@ static vsi_bool op_setup
|
||||||
|
|
||||||
if (last_step_h_state_fw &&
|
if (last_step_h_state_fw &&
|
||||||
last_step_h_state_fw->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
last_step_h_state_fw->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
||||||
inputs[BI_RNN_BW_INPUT_WEIGHT_H]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
inputs[BI_RNN_FW_INPUT_WEIGHT_H]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
||||||
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_H].qnt_type == VSI_NN_QNT_TYPE_NONE &&
|
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_H].qnt_type == VSI_NN_QNT_TYPE_NONE &&
|
||||||
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_H].vx_type == VSI_NN_TYPE_NONE)
|
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_H].vx_type == VSI_NN_TYPE_NONE)
|
||||||
{
|
{
|
||||||
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_H].vx_type = VSI_NN_TYPE_FLOAT32;
|
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_H].vx_type = VSI_NN_TYPE_FLOAT32;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (has_aux_input&&
|
if (has_aux_input &&
|
||||||
aux_reshape_output_tensors[time_step - 1 - i]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
aux_reshape_output_tensors[i]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
||||||
inputs[BI_RNN_BW_AUX_INPUT_WEIGHT]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
inputs[BI_RNN_FW_AUX_INPUT_WEIGHT]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
||||||
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_AUX].qnt_type == VSI_NN_QNT_TYPE_NONE &&
|
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_AUX].qnt_type == VSI_NN_QNT_TYPE_NONE &&
|
||||||
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_AUX].vx_type == VSI_NN_TYPE_NONE)
|
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_AUX].vx_type == VSI_NN_TYPE_NONE)
|
||||||
{
|
{
|
||||||
|
|
@ -410,8 +410,17 @@ static vsi_bool op_setup
|
||||||
vsi_nn_tensor_t* rnncell_out1 = NULL;
|
vsi_nn_tensor_t* rnncell_out1 = NULL;
|
||||||
|
|
||||||
/* rnncell output */
|
/* rnncell output */
|
||||||
|
|
||||||
|
if(curr_param->merge_outputs)
|
||||||
|
{
|
||||||
|
vsi_nn_internal_init_tensor_attr(&attr,
|
||||||
|
&outputs[BI_RNN_FW_OUTPUT_OUTPUT]->attr.dtype, use_virtual_tensor);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
vsi_nn_internal_init_tensor_attr(&attr,
|
vsi_nn_internal_init_tensor_attr(&attr,
|
||||||
&outputs[BI_RNN_BW_OUTPUT_OUTPUT]->attr.dtype, use_virtual_tensor);
|
&outputs[BI_RNN_BW_OUTPUT_OUTPUT]->attr.dtype, use_virtual_tensor);
|
||||||
|
}
|
||||||
output_tensor = vsi_nn_internal_new_tensor( self, &attr, 0.0f );
|
output_tensor = vsi_nn_internal_new_tensor( self, &attr, 0.0f );
|
||||||
rnncell_out0 = output_tensor->t;
|
rnncell_out0 = output_tensor->t;
|
||||||
|
|
||||||
|
|
@ -438,7 +447,7 @@ static vsi_bool op_setup
|
||||||
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_H].vx_type = VSI_NN_TYPE_FLOAT32;
|
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_H].vx_type = VSI_NN_TYPE_FLOAT32;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (has_aux_input&&
|
if (has_aux_input &&
|
||||||
aux_reshape_output_tensors[time_step - 1 - i]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
aux_reshape_output_tensors[time_step - 1 - i]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
||||||
inputs[BI_RNN_BW_AUX_INPUT_WEIGHT]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
inputs[BI_RNN_BW_AUX_INPUT_WEIGHT]->attr.dtype.vx_type == VSI_NN_TYPE_FLOAT32 &&
|
||||||
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_AUX].qnt_type == VSI_NN_QNT_TYPE_NONE &&
|
curr_param->internal_dtype[RNNCELL_QUANTIZE_PARAM_AUX].qnt_type == VSI_NN_QNT_TYPE_NONE &&
|
||||||
|
|
@ -481,7 +490,7 @@ static vsi_bool op_setup
|
||||||
/* reshape output to 3-dims */
|
/* reshape output to 3-dims */
|
||||||
output_tensor = vsi_nn_rnn_reshape_cell_output(self,
|
output_tensor = vsi_nn_rnn_reshape_cell_output(self,
|
||||||
rnncell_out0, (uint32_t)batch_size, use_virtual_tensor);
|
rnncell_out0, (uint32_t)batch_size, use_virtual_tensor);
|
||||||
rnncell_reshape_output_tensors_bw[i] = output_tensor->t;
|
rnncell_reshape_output_tensors_bw[time_step - 1 - i] = output_tensor->t;
|
||||||
}
|
}
|
||||||
|
|
||||||
if(curr_param->merge_outputs)
|
if(curr_param->merge_outputs)
|
||||||
|
|
|
||||||
|
|
@ -1,6 +1,6 @@
|
||||||
/****************************************************************************
|
/****************************************************************************
|
||||||
*
|
*
|
||||||
* Copyright (c) 2020 Vivante Corporation
|
* Copyright (c) 2022 Vivante Corporation
|
||||||
*
|
*
|
||||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
* copy of this software and associated documentation files (the "Software"),
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
|
@ -45,7 +45,7 @@ vsi_nn_activation_e downcast_act_type(BidirectionalSequenceRnn::ActivationType a
|
||||||
case BidirectionalSequenceRnn::ActivationType::kHARDSIGMOID:
|
case BidirectionalSequenceRnn::ActivationType::kHARDSIGMOID:
|
||||||
return VSI_NN_ACT_HARD_SIGMOID;
|
return VSI_NN_ACT_HARD_SIGMOID;
|
||||||
default: {
|
default: {
|
||||||
VSILOGW("Not supported activition type for RNN = %d", static_cast<int32_t>(act));
|
VSILOGW("Not supported activition type for BidirectionalSequenceRNN = %d", static_cast<int32_t>(act));
|
||||||
return VSI_NN_ACT_NONE;
|
return VSI_NN_ACT_NONE;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -1,6 +1,6 @@
|
||||||
/****************************************************************************
|
/****************************************************************************
|
||||||
*
|
*
|
||||||
* Copyright (c) 2021 Vivante Corporation
|
* Copyright (c) 2022 Vivante Corporation
|
||||||
*
|
*
|
||||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
* copy of this software and associated documentation files (the "Software"),
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
|
|
||||||
|
|
@ -29,7 +29,7 @@
|
||||||
#include "test_utils.h"
|
#include "test_utils.h"
|
||||||
|
|
||||||
|
|
||||||
TEST(BidirectionalSequenceRnnExt, shape_2_3_4_float_sigmoid) {
|
TEST(BidirectionalSequenceRnnExt, shape_2_3_2_float_sigmoid) {
|
||||||
auto ctx = tim::vx::Context::Create();
|
auto ctx = tim::vx::Context::Create();
|
||||||
auto graph = ctx->CreateGraph();
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
|
@ -98,7 +98,7 @@ TEST(BidirectionalSequenceRnnExt, shape_2_3_4_float_sigmoid) {
|
||||||
std::vector<float> bias_data = {
|
std::vector<float> bias_data = {
|
||||||
0.1, 0.1, 0.1, 0.1,
|
0.1, 0.1, 0.1, 0.1,
|
||||||
0.0, 0.0, 0.0, 0.0,
|
0.0, 0.0, 0.0, 0.0,
|
||||||
0.1, 0.1, 0.1, 0.1, //bug 不能被获取到
|
0.1, 0.1, 0.1, 0.1,
|
||||||
0.0, 0.0, 0.0, 0.0,
|
0.0, 0.0, 0.0, 0.0,
|
||||||
};
|
};
|
||||||
std::vector<float> state_in_data = {
|
std::vector<float> state_in_data = {
|
||||||
|
|
@ -113,15 +113,15 @@ TEST(BidirectionalSequenceRnnExt, shape_2_3_4_float_sigmoid) {
|
||||||
0.5986, 0.5986, 0.5986, 0.5986,
|
0.5986, 0.5986, 0.5986, 0.5986,
|
||||||
0.6899, 0.6899, 0.6899, 0.6899,
|
0.6899, 0.6899, 0.6899, 0.6899,
|
||||||
0.7685, 0.7685, 0.7685, 0.7685,
|
0.7685, 0.7685, 0.7685, 0.7685,
|
||||||
0.8320, 0.8320, 0.8320, 0.8320,
|
0.6754, 0.6754, 0.6754, 0.6754,
|
||||||
0.8807, 0.8807, 0.8807, 0.8807,
|
0.7599, 0.7599, 0.7599, 0.7599,
|
||||||
0.9168, 0.9168, 0.9168, 0.9168,
|
0.8273, 0.8273, 0.8273, 0.8273,
|
||||||
0.8628, 0.8628, 0.8628, 0.8628,
|
0.8628, 0.8628, 0.8628, 0.8628,
|
||||||
0.9068, 0.9068, 0.9068, 0.9068,
|
0.9068, 0.9068, 0.9068, 0.9068,
|
||||||
0.9374, 0.9374, 0.9374, 0.9374,
|
0.9374, 0.9374, 0.9374, 0.9374,
|
||||||
0.6754, 0.6754, 0.6754, 0.6754,
|
0.8320, 0.8320, 0.8320, 0.8320,
|
||||||
0.7599, 0.7599, 0.7599, 0.7599,
|
0.8807, 0.8807, 0.8807, 0.8807,
|
||||||
0.8273, 0.8273, 0.8273, 0.8273
|
0.9168, 0.9168, 0.9168, 0.9168,
|
||||||
};
|
};
|
||||||
std::vector<float> state_out_golden = {
|
std::vector<float> state_out_golden = {
|
||||||
0.8628, 0.8628, 0.8628, 0.8628,
|
0.8628, 0.8628, 0.8628, 0.8628,
|
||||||
|
|
|
||||||
|
|
@ -1,6 +1,6 @@
|
||||||
/****************************************************************************
|
/****************************************************************************
|
||||||
*
|
*
|
||||||
* Copyright (c) 2021 Vivante Corporation
|
* Copyright (c) 2022 Vivante Corporation
|
||||||
*
|
*
|
||||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
* copy of this software and associated documentation files (the "Software"),
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
|
@ -29,19 +29,19 @@
|
||||||
#include "test_utils.h"
|
#include "test_utils.h"
|
||||||
|
|
||||||
|
|
||||||
TEST(BidirectionalSequenceRnn, shape_2_3_4_float_sigmoid) {
|
TEST(BidirectionalSequenceRnn, shape_2_3_2_float_sigmoid) {
|
||||||
auto ctx = tim::vx::Context::Create();
|
auto ctx = tim::vx::Context::Create();
|
||||||
auto graph = ctx->CreateGraph();
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
uint32_t input_size = 2, batch_size = 3, num_units = 4;
|
uint32_t input_size = 2, batch_size = 3, time_step = 2, num_units = 4;
|
||||||
|
|
||||||
tim::vx::ShapeType input_shape({input_size, batch_size, 2});
|
tim::vx::ShapeType input_shape({input_size, batch_size, time_step});
|
||||||
tim::vx::ShapeType weights_shape({input_size, num_units});
|
tim::vx::ShapeType weights_shape({input_size, num_units});
|
||||||
tim::vx::ShapeType recurrent_weights_shape({num_units, num_units});
|
tim::vx::ShapeType recurrent_weights_shape({num_units, num_units});
|
||||||
tim::vx::ShapeType bias_shape({num_units});
|
tim::vx::ShapeType bias_shape({num_units});
|
||||||
tim::vx::ShapeType recurrent_bias_shape({num_units});
|
tim::vx::ShapeType recurrent_bias_shape({num_units});
|
||||||
tim::vx::ShapeType state_in_shape({num_units, batch_size});
|
tim::vx::ShapeType state_in_shape({num_units, batch_size});
|
||||||
tim::vx::ShapeType output_shape({num_units, batch_size, 2});
|
tim::vx::ShapeType output_shape({num_units, batch_size, time_step});
|
||||||
tim::vx::ShapeType state_out_shape({num_units, batch_size});
|
tim::vx::ShapeType state_out_shape({num_units, batch_size});
|
||||||
|
|
||||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
|
@ -123,12 +123,12 @@ TEST(BidirectionalSequenceRnn, shape_2_3_4_float_sigmoid) {
|
||||||
0.9374, 0.9374, 0.9374, 0.9374,
|
0.9374, 0.9374, 0.9374, 0.9374,
|
||||||
};
|
};
|
||||||
std::vector<float> bw_output_golden = {
|
std::vector<float> bw_output_golden = {
|
||||||
|
0.6754, 0.6754, 0.6754, 0.6754,
|
||||||
|
0.7599, 0.7599, 0.7599, 0.7599,
|
||||||
|
0.8273, 0.8273, 0.8273, 0.8273,
|
||||||
0.8320, 0.8320, 0.8320, 0.8320,
|
0.8320, 0.8320, 0.8320, 0.8320,
|
||||||
0.8807, 0.8807, 0.8807, 0.8807,
|
0.8807, 0.8807, 0.8807, 0.8807,
|
||||||
0.9168, 0.9168, 0.9168, 0.9168,
|
0.9168, 0.9168, 0.9168, 0.9168,
|
||||||
0.6754, 0.6754, 0.6754, 0.6754,
|
|
||||||
0.7599, 0.7599, 0.7599, 0.7599,
|
|
||||||
0.8273, 0.8273, 0.8273, 0.8273
|
|
||||||
};
|
};
|
||||||
std::vector<float> bw_state_out_golden = {
|
std::vector<float> bw_state_out_golden = {
|
||||||
0.6754, 0.6754, 0.6754, 0.6754,
|
0.6754, 0.6754, 0.6754, 0.6754,
|
||||||
|
|
@ -183,19 +183,19 @@ TEST(BidirectionalSequenceRnn, shape_2_3_4_float_sigmoid) {
|
||||||
EXPECT_TRUE(ArraysMatch(bw_state_out_golden, bw_state_out,1e-3f));
|
EXPECT_TRUE(ArraysMatch(bw_state_out_golden, bw_state_out,1e-3f));
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST(BidirectionalSequenceRnn, shape_2_3_4_float_relu) {
|
TEST(BidirectionalSequenceRnn, shape_2_3_2_float_relu) {
|
||||||
auto ctx = tim::vx::Context::Create();
|
auto ctx = tim::vx::Context::Create();
|
||||||
auto graph = ctx->CreateGraph();
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
uint32_t input_size = 2, batch_size = 3, num_units = 4;
|
uint32_t input_size = 2, batch_size = 3, num_units = 4, time_step = 2;
|
||||||
|
|
||||||
tim::vx::ShapeType input_shape({input_size, batch_size, 2});
|
tim::vx::ShapeType input_shape({input_size, batch_size, time_step});
|
||||||
tim::vx::ShapeType weights_shape({input_size, num_units});
|
tim::vx::ShapeType weights_shape({input_size, num_units});
|
||||||
tim::vx::ShapeType recurrent_weights_shape({num_units, num_units});
|
tim::vx::ShapeType recurrent_weights_shape({num_units, num_units});
|
||||||
tim::vx::ShapeType bias_shape({num_units});
|
tim::vx::ShapeType bias_shape({num_units});
|
||||||
tim::vx::ShapeType recurrent_bias_shape({num_units});
|
tim::vx::ShapeType recurrent_bias_shape({num_units});
|
||||||
tim::vx::ShapeType state_in_shape({num_units, batch_size});
|
tim::vx::ShapeType state_in_shape({num_units, batch_size});
|
||||||
tim::vx::ShapeType output_shape({num_units, batch_size, 2});
|
tim::vx::ShapeType output_shape({num_units, batch_size, time_step});
|
||||||
tim::vx::ShapeType state_out_shape({num_units, batch_size});
|
tim::vx::ShapeType state_out_shape({num_units, batch_size});
|
||||||
|
|
||||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
|
@ -277,12 +277,12 @@ TEST(BidirectionalSequenceRnn, shape_2_3_4_float_relu) {
|
||||||
2.88, 2.88, 2.88, 2.88,
|
2.88, 2.88, 2.88, 2.88,
|
||||||
};
|
};
|
||||||
std::vector<float> bw_output_golden = {
|
std::vector<float> bw_output_golden = {
|
||||||
1.6, 1.6, 1.6, 1.6,
|
|
||||||
2.0, 2.0, 2.0, 2.0,
|
|
||||||
2.4, 2.4, 2.4, 2.4,
|
|
||||||
1.04, 1.04, 1.04, 1.04,
|
1.04, 1.04, 1.04, 1.04,
|
||||||
1.6, 1.6, 1.6, 1.6,
|
1.6, 1.6, 1.6, 1.6,
|
||||||
2.16, 2.16, 2.16, 2.16,
|
2.16, 2.16, 2.16, 2.16,
|
||||||
|
1.6, 1.6, 1.6, 1.6,
|
||||||
|
2.0, 2.0, 2.0, 2.0,
|
||||||
|
2.4, 2.4, 2.4, 2.4,
|
||||||
};
|
};
|
||||||
std::vector<float> bw_state_out_golden = {
|
std::vector<float> bw_state_out_golden = {
|
||||||
1.04, 1.04, 1.04, 1.04,
|
1.04, 1.04, 1.04, 1.04,
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue